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Abstract. Unsupervised anomaly detection is commonly performed us-
ing a distance or density based technique, such as K-Nearest neighbours,
Local Outlier Factor or One-class Support Vector Machines. One-class
Support Vector Machines reduce the computational cost of testing new
data by providing sparse solutions. However, all these techniques have
relatively high computational requirements for training. Moreover, iden-
tifying anomalies based solely on density or distance is not sufficient
when both point (isolated) and cluster anomalies exist in an unlabelled
training set. Finally, these unsupervised anomaly detection techniques
are not readily adapted for active learning, where the training algorithm
should identify examples for which labelling would make a significant
impact on the accuracy of the learned model. In this paper, we pro-
pose a novel technique called Maximin-based Anomaly Detection that
addresses these challenges by selecting a representative subset of data in
combination with a kernel-based model construction. We show that the
proposed technique (a) provides a statistically significant improvement
in the accuracy as well as the computation time required for training and
testing compared to several benchmark unsupervised anomaly detection
techniques, and (b) effectively uses active learning with a limited budget.

Keywords: Anomaly detection · Unsupervised learning · Active learn-
ing.

1 Introduction

Anomaly detection is a key component of many monitoring applications, which
aim to detect harmful rare events that can be subsequently controlled [8]. It
has been used in a wide range of domains from cybersecurity [33, 7] to health
and safety applications such as fall detection for elderly people [27, 35]. A key
challenge for anomaly detection is the abundance of unlabelled data [23]. The
high cost of labelling hinders the application of supervised anomaly detection
techniques, which require labelled examples of anomalies and normal data [8].
Although one-class classification techniques mitigate this issue by building a
normal profile given only normal data, they are not sufficiently robust to the
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presence of unknown anomalies in the training set [32, 3, 16]. Even if the train-
ing set only comprises normal data but is noisy, one-class classification can de-
liver unsatisfactory results [16, 15]. Since one-class classification techniques such
as One-Class Support Vector Machine (OCSVM) [30] and Support Vector Data
Description (SVDD) [32] provide sparse solutions and are very fast during the
testing phase, they have been enhanced to work in an unsupervised manner [3,
16, 15]. However, depending on the implementation and the characteristics of
the dataset, training may require O(n2) to O(n3) operations, where n is the car-
dinality of the training data. Unsupervised anomaly detection techniques such
as K-Nearest Neighbours (KNN) and Local Outlier Factor (LOF), have high
computational requirements for processing new observations in a continuously
monitored system. For scroring/labelling a new data point, anomaly scores of all
or a subset of existing data points should be recomputed in a fairly large refer-
ence dataset. Therefore, these methods have limited scope for real-time anomaly
detection. In other words, they do not learn an explicit model a priori, which
can be later on used for timely evaluation of future observations [1]. iForest[25]
is another unsupervised method that attempts to address these challenges by
filtering anomalies through isolating trees that are trained on several subsets of
the data. This way, iForest is not based on a density or distance measure and
lowers the computational cost by sampling. However, the solution provided by
iForest is not sparse like OCSVM and SVDD, and to score a test instance it
must scan several trees.

In some applications, it might be possible to obtain expert feedback on
whether an instance is normal or anomalous. Having that feedback on a small
number of critical examples can make a substantial difference to the accuracy
of the final model [23]. This process, known as Active Learning (AL), has been
widely used in classification [34] and rare class discovery [20, 17] using super-
vised or semi-supervised learning. Using AL in unsupervised anomaly detection
is an emerging trend [19, 1]. Sharma et al. [31] used active learning to train a
two-class classifier for identifying operationally significant anomalies from in-
significant ones in a flight trajectory dataset. They used the OCSVM algorithm
first to identify top-ranked anomalies in an unsupervised manner. Given their
scores, the top-ranked anomalies are then presented to an expert to generate a
labelled set of operationally significant and insignificant anomalies. This labelled
set is used to train a two-class SVM that distinguishes between interesting and
unimportant anomalies. Pelleg and Moore [26] proposed a general framework for
the same purpose that runs several loops for data modelling (using Gaussian
mixtures) and labelling. The algorithm starts with an unlabelled dataset. After
each modelling round, labels of 35 instances are asked from an expert. Three
strategies are used to choose these instances: choosing instances with low likeli-
hood under the current model, choosing instances that the model is not certain
about them, and a combination of the two strategies. Our work is different as we
aim to enhance the ability of the underlying unsupervised anomaly detection,
which is used by these techniques to find interesting anomalies or discover rare
classes. The ability of an anomaly detection technique to efficiently and effec-
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tively use the AL budget is vital for adversarial tasks such as fraud detection,
where anomalies can be similar to the normal data due to fraudsters mimicking
normal behaviour [1].

