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Abstract. In this paper, we propose a new method to iteratively and in-
teractively characterize new feature conditions for signals of daily French
electrical consumption from our historical database, relying on Condi-
tional Variational Autoencoders. An autoencoder first learn a compressed
similarity-based representation of the signals in a latent space, in which
one can select and extract well-represented expert features. Then, we
successfully condition the model over the set of extracted features, as
opposed to simple target label previously, to learn conditionally indepen-
dent new residual latent representations. Unknown, or previously unse-
lected factors such as atypical conditions now appear well-represented to
be detected and further interpreted by experts. By applying it, we recover
the appropriate known expert features and eventually discover, through
adapted representations, atypical known and unknown conditions such
as holidays, fuzzy non working days and weather events, which were
actually related to important events that influenced consumption.

Keywords: Interpretability · Autoencoder · Representation.

1 Introduction

1.1 Context

Well-established power systems such as the French power grid are experiencing
a mutation with a steep rise in complexity. This is due to many factors, such
as new consumer habits in the digital era with new usages relying on more
controllable, individual and numerous appliances, as well as a necessary energy
transition towards a greater share of renewable energy in the mix and better
energy efficiencies to reduce our carbon footprint in climate change. This makes
it harder to maintain the proper balance between production and consumption at
all time, which is a necessary condition for power grid stability to avoid dramatic
blackouts. More advanced predictive tools become necessary.

Classical load forecasting methods[1] previously heavily relied on seasonal
and deterministic behaviors, modeled through expert features, but hardly grasped
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atypical and dynamical behaviors. Load analysis and forecasting, whether it is
at individual level or a national level, is nevertheless a very dynamic field within
the current energy transition era to eventually make smart grids happen, try-
ing to overcome some remaining challenges with recent methods, as reviewed by
Wang et al. [2]. Better understanding the new causal factors and the profiles
of load consumption, handling their related uncertainties through probabilistic
load forecasting [3], as well as dealing with bad and missing data for online pre-
dictions in real-time data streams [4], are three of the main research directions
in this field. Our work will focus along the first research avenue of electrical
consumption characterization, in interaction with experts, especially for new or
atypical conditions that are under-represented in a dataset and have been hard
to characterize until now, even when some instances were detected.

1.2 Industrial Challenge

Bank holidays, to which we will refer as “holidays” for short in this paper, have
been known historical examples of such atypical conditions for electrical con-
sumption, especially in France. A recent data challenge 4 organized by RTE was
designed to address this issue of prediction under atypical conditions, with half
of the test days being holidays. Machine learning models relying on xgboost or
deep neural nets actually showed to perform better than RTE models overall on
those atypical days. But they still each had some extreme errors on certain days
and best models were different for each day tested. In addition, they were still
merely black boxes, not giving many insights to the operators in charge, on the
relevant factors for prediction and their effects, insights they could use to adjust
the forecast with any new additional information. Eventually operators did not
trust those new models on which RTE gave up for now. Trust and interpretability
in models and applications are in fact prerequisites for operators responsible of a
system in challenging situations: they will be asked for explanations if anything
goes unexpected. More generally, beyond automatic method only, this highlights
the need we will address here for renewed interpretability in models [9], through
causal understanding, modeling and inference, which are essential for operators
and humans to properly intervene and control any system [10].

In practice, expert operators spend a lot of time trying to identify the most
similar holidays in the past to characterize and predict the consumption of a
new holiday, while leaving the forecasting models predict more automatically
over the typical days. Even doing so, the day-ahead forecasting error is still
approximately of 1.5% Mean Absolute Percentage Error (MAPE) for holidays,
reaching sometimes 3%, compare to below 1% MAPE for typical days. Predict-
ing holidays is time-consuming because they do not have tools that give them
adapted representations to study collectively those under-represented atypical
signals. In addition, because new modes of consumption are appearing, atypical
conditions, beyond holidays only, will be of greater importance to well predict.

4 RTE Data Challenge: https://dataanalyticspost.com/wp-content/uploads/

2017/06/Challenge-RTE-Prevision-de-Consommation.pdf

https://dataanalyticspost.com/wp-content/uploads/2017/06/Challenge-RTE-Prevision-de-Consommation.pdf
https://dataanalyticspost.com/wp-content/uploads/2017/06/Challenge-RTE-Prevision-de-Consommation.pdf
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New tools to study and interpret them more efficiently with adapted represen-
tations are hence necessary.