In this paper, we present a novel approach called Maximin-based Anomaly
Detection (MMAD). The contributions of this work are as follows. First, we
use random sampling followed by the Maximin (MM) sampling technique [22]
to select a representative subset of the input data, which achieves low constant
computational cost for big datasets. Then, we use a cluster validity index (CVI)
called the Silhouette index [29] on the representative samples that should con-
tribute to defining a kernel-based model, which is subsequently used to score
anomalies and normal data in nearly real-time. Second, we incorporate AL into
MMAD. We show that with only a few labels, this enhancement of MMAD
improves the accuracy of unsupervised anomaly detection. Our numerical ex-
periments on benchmark anomaly detection datasets show that our proposed
technique outperforms several state-of-the-art unsupervised anomaly detection
techniques in terms of the time-complexity of training a model and testing the
future data. Moreover, our technique provides statistically significant improve-
ments in accuracy even when the AL budget is zero.

2 Definitions and Problem Specification

Let the normal data D∗ be (an unknown) subset of a given unlabelled training
set D, i.e., D∗ ⊆ D = {x1, x2, ..., xn} ⊂ Rd, drawn from an unknown probability
distribution P on Rd. The probability distribution P can be approximated by
estimating the parameter values θ of P such that:

θ = arg min
θ∈Θ

∑
x

[(1− P (x; θ))× I(x ∈ D∗) + P (x; θ)× I(x /∈ D∗)], (1)

where Θ represents the set of parameter values for the probability distribution,
and I(.) is the indicator function. The cardinality and mean value of a set D
are respectively shown by |D| and D̄, and for the training set |D| = n. In
the unsupervised case, estimating θ is done without ground truth or a priori
knowledge about the data. The estimated probability distribution P can be
used to score data instances such that anomalies get low scores.

We assume that a limited budget B for AL is available, i.e., labels of B
instances can be queried from an oracle. However, the training data might not
be available after the query. Thus, the model should be updated after gaining a
label from the oracle without having to build the model from scratch.

3 Methodology

An accurate description of a parametric probability distribution P (x; θ) for real
datasets is usually unavailable. Therefore, instead of solving (1), MMAD esti-
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Fig. 1. Demonstration of the three stages of the MMAD Algorithm on the toy example
Xtoy. A candidate set of representative samples CRS is chosen in Stage 1. By removing
anomalies from CRS, the final set of representative samples RS is generated in Stage
2. A kernel-based model is learned in Stage 3.

mates a non-parametric probability density of the form:

P (x; {w1..n}) =

n∑
i=1

wik(x, xi), subject to wi ≥ 0,

n∑
i=1

wi = 1, (2)

where k represents an arbitrary kernel function and w is the weight vector of the
kernel. Our aim is to find a subset X ⊆ D of Rd that represents the normal data
D∗ and divides Rd into two subsets X and Rd −X . Substituting θ with {w1..n}
in (1), P (x; {w1..n}) is viewed as a scoring function that assigns high scores to
normal data and low scores to anomalies. The computational cost of testing an
instance using P (x; {w1..n}) scales with the number of non-zero wi (i = 1..n),
thus a sparse solution that minimises

∑n
i=1 wi is desirable.

To learn P (x; {w1..n}), MMAD assigns the values of each wi in three stages as
shown in Figure 1 for a toy example Xtoy, and explained in Algorithm 1. Figure
1(a) draws Xtoy. The first stage includes the following steps. A subset of Xtoy

is selected at random as set S in Figure 1(b). MM sampling [22] is performed
on S to generate a uniformly selected subsample from S shown in Figure 1(c).
Choosing a large value for |S| and running this extra MM sampling step is neces-
sary, because relying only on random sampling to secure a representative subset
of the input data is not sufficient for two reasons. First, it does not guarantee
the selection of representative samples from all clusters in the data, especially
if there are very small clusters in the data. Second, random sampling does not
provide a mechanism to eliminate anomalies from the model, especially when
a high fraction of anomalies exists in the training data. After MM sampling, a
set called Candidate Representative Samples (CRS) is built using representative
MM samples. By evaluating each MM sample as a CRS object, in Figure 1(d)
an optimal cardinality |CRS|∗ for this set is defined. In this step the first two
MM samples are designated as cluster centers, and a crisp 2-partition U2 of S,
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Algorithm 1 MMAD