1.3 Proposal

In data analysis and knowledge discovery, feature importance [5] and anomaly [7]
or outlier [6] detection methods are often helpful to assist human experts. They
have helped characterize and label some events for bike sharing systems [8] for
instance, while limited in its depth of discovery beyond extreme events. How-
ever, they can be complemented with representation learning methods: besides
looking at data statistically or individually, similarity-based representations let
one investigate signal instances still collectively but also specifically and contex-
tually. In that sense, our paper aims at highlighting the importance of learning
adapted representations to let experts efficiently interpret underlying conditions
in signals, even with simple feature importance and anomaly detection modules.

While deep learning methods have shown real promises in terms of predictive
power, being successfully applied to power flow predictions in power systems for
instance [11], they also have a potential to foster interpretability, beyond the
black box effect, as illustrated by [12] in which they produce interesting clusters
over representations learnt by a neural network. Indeed, deep learning can also be
regarded as representation learning [13]. Word2Vec [14], and later Interligua [15],
have been major illustrations of such interpretability power since in their latent
representation, similarities and generic semantic relations (such as masculine
and feminine or translations) between words were recovered. More generally,
generative models, deep variational autoencoders in particular, are one family
of representation learning models with recent interesting developments [16].

By compressing data signals in a latent representation, autoencoders (AE)
implicitly capture the most salient features [17], with possible non-linear and mu-
tual dependencies. To explicitly extract those features for interpretation, score
to measure importance of existing expert features can be defined. To integrate
and leverage those selected expert feature to discover deeper knowledge, we
further consider Conditional Variational Autoencoders (CVAE) [18] which we
review later in the method section to learn successive conditional representa-
tions. Whereas previous CVAE models mostly used as conditions simple target
labels for anomaly detection, signal correction or inpainting [19] [20], one major
technical contribution of our paper is, for the first time as far as we know of, to ef-
fectively learn a full conditional network module over a set of extracted features,
to let expert discover new conditions in the residual latent representation.

The paper is organized as follows. First, we give an overview of the char-
acteristics of electrical consumption with a specific focus on holidays. We then
present our method based on CVAE to learn adapted representations. We define
scores over features and instances to qualify those representations and extract
knowledge from them. Finally, successive experiments demonstrate our ability to
effectively learn such models and qualify the relevance of the representations to
let expert interpret signals under unknown atypical conditions, and label them.
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2 French electrical consumption: characteristics and data

National electrical consumption has been studied and its forecasting improved
over the last few decades for power system operators to anticipate the required
amount of energy production at every moment to match the demand in the
system. Over the years, France has relied more heavily on electricity, given the
development of big nuclear power plants which represent up to 75% of the to-
tal production, and incentives for electrical heating increased significantly the
thermal dependency of electrical consumption. Weekday habits and tempera-
ture influence have been among commonly shared expert knowledge to predict
electrical consumption. In addition, holidays have been known as atypical events
within a year, shifting habits that are still hard to predict.
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Fig. 1: From left to right, averaged daily load profiles at 30 minute resolution
highlighting weekdays and seasonal patterns, and holiday atypical profile.

Common existing factors for daily electrical consumption and associ-
ated Expert Knowledge As shown on Figure 1, over the course of a day, the
electrical consumption usually varies according to human activities, lowest in
the middle of the night at 4am and higher during the day, with a peak either at
noon or 7pm depending on the season. Within a week, the consumption is lower
during the weekend, because of reduced working activities. Over the 5 weekdays,
the profiles look similar but some differences can be noticed:

– The average load is less important on Monday than other week days on
morning (from midnight to 2 pm). It is due to the activity recovery effect :
after the weekend there is some inertia to retrieve a nominal activity level.

– The opposite is observed on Friday afternoon. The average load is less im-
portant than in the other weekdays (from 2 pm to midnight), as the activity
tends to decrease before the weekend.

Weather, temperature in particular, are important factors as well for electri-
cal consumption in France, with a thermal gradient of approximately 3% more
consumption per 1oC less in winter. Nebulosity, wind, snow, humidity could also
influence the consumption but their effect have been harder to characterize and
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are not yet considered in today’s models. These factors are summarized on Fig-
ure 2 through a graphical model, a commonly used representation in the field
of causality [10]. It sketches for a quick overview the main relations of depen-
dence and independence between known factors, which we will actually recover
through our first experiments to validate the proper learning of our CVAEs.
While other methods can recover [21] those causal relationship between com-
mon factors when attributes are available in databases, we are mostly interested
in events with unknown underlying conditions that might not be yet in any
database and which will need additional human interpretation to be defined.
These event relations are highlighted in dark, with specific characteristics that
can influence the consumption differently.
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Fig. 2: Simplified graphical model. Well-known factors to integrate as expert
knowledge appear as plain green, links to fuzzy atypical conditions we try to
interpret appear darker, latent conditions we are also interested in are in blue.

Atypical Events One such event category which is well-known are holidays
which will serve as a baseline for atypical condition discovery in our experiments.
In France, there are 11 holiday days per year which sum to 55, or 3% of the data
points in our dataset. They all have in common to be non-working days overall,
but can differ in some ways as either days for national or religious celebration
and commemorations. Most of them usually appear on fixed dates but not fixed
weekdays, and some appear on fixed weekdays but with variable date spread
over a month. This hence makes habits different for each holidays compared to
a previous year which is even more challenging. When a holiday happens before
a weekend, the behavior of consumers usually are more similar to a Saturday.
On the following Saturday, the behaviors tend to be similar to a Sunday. For a
holiday that happens at the beginning of the week on the contrary, it tends to
have Sunday patterns. Often when a holiday happens on a Tuesday or Thursday,
many people do not work on the Monday or Friday as well, but it is a fuzzier
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behavior that is not measured. Those are known as bridge days. Overall, those
days look most similar to typical non-working day such as weekends, and some
gives an opportunity for a short break, shifting the habits of a typical week.

Other events due to weather or social events can also affect the consumption.
As we are looking to characterize a daily profile, weather events happening over
a day or longer are likely to be influential and recovered. However, punctual
social events often have shorter duration of only few hours and are less likely
to affect the consumption over an entire day. Therefore, we will focus on first
recovering holiday-like events, then on discovering weather-related events but we
will let aside socio-economical events for now over this daily timescale.

Data The dataset covers the years 2013 to 2017 at a 30-minute resolution and
was used for the RTE challenge in 2017. This sums up to 1830 daily data points.
The temperature profile represents a weighted average over France computed by
RTE. Table 1 gathers all the variables, binary, discrete as well as continuous,
that will be used in our experiments. Daily Electrical Consumption Profile is our
target variable of study. Temperature profile, day of the week, month of the years
and holidays are possible features to characterize our electrical consumption. No
missing data is reported, apart from the hour change event at the end of winter,
which results in a fictitious additional hour with no data. The data at national
level is considered clean since it has been used in production for many years with
data quality processes, and was further used for the challenge.

Description Dimensions Type Formula

Daily Consumption Profile 48 Quantitative Li, i = 1, .., 48

Daily Temperature Profile 48 Quantitative Ti, i = 1, .., 48
Day of the week indicator (OH) 7 Categorical Wi, i = 1, ..., 7
Month indicator (OH) 12 Categorical Mi, i = 1, .., 12
Holiday indicator (OH) 1 Binary Unbalanced Hi, i = 0, 1

Table 1: Summary table of variables in our dataset used in cvae. Categorical
variables are One Hot (OH) encoded.

In the next two sections, we present our method to first learn dense represen-
tations with autoencoder models, and their conditional extension over extracted
features, and later assess the quality of those representations with scores we
define to retrieve expert features and extract new ones.

3 CVAE to learn conditional similarities over features

In this section we explain and motivate the choice of the model we use throughout
the experiments performed in the last section. All these experiments share a
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common objective: representing the input data x, daily consumption profile, by
a more compact vector z = z(x). Especially, we want the representation z to
reflect a notion of proximity: if two different days x1 and x2 are encoded by
respectively z1 and z2, and that z1 and z2 are close together, in the sense of
the l2 norm, then we expect that the days represented by x1 and x2 share some
common features. Several methods can perform this transformation in the first
place but not necessarily as deep by iteratively considering extracted features
and adapting the representation. We choose to focus on Variational Autoencoder
(VAE), first introduced in [27] and further on their Conditional extension to learn
new specific representations z given some conditions c that we denote by z|c.