Input: training set D = {x1, x2, ..., xn}, sample size |S|
budget B, metric δ

Output: model M: RSs, W , and γ
Stage 1.(a):

1: S = randSample(D,|S|) . random sampling from D
Stage 1.(b):

2: [ICRS ,∆] = Maximin(S, [0.4 ∗ |S|], δ) . call Algorithm 2
3: for i = 2..|CRS| do
4: compute Silhi using (3) given C = {sI1..i

CRS
}

5: end for
6: |CRS|∗ = argmax

i
Silhi . maximising Silhouette index

7: ICRS = I1..|CRS|
∗

CRS

8: for i = 1..|CRS| do
. Substitute CRSs with closet point to their cluster mean

9: ci = {s}, where Ii
CRS

== argmin
j

δ(s, s
I
j
CRS

)

10: Ii
CRS

= argmin
j

δ(ci, sj ∈ ci)

11: end for
Stage 2:

12: identify type of the dataset
13: if type == WS then
14: IRS = screen(ICRS) . remove anomalous CRSs
15: set γ using (4)
16: else
17: IRS = ICRS
18: set γ using (5)
19: end if
20: if B > 0 then
21: IRS = BS(IRS , B,∆RS) . call Algorithm 3
22: end if

Stage 3:
23: cnj = count(cj), j = 1..|RS| . count each cluster’s members
24: wj =

cnj∑
cnj

, j = 1..|RS|
25: M = (sIRS , γ, W )

i.e., a partition into two mutually exclusive clusters, is built using the nearest
neighbour prototype rule (NPR). Then, the value of a CVI called the Silhouette
index [29] is computed on U2. After finding the third MM sample and designat-
ing it as a new cluster center, U3 is built and the value of the Silhouette index is
computed on it. This procedure stops when a predefined number of MM samples
are assigned as cluster centers and used to generate NPR partitions of S. Then,
|CRS|∗ is chosen as the number of MM samples that maximises the computed
Silhouette index values. The first |CRS|∗ MM samples form the set CRS (Figure
1(e)). Removing anomalous instances from CRS is performed in Figure 1(f) and
the new points are called Representative Samples (RS). Optionally, if an AL
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Algorithm 2 Maximin

Input: set S, number of objects |CRS|, metric δ
Output: Indexes ICRS , pairwise dissimilarities ∆

1: ∆ = [δ(si, sj)] for all (i, j) ∈ 1..|S| . Cost O(|S|2)
2: I0CRS = arg min

1≤i≤|S|
δ(S, si) . Closet point to the mean of S

3: Γ0 = ∆I0
CRS

4: for p = 1..|CRS| do
5: IpCRS = arg max

1≤p≤|S|
Γp−1

6: Γp = [min(∆I
p
CRS

, Γp−1)]
7: end for

budget is available for securing labels from an oracle, it will be spent. In this
figure we assumed that no AL budget is available. Finally in Figure 1(g), the
model is built using RS data. The contour plot of the scores assigned to the data
instances in this figure, shows that anomalies have scores close to zero. Next, we
explain each of the steps in detail.

3.1 Stage 1: CRS Selection

To reduce the time-complexity for processing big data, MMAD first selects a
subset S of the training set by shuffling it and randomly selecting |S| instances.
The sample S is used as an input to the MM algorithm [22], which is shown in
Algorithm 2. Our implementation of MM sampling starts by finding the index
of the closest point to the mean of S (line 2 of Algorithm 2). At each iteration
of its main loop (lines 4 − 7 of Algorithm 2), MM adds the index of the point
that has maximum dissimilarity to the points already selected. We believe that
this sampling technique guarantees that the indexes ICRS of the representative
object set CRS have at least one member from each of the unknown clusters
in the data (see Proposition 1 in [18] for a theoretical guarantee in certain -
but not all - cases). Towards this end, we need to define the optimal cardinality
|CRS|∗. One way to achieve this is to evaluate the appropriateness of the cluster
centers C = {c1..|CRS|} that are defined on the CRS objects. CVIs can be used
for this purpose [4]. However, the presence of anomalies in a dataset can mislead
CVIs. We experimented with several popular indexes including Dunn [12], C-
Index [21], Calinski-Harabasz [6], Davies-Bouldin [11], and Silhouette [29], and
concluded that the Silhouette index provides the best estimate of |CRS|∗ such
that most of the point anomalies are isolated as singleton cluster centers in S.

Given cluster centers C = {c1..|C|}, each sample si ∈ S is assigned to the clos-
est cluster center cp with the NPR, i.e., ‖si − cp‖ < ‖si − cq‖ ∀q ∈ 1..|C|, q 6= p.
The set of points accumulated this way for each cluster center are the |C| crisp
clusters in this partition of S. Let δ denote any metric on the input space. For
each cluster center cp, the Silhouette index uses the average within-cluster dis-
similarity (cohesion) Inδi = 1

|cp|
∑
si,sj∈cp δ(si, sj) of si to the other members of

cp, which indicates how well si matches the other data in cp. The smallest average
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between-cluster dissimilarity (separation) Outδi = min{ 1
|cq|

∑
si∈cp,

sj∈cq,q 6=p

δ(si, sj)}

of si measures how suitable would be the assignment of si to its closest neighbour-
ing cluster cq. The Silhouette index combines the cohesion (Inδi ) and separation
(Outδi ) measures to derive a Silhouette value for each si as:

Silhsi =
Outδi − Inδi

max(Inδi , Out
δ
i )
, (3)

which is in the range [−1, 1], where a high value indicates that si fits well within

its own cluster. When SilhC = 1
|S|

∑|S|
i=1 Silhsi is close to 1, the corresponding

partition is preferred to those with lesser values.
Given that |CRS|∗ is not known a priori, we need to examine the value of the

Silhouette index by increasing the number of CRS objects selected by MM, and
choose |CRS|∗ such that the Silhouette index is maximised. Therefore, MMAD
first initialises |CRS| = [0.4 ∗ |S|], and chooses |CRS| objects in S by MM
sampling (Figure 1(c)). This value for |CRS| is chosen because it is assumed
that majority of the data is normal. Therefore, in the worst case, at least 60%
of data is normal. MMAD starts with Silh1 = 0. Then, it picks the first two
CRS objects and computes Silh2 considering these objects as cluster centers.
From there, MMAD computes Silh3 after adding the third CRS as a new cluster
center, and keeps repeating this until the last selected object by MM is added
to the cluster centers. Let the Silhouette index be maximised at Silhm. Then,
|CRS|∗ = m, and the size of CRS is reduced such that it comprises the m first
CRSs selected by MM sampling (Figure 1(d)). After this, a further adjustment
is performed on CRS as follows (lines 8−11 of Algorithm 1). A crisp m-partition
Um is built by considering each of the m samples in CRS as a cluster center.
Each of these m points is then replaced by the closest point to the cluster mean
in its partition (Figure 1(e)). Since the representative samples are chosen using
MM sampling, the cluster centers, i.e., CRSs, are expected to be close to the
border of their partitions. Therefore, this further adjustment is required to locate
them close to the center of the partition.

We identified two types of datasets when using the Silhouette index to esti-
mate |CRS|∗: Not Well-Separated (NWS) and Well-Separated (WS). If the
value of the Silhouette index in [Silh1..|CRS|] has an increasing trend peaking at
Silh|CRS|, then anomalies and normal samples are not well-separated, otherwise
anomalies and normal samples are well-separated. Examples of these types of
datasets are shown later in Figure 3. This property is used in subsequent stages.

3.2 Stage 2: CRS Screening

This stage has two steps. First, an unsupervised heuristic approach is used to
detect anomalies in the CRS set, which is generated in Stage 1. Removing po-
tential anomalies from CRS results in creating the RS set, i.e., representative
samples. Second, if a budget for AL is available, i.e., a small number of labels
are allowed to be asked from an oracle, an optional active learning step is used
to improve accuracy.
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Algorithm 3 Budget Spending (BS)

Input: Representative Samples RS, budget B, dissimilarities ∆RS

Output: IRS
1: {yRSi = 1}, i = 1..|RS|
2: if B > |RS| then
3: yRSi = li, 1 ≤ i ≤ |RS| . get true label per RSi
4: else
5: Π(IRS): same order as selected by MM sampling
6: relocate indexes of clusters with one member to end of Π(IRS)
7: for i = 1..|B| do
8: yRSΠ(i) = lΠ(i), 1 ≤ i ≤ |RS| . get true label of RSΠ(i)