Autoencoders An Autoencoder is a relatively simple model introduced in [22].
It consists of two parts, one call “encoder” Q (and parametrized by parameters
θ) that will transform input x into its latent representation z = Qθ(x). It can be
learned jointly in a completely unsupervised way with a decoder P (parametrized
by vector φ) which takes the representation z and who’s aim is to transform it
back into the original representation x. If we denote by x̂ the output of the
decoder, i.e. x̂ = Pφ(z) = Pφ(Qθ(x)), then the model is trained by minimizing
the “reconstruction loss”, which is a similarity measure between x̂ and x. Most
of the time Q and P are represented by deep neural networks. The Autoencoder
has some drawbacks: no constraints are set on the latent representation z, the
only guarantee is that it can be decoded into the original signal x. Thus it is
not always relevant to deduce some properties from the distance between two
projections z1 and z2. This problem is partially solved by the VAE.

Variational Autoencoders VAEs aim at learning a parametric latent variable
model by maximizing the marginal log-likelihood of the training data {x(i)}1≤i≤N .
Compared to the Autoencoder, it introduces a penalty on the latent space.
This latent space z is seen as probabilistic distribution, and must be close to a
given prior distribution. It is part of the “variational” literature and is nowadays
mostly used to generate data. In this paper, we are interested in the property of
the latent space z and will not use the generating capabilities of VAE. Adding
this constraint on the latent space has the beneficial effect of regularizing it. In
this framework the encoder Qθ and decoder Pφ are better seen as probabilis-
tic distribution, and we will note: Qθ(z|xi) the distribution of variable z given
input data xi. Pφ(xi|z) will be the distribution of the reconstructed vector x̂i
from its latent representation z by the decoder P . Training this network is then
equivalent to adjust parameters θ and φ under the loss:

Lλ−V AE = Lrecon︸ ︷︷ ︸
reconstruction loss

+λ · LKL︸︷︷︸
divergence loss

(1)

= −E[logPφ(xi|z)] + λ · DKL(Qθ(z|xi)||P (z)) (2)

The reconstruction loss measure how well the reconstructed vector x̂i is close
to the original representation xi, as in the vanilla Autoencoder. The divergence
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loss minimizes the KL-divergence between Qθ(z|xi), i.e. the distance between the
latent distribution and its target distribution (the normal distribution usually).

CVAEs Lastly, we also want to learn adapted representations given existing
knowledge. Conditional Variational Autoencoders (CVAE) [18] are an extension
that enable to bypass the latent space with some conditional information, such
as previously extracted features in our case, to be used for signal reconstruction,
freeing the encoder from encoding such information while still achieving proper
reconstruction. Figure 3 shows a schematic of this model. The adapted loss
function used for the training is:

Lλ−cV AE = −E[logPφ(xi|z|c, c)] + λ · DKL(Qθ(z|c|xi, c)||P (z|c)) (3)

Note that in this case, the conditioning variables represented by vector c is given
as input to both the encoder Qθ and the decoder Pφ. It is an architecture that
is used to here explicitly disentangle known factors c from other latent residual
factors in z|c. We will later assess if they factorize properly. In supplementary
materials, we explain how we were eventually able to learn properly CVAEs,
which are notoriously hard to train [25], [24], [23], more especially in our case
where we consider training a full conditional network module over extracted
features, and not solely inputting a conditional vector over simple target labels.

(a) CVAE architecture (b) Learving curve with and without BN

Fig. 3: Example of CVAE with 2 hidden layers: the architecture is similar to a
VAE, except for the additional conditional embedding vector c. Adding a batch
normalization (BN) layer unlock the proper learning of the network module for
feature conditional embedding to avoid overfitting, as explained in annex.