9: if yRSΠ(i) == −1 then . find indexes of other poor RSs

10: NNs = find(e−γ×∆(Π(i),j) > 0.5)
11: yRSNNs = −1
12: end if
13: end for
14: end if
15: IRS = ∪i where yRSi == 1

Given that in unsupervised learning anomalies are a minority, it is expected
that anomalous clusters in data have fewer members compared to normal clus-
ters. Based on this intuition, if a dataset is classified as type WS (i.e., normal
data and anomalies are well-separated according to the Silhouette index values),
the set CRS is used to generate RS as follows. Samples in CRS are sorted in
the reverse order of the number of their cluster members. Let πCRS denote the
permuted indexes for the ordered set and niπ denotes the corresponding number
of members in the ith largest cluster indexed by πCRSi where i = 1...|CRS|. The
RS set is initially empty. Then, samples from CRS in the order given by πCRS

are added to RS until niπ is less than a predefined threshold. In this paper, we

evaluate values of niπ as follows: when
ni−1
π

niπ
≥ 2, we stop adding the remaining

samples from CRS to RS. In contrast, if the dataset is classified as type NWS
(i.e., differentiating anomalous and normal objects is difficult because they are
not well separated by their distance nor by density), we choose RS = CRS
because there is insufficient information available to filter anomalies.

Active Learning Sub-stage In some application contexts, it may be possible
to apply AL to assign a label for one or more selected points as either normal or
anomalous by asking an oracle for the labels. Given that the budget for asking an
oracle for labels is usually restricted to a small number of points, a key challenge
is how to select the points that are likely to be most informative in terms of
improving the accuracy if a label is given. If a budget B is available via AL, we
can ask for a maximum of B labels from the oracle. If B ≥ |RS|, all the RSs
can be validated by the oracle to remove any anomalies that were left from the
screening stage. Otherwise, labels are asked for clusters that have more than one
member in the order that they were selected by MM sampling. Anomalous RSs
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are removed accordingly. This stage of removing anomalous RSs are shown in
Algorithm 3 and can take place here or at any time after building the model.

3.3 Stage 3: Model Construction

For the choice of the kernel function, in this paper we use the Radial Basis kernel
Function (RBF), k(x, y) = e−γ‖x−y‖

2

to localise the influence of RSs in the final
model. The γ parameter is the kernel bandwidth and we set it based on the
dataset type identified in Stage 1.

If the dataset is classified as type WS, anomalies and normal data are declared
separable. The γ parameter in this case is estimated using the technique proposed
by Evangelista et al. [13]. The reason is that this technique chooses a value for
γ that maximises the dissimilarity of clusters in the data. We use a candidate
set Γ = {2−6, 2−5, ..., 26} for γ to extract the kernel matrix K = [e−γ×∆], ∆ =
[δ(si, sj)] ∀(i, j) ∈ 1..|S|, and select a γ∗ such that:

γ∗ = argmax
γ

σ2

KoffDiag + ε
, (4)

where σ2 and K
offDiag

are the variance and the mean of the off-diagonal kernel
matrix entries, and ε is a small value to avoid division by zero.

If the dataset is classified as type NWS, potential anomalies are close to
normal data. Therefore, γ∗ is chosen so that the similarities in the feature space
created by the RBF kernel are approximately the same as those in the input
space:

e−γ∆
2
max

e−γ∆
2
min

=
∆min

∆max
=⇒ γ∗ =

−ln(∆min∆max
)

∆2
max −∆2

min

. (5)

where the values of ∆ are an output of Algorithm 2. To build the final model,
values of {w1..|RS|} are assigned for RS = {s

I
1..|RS|
RS

} and the rest of the data

is deleted. For the jth RS, its weight is defined as wj =
cnj∑

t=1..|RS| cnt
, where

cnj denotes the number of cluster members for the corresponding RS. The final
model is M = (RS, {w1..|RS|}, γ) and a test point is evaluated using the following
scoring function:

P (x; {w1..|RS|}) =

|RS|∑
i=1

wi × k(x,RSi). (6)

If AL is used after constructing the model and deleting the training data,
RSs labelled as anomalies by the oracle are deleted from the model, and the
weight vector for the rest of the RSs is normalised to add up to one again.

4 Experimental Evaluation

We compare our MMAD method1 to OCSVM [30] and its unsupervised exten-
sions Robust OCSVM (ROCSVM) and ηOCSVM [3], and also to iForest [25].

1 Implementation of MMAD is available at https://github.com/zghafoori/MMAD.
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Table 1. Description of the datasets

Dataset DSA HAR MNIST Cancer Credit Shuttle NKH Pen Satimage2 Forest

#Instances 1,117,521 10,299 70,000 675 283,726 36,752 221,902 6,870 5,801 286,048
#Features 45 561 784 10 30 9 3 16 36 10
#Normal 60,000 1,777 7,877 439 283,253 34,108 221,830 6,714 5,732 214,839
#Anomaly 1,057,521 8,522 62,123 236 473 2,644 72 156 69 2,747

The default settings appearing in the referenced papers were used for each of
these existing techniques. For iForest the default sample size is 256 and it trains
100 trees. For MMAD, the sample size |S| = min(200, [|D|/2]). We repeated
our experiments by changing |S| in the range [100, 500], and observed that for
|S| > 200, the result does not change significantly. Euclidean distance was used
as the dissimilarity metric δ, but any other metric can be used when circum-
stances warrant a departure from this choice. To evaluate accuracy, we used the
Receiver Operating Characteristic (ROC) curve and the corresponding Area Un-
der the Curve (AUC). The reported AUC values were averaged over 100 runs.
The experiments were conducted on a machine with an Intel Core i7CPU at
3.40 GHz and 16 GB RAM. The MATLAB LIBSVM toolbox [9] was used to
implement OCSVM.

4.1 Datasets

We ran our experiments on four benchmark anomaly detection datasets from the
Outlier Detection DataSets (ODDS) collection [28], namely Forest Cover (For-
est), Pendigits (Pen), Satimage2, and Shuttle. From the UCI Machine Learning
Repository [24], we selected the Breast Cancer Wisconsin (Cancer), MNIST,
Human Activity Recognition (HAR), and Daily and Sports Activities (DSA)
datasets. Table 1 shows that DSA, HAR and MNIST contain many more anoma-
lies than normals. In the experiments we use a random subset of anomalies such
that majority of data is normal.

For the Cancer dataset, the aim was to detect malignant breast cytology
as anomalies. For the MNIST dataset, following Rayana [28], Bandaragoda et
al. [5] and Amarbayasgalan et al. [2], digit zero was considered as the normal
concept and instances of digit six were considered as anomalies. The HAR dataset
included sensor signals of six different activities by a group of 30 volunteers
within the age range [19, 48]. In this dataset, we used the sitting activity as the
normal concept and walking in different ways, standing and laying as anomalies.
The DSA dataset comprises sensor signals for 19 activities, each of which is
performed by four females and four males within the age range [20, 30]. Again,
the first activity (sitting) from all the 8 subjects in this dataset is considered as
normal and the rest of activities from all subjects are considered as anomalies.
This creates clusters of different shapes and cardinalities (Figure 2(a)) in order
to evaluate the effectiveness and robustness of anomaly detection methods. We
removed duplicates from normal and anomalous instances, which resulted in
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Fig. 2. Visualisation of the datasets

generating a dataset with 60, 000 normal and 1, 057, 521 anomalous instances
for DSA. We also used the Credit Card Fraud Detection (Credit) [10] dataset
that contains credit card transactions of European cardholders in September
2013. The goal was to detect fraudulent transactions as anomalies. Finally, from
the NSL-KDD2 dataset, we used HTTP data, which we refer to as NSL-KDD-
HTTP (NKH). Attacks on HTTP services were regarded as anomalies in NKH.

The datasets’ descriptions including the number of unique observations and
features are summarised in Table 1. Down-sampling on anomalies and normal in-
stances (if required) is used to generate training sets with anomaly fractions cho-
sen from the set {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. For each fraction of anoma-
lies we randomly selected up to 10, 000 instances from each dataset, and repeated
the experiment 100 times. All datasets were re-scaled in the range [0, 1] based on
maximum and minimum values observed in the training set. Test and training
sets were randomly selected with a ratio of 1 to 4.

4.2 Results and Discussion

For each dataset, we took a subset of the data and used a variant of t-SNE
called LN-SNE [14] to visualise it in Figure 2. The labels were used to draw
the plots and were not provided to any of the anomaly detection techniques.
This figure shows that there are different types of anomalies in the datasets.
DSA and MNIST mainly have point anomalies, while shuttle and NKH have
clusters of anomalies. Some of the anomalies in HAR and Credit occur inside
the normal region. The density and distance similarities for anomalies is similar
to the normal samples in Satimage2 and Forest. In the Pen dataset, anomalies
have higher density compared to the normal samples and appear very close to
them.