4 Scores to recover and discover knowledge

We here define scores to assess quantitatively the nature of the representations.
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Scores to assess feature importance in latent space z The goal of our
method is to extract and further discover some knowledge embedded in the latent
space representation we learnt. To assess knowledge recovery of known expert
features in the latent space, we can assign them a prediction score to figure out
if those features were implicitly selected when compressing information. All the
scores are based on a local knn predictor model, either classifier for categorical
and binary variables or regressor for continuous variables, using standard eu-
clidean distance metric and a default 5 nearest neighbors. In more details, here
is the list of scores used in our experiments for our features of interest apriori:

– FW and FM , the scores for day of the week W and months M which are
simply the fraction of correctly predicted samples for balanced categories.

– Fis w, the score for is weekday variable is the fraction of properly predicted
samples but reweighted, since this is an imbalanced variable (5 weekdays
compare to 2 weekend days in a given week). This score is known as an F1
score in the literature, as also defined in sklearn library.

– FH the score for holidays. Since it is an atypical event variable, we are mostly
interested for the instances it occurs. Our score is hence the fraction of true
positive holidays only.

– FTmean the score for temperature. For temperature daily profile feature T ,
we first consider a proxy variable Tmean of the average temperature over a
day. We then learn a knn regressor for it and use the R2 score over it.

The highest possible value for each score is 1. Scores close to 1 are always a good
indicator of a strong dependency of the latent space with the feature associated
to the score, hence of its importance. On the contrary, scores of a random pro-
jection, give a lower bound for the score to be expected from a feature that is
independent from the latent projection, hence insignificant in the encoding.

This feature importance approach could be further extended to be used in
automatic feature selection [5]. The goal of our work however here is rather to
assess how informative and interpretable a learnt conditional representation is
for an expert, rather than defining a new automatic feature selection method.

Score to detect event as a local outlier in the latent space Once we
decided which knowledge to extract and integrate as conditions in the CVAE
model, we can train our network in order to obtain a disentangled latent repre-
sentation of our data. Because of its independence towards the selected feature
conditions, this representation also allows us to look for abnormal samples with
respect to those conditional features, to guide our exploration in discovering new
knowledge. For instance, when conditioning by the day of the week W and the
holiday H variables, we expect our representation to be strongly guided by other
unselected variables like temperature. What we want to do now is to look for
events that are not well represented by these conditions: in other words, outliers
or atypical conditions in our representation. To do so, similarly to [4], we decided
to use for now a kth nearest-neighbour based outlier score as defined in [28][29].
For the sake of simplicity we use here the 1-nn as our first goal is not to identify
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systematically outliers but rather study and interpret the representation. Once
detected, we want to understand their context and eventually detect if ensemble
of atypical events, explained by common factors, are close in the latent space.

5 Experiments to learn adapted representations

Our goal in the following experiments will be to demonstrate our ability to learn
successively more specific representations between signals in our dataset with
AEs that help reveal some new knowledge to experts. While recovering expert
knowledge, we further want to integrate it to enable a more comprehensive ex-
ploration than previously possible of other latent features through a similarity
space, especially atypical conditions. In our first experiment, we aim at recover-
ing common expert features while highlighting the difficulty at first of learning
relevant representations for known atypical signals during holidays. In a second
experiment, we show that we can actually learn specific residual representations
after conditioning over full sets of extracted features with CVAEs, one main
technical contribution of our paper compared to previous CVAEs conditioning
on simple target labels. In the third experiment, we focus on the representation
most adapted to holidays and explore it to recover some knowledge about them
and discover other unexpected similar atypical days. Finally, we explore in a
fourth experiment unknown weather atypical conditions, after learning a new
representation given previous knowledge over daily features, taking into account
atypical conditions from the third experiment. Supplementary materials, code,
data and interactive representations are available on GitHub 5. We explain in
the annex our choice of parameters, we never tuned, and hyperparameters, λ
and number of training epochs, that we explored and selected.

(a) PCA 3D visualizations & features (b) VAE 3D visualizations & features

Fig. 4: Similarity-based representations with day of the week label on the left,
and max daily temperature label on the right over a spherized projection in
tensorboard. Data points are more homogeneously spread in VAE representation
which makes it easier to navigate into similar or outliers examples.