To see how the Silhouette index (3) changes by increasing the number of se-
lected representative objects using MM sampling, in Figure 3, we plotted graphs
of the Silhouette values for three datasets, namely DSA, HAR and Pen. The

2 http://nsl.cs.unb.ca/NSL-KDD/
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Fig. 3. Silhouette values obtained by increasing the number of objects selected by MM
sampling for three representative datasets. For the well-separated datasets DSA and
HAR, the the Silhouette value is maximised at an index less than 80, which indicates
that separable clusters are identified in the data. However, for the Pen dataset, this
index continues to increase to the maximum at 80, which means the data forms a single
cluster.

other datasets exhibit a similar trend so we do not present their corresponding
plots to save space. The samples size was |S| = 200. The fraction of anomalies
was increased in the sub-figures from (a) to (g) to test the robustness of the pro-
posed technique to the anomaly ratio in different types of datasets. The fractions
of anomalies are (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25, (g) 0.3. The
index drops for DSA and HAR but reaches its maximum at |CRS| = 80 for Pen.
Therefore, the DSA and HAR datasets are categorised as type WS (i.e., well-
separated) based on the definitions in Section 3.1. The difference is that in DSA
the normal data comprises several clusters and anomalies are point anomalies;
each anomaly is treated as a separate cluster center to maximise the Silhouette
index. However, in HAR there are two clusters in the data and one of them is
anomalous. The Pen dataset is an example of a type NWS dataset (i.e., not well-
separated) because the value of the Silhouette vector is maximised at the end.
It can be confirmed via the visualisation given in Figure 2 that anomalies and
normal data in Pen are not well separated via distance or density dissimilarities
when no ground truth is available.

Figure 4 depicts the average accuracy over 100 runs of each method for
all the datasets for each anomaly fraction. This box-plot shows how the accu-
racy of the methods changes under different conditions of anomaly type and
fraction. Each box-plot shows the variations of AUC for different fractions of
anomalies including {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Increasing the fraction
of anomalies can affect the accuracy of the corresponding technique in a nega-
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Fig. 4. The average and standard deviation of AUC for MMAD and other techniques.

Table 2. Results of Wilcoxon test for the accuracy of MMAD-B0 vs other methods.

MMAD∗-B0 Vs *-B1 *-B5 *-B10 *-B15 *-B20 OCSVM ROCSVM ηOCSVM iForest

R+ 141 85 84 84 83 2296 2396 2391 1970
R− 1344 1806 1807 1807 1808 189 89 94 515
p-value 2.23E-07 6.38E-10 6.09E-10 6.09E-10 5.82E-10 7.04E-10 1.47E-11 1.80E-11 2.07E-05

tive manner. For MMAD, the results are reported for different AL budget limits
B = {0, 1, 5, 10, 15, 20}. MMAD-B0 means that no budget was available for AL,
while MMAD-B∗ where ∗ 6= 0 means that labels for ∗ number of samples could
be asked from the AL oracle. MMAD-B0 and iForest have better results than the
different versions of OCSVMs. On average, MMAD-B0 works better than iForest
considering all scenarios of the anomaly fraction over all the datasets, especially
in HAR, Shuttle and Satimage2. Using an AL budget in the first 7 datasets
provides limited advantage because MMAD-B0 effectively screens anomalies in
the training phase for these datsets. However, for Pen and Forest, which had the
most difficult type of anomalies, access to a limited AL budget B = 5 or even
B = 1 in Forest, increases the accuracy to a great extent.

To assess the statistical significance of the differences in the accuracy shown
in Figure 4 for each method, Table 2 lists the results of a Wilcoxon signed-rank
test with a level of significance of α = 0.05 on all the pairs of accuracy values per
the anomaly fraction. In each comparison, the aim was to investigate to what
extent the null hypothesis H0, which indicates that there is no difference between
the first and second methods in terms of their accuracy, can be rejected. For each
comparison, the test returns the sum of positive ranks (R+) and negative ranks
(R−) of the first method, and the p-value. The p-value represents the lowest level
of significance of a hypothesis that results in a rejection and if it is less than
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Table 3. Training and testing CPU-times for MMAD compared to other methods.