5 GitHub for paper, annex, data, code and interactive visualizations: https://github.
com/marota/Autoencoder_Embedding_Expert_Caracteristion_

 https://github.com/marota/Autoencoder_Embedding_Expert_Caracteristion_
 https://github.com/marota/Autoencoder_Embedding_Expert_Caracteristion_
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Experiment 1: embedding and expert features recovery In this first
experiment, we study 2 models, a classic PCA and a simple VAE, and com-
pare them to a random baseline to measure their respective abilities to learn
similarity-based representations and recover common features and dependencies
that are described in Table 1: day of the week, weekday or weekend, month of
the year, temperature and holidays. First we figured out that most of the vari-
ance in the dataset is retrieved on the first 3 dimensions in the case of PCA. 3
dimensions are actually significant as well in the VAE latent space. When learn-
ing with more than 3 dimensions, the other dimensions are pruned out with
L1-norm in reconstruction Loss. We eventually select a dimension of 4 for our
VAE latent spaces in all our experiments to leave it some more freedom during
training. Qualitatively, the VAE projection looks easier to study interactively for
a human expert since it is more homogeneously spread, given the gaussian prior,
as illustrated on figure 4 and better visualized on GitHub. We could expect a
human expert to better navigate and study similarities through examples.

Figure 5 summarizes the results of the first experiment. Quantitatively, both
models gives very similar scores. As Fis w and FTmean scores are equally close
to 1 for PCA and VAE, they are both able to recover the most salient features
to represent daily profiles: temperature and is weekday. Month of the year and
day of the week variables also appear as significant features, but they seem
less expressive as their scores FM and FW are close to 0.5. While weekday and
weekend have quite different consumption patterns as illustrated by Fis w score,
weekdays have a lot in common which explains the score for day of the week
FW . In the same way, consumption patterns are rather dependent on seasons
than individual month, and successive months hence share common consumption
patterns decreasing its score.

Eventually, even if holiday score FH is greater than random, which can sug-
gest some dependency of the consumption over this feature, it is lower than
any other features. When looking manually at the representation of holidays
in the latent space, we still recover that holidays look more like weekends (in
between Saturdays and Sundays) than weekdays. But no holiday appear simi-
lar to one another. It is hard yet to ascertain the existence of a condition. The
representations created by the two models in Experience 1 hence do not seem
appropriate to the analysis of the influence factors of consumption on holidays.
To study them properly and independently of common influent factors, it is thus
necessary to learn a new specific representation, as we present in Experiment 2.

Experiment 2: Conditioning over existing knowledge to learn new
representations to be explored In this second experiment, we analyze how
CVAE models can create more specific and selective representations when con-
ditioning over features we do not want to be influenced by in our exploration.
To first assess the quality of the learnt representation, we try in the first place to
recover the knowledge described in Figure 2. In a second step, we will show how
we are able to learn a representation more relevant to the analysis of holidays.
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Figure 5 summarizes the results of learning different conditional models over
known causal factors, either day of the week W , month M and/or temperature
T . For all models, residual latent spaces effectively appear to be quite indepen-
dent of conditional factors, as shown by scores highlighted in green, which are
getting close to random. For instance in CV AE|{T} model, we condition over
temperature T and the corresponding FT score is near random, highlighting the
latent representation independence over temperature. As another result, we see
that day of the week condition does not affect the dependency over month M
and temperature T in the latent space in model CV AE|{W} and conversely in
CV AE|{M,T}. We thus retrieve as a sanity check the natural independence of
those factors like previously described in Figure 2. In addition, we see a simulta-
neous arising independence of the latent space from is weekday variable and W
in CV AE|{W}. This highlights the obvious dependency of is weekday over day
of the week W . We observe the same but little obvious dependency between M
and T . This suggests that beside temperature effects, there might not be strong
shift in daily consumer habits from one month to another.

Finally, our known atypical feature, holidays, is eventually well-represented
with a high FH score in the latent spaces of CV AE|{W} and CV AE|{W,M,T},
when conditioning over day of the week W , since they have competing depen-
dencies in common. As a matter of fact, holiday happening on a weekday shifts
usual weekday habits to non-working day habits most similar to weekend. Holi-
days hence appear to be very atypical from the expected consumption prototype
on a given weekday. This gives us a new residual latent space in which to study
holidays that are well-represented to eventually validate this atypical condition
as a relevant feature.