Dataset
Train time (seconds) of Test time (seconds per sample) of

MMAD OCSVM ROCSVM ηOCSVM iForest MMAD OCSVM ROCSVM ETAOCSVM iFOREST

DSA 0.093 26.450 29.323 32.439 0.19 3.15E-07 1.27E-04 1.32E-05 4.85E-06 1.38E-03
HAR 0.116 38.047 39.759 38.141 0.41 9.75E-06 2.70E-04 1.27E-04 1.08E-04 1.37E-03
MNIST 0.127 269.453 281.008 289.487 0.67 3.43E-05 1.76E-03 4.76E-04 2.70E-04 1.47E-03
Cancer 0.060 0.054 0.060 0.114 0.10 1.79E-06 2.15E-05 1.70E-05 1.26E-05 1.37E-03
Credit 0.097 46.705 48.847 46.752 0.15 3.29E-07 9.26E-05 1.30E-05 8.61E-06 1.47E-03
Shuttle 0.090 18.605 19.171 34.718 0.16 7.88E-07 7.04E-05 1.71E-05 1.15E-05 1.36E-03
NKH 0.098 9.272 7.377 16.662 0.11 < 1E-12 7.44E-05 1.80E-05 9.42E-06 1.50E-03
Pendig 0.088 11.042 11.911 24.427 0.25 5.66E-06 6.40E-05 2.37E-05 1.58E-05 1.53E-03
Satimage2 0.091 9.588 10.379 10.867 0.20 1.21E-06 5.83E-05 1.74E-05 1.08E-05 1.52E-03
Forest 0.093 28.479 29.537 39.239 0.20 2.36E-06 5.31E-05 9.30E-06 7.48E-06 1.47E-03

Average 0.095 45.770 47.737 53.285 0.24 5.65E-06 2.59E-04 7.32E-05 4.59E-05 1.44E-03

α, the null hypothesis H0 can be rejected and the improvement is significant at
the level α. Table 2 shows that spending even a limited budget B = 1 provides
a statistically significant improvement and by increasing the budget, a better
result can be achieved. This finding shows the importance of using a technique
that can incorporate AL into its training. The small p-values for MMAD-B0
against OCSVM, ROCSVM, ηOCSVM, and iForest, MMAD-B0 indicates that
MMAD-B0 provides a statistically significant improvement compared to all of
the comparison methods.

Table 3 reports the training and test CPU-times of the different techniques.
MMAD and iForest have constant time given that they work on a fixed-size
sample of the data. Given the size of the sample |S|, the training time-complexity
for MMAD is O(d × |S|2) and for iForest is O(t × |S| × log|S|), where t is the
number of trees. For testing, the time-complexity of MMAD is O(d × |RSs|)
per instance, whereas it is O(t × log|S|) for iForest. The table shows that on
average, the training time of MMAD is half of that for iForest, mainly because its
default sample size is 200, whereas it is 256 for iForest. However, the testing time
per sample for MMAD is more than 250 times less than iForest. For the HAR
and Credit datasets, testing times per sample for MMAD are more than 4, 000
times faster than iForest. Both MMAD and iForest are considerably faster than
the OCSVM-based methods. The improvements by MMAD in accuracy and its
capability of being used with AL, demonstrates that MMAD outperforms iForest
on the examined datasets in this paper. To compare the scalability of MMAD
and iForest to the different types of OCSVMs, we chose the DSA dataset with
over a million instances, and ran all the methods several times by changing the
size of the training set from 10, 000 to 50, 000 with a step size equal to 10, 000.
The results are shown in Figure 5, confirming that MMAD and iForest have
constant time regardless of the size of the training set, while the training time
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Fig. 5. Scalability of the five methods on DSA.

of the OCSVM variants depends on the size of the training set. This example
shows the superiority of algorithms with constant time in processing big data.

5 Conclusion

We have proposed a constant time unsupervised anomaly detection technique
called MMAD that can be used effectively with active learning to enhance the ac-
curacy of unsupervised anomaly detection when anomalies mimic the behaviour
of normal data. MMAD combines a representative subset selection with a cluster
validity index and kernel-based model construction in a novel way that results
in statistically significant improvement of the accuracy and training time for
unsupervised anomaly detection on the examined datasets. In our future work,
we will study the use of kernels other than RBF, distance measures other than
Euclidean, and CVIs other than the Silhouette index. The information gained
via active learning can be used in new ways to further identify the dataset char-
acteristics and improve the accuracy. Finally, this technique can be extended
to perform constant time clustering for big datasets that have point or cluster
anomalies.
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