Fig. 5: Table of feature scores given several models with different conditions.
Experiment 2 highlights that conditioning is properly learnt (green). Holidays
appear as a new important feature (blue) when conditioning over weekdays.
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Experiment 3: Exploring similar holidays & discovering additional
weekday events After demonstrating proper conditional learning over ex-
tracted features, we will now focus on CV AE|{W,M,T} to deepen our knowledge
over holidays. Since our goal is to recover consumption behaviors specific to these
peculiar days, we not only conditioned on weekdays, but also on month and tem-
perature, to focus on unknown specific factors beyond existing knowledge.

In this conditional representation, we reach a feature importance score Fis w
of 0.79 for holidays, which is a lot higher than for previous unconditioned rep-
resentations. Theses results indicate that this CVAE model is suitable to study
the peculiarity of most holidays. However, some holidays are not well predicted
and we first need to understand why. When analyzing them, most are actually
occurring on weekends. This result is interpretable since weekends are already
non-working days, hence not really shifting consumer behaviors and thus not
atypical: this is a well-known fact we recover. Without integrating expert knowl-
edge over weekdays, this fact could not be recovered in the first unconditioned
VAE representation or in CV AE|{T}, CV AE|{M} and CV AE|{M,T}. The only
exception to this statement is a Christmas day happening on a Saturday which
actually appears as different from a typical Saturday. This is understandable
for this very particular day with huge celebrations. For the remaining 2 holidays
not well predicted and happening during weekdays (2015-05-08 and 2016-11-11),
they are actually similar to non-working days surrounding holidays as we explain
in the following paragraph. We here explained all the instances that were sup-
posedly not well-predicted, highlighting the power of such a representation to
study instances collectively in context rather than some model limitation.

Figure 6 shows the conditional latent representation, which confirms that
holidays appear more similar to one another than to other days, as they are
clustered in the latent space. We then used a manual semi-expert exploration
step with Tensorboard Embedding Projector [30] to create new categories of
days. In turquoise, we discover 27 days at once in a similar location of the
representation which happened during Christmas weeks and during which the
great majority of people take vacations: we quickly identified a shared underlying
phenomenon as a new condition. As they are also non-working days, this makes
them similar to holidays. In green, we discover and label 17 “bridge” days, which
are days happening between a holiday and a weekend. Bridge days are often non-
working days, with the opportunity for people to take a 4-day break. However, it
is not always the case for everyone and every company, leading to a fuzzy mix of
working and non-working day behaviors which are hardly measured otherwise.
Finally, an exception is the 6th May of 2016, which was actually a bridge day
and is not labeled yet. We will see later in the last experiment that it is due
to a conjunction of conditions, and not an error in learning this representation.
Defining all these new labels interactively and efficiently, 44 in totals related to
holidays, demonstrate how informative this representation is for semi-experts to
study the characteristics of atypical conditions like holidays, and of days with
similar characteristics as well.
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In a last step, we looked at the 10 most atypical days based on our outlier
score. 4 days were already identified as non-working days previously. The 6 others
can actually be interpreted as weather events: 2017-01-21, 2017-01-28, 2013-03-
04, 2013-03-13, 2013-03-11 which were all important snowy days in France and
2013-04-14 which was equivalent to a punctual summer day with high temper-
ature gradients from the day before and after. However, this representation is
better suited to discover daily events similar to holidays than weather ones. To
study further atypical weather conditions independent of daily behaviors, we will
explore a last conditional representation over weekdays W and over those new
labels related to holidays H+, deepening our knowledge by building on it.

Mostly Typical Days

Weekday Holidays

Weekend Holidays
Non-working Days
around holidays 
Day after holidays

Weather Events

Legend

Fig. 6: Latent representation from CV AE|{W,M,T}, before and after expert la-
belling. Holidays during weekdays are identified as similar and other non-working
days are also discovered. In addition, first weather events are discovered.

Experiment 4: discovering new weather events In this last experiment,
we want to explore how weather-related events can be represented in a more
suited latent space. We first learnt the CV AE|{W} model to remove the weekday
effect as illustrated in Figure 7 but this representation only highlighted holidays
not yet integrated. As a result, we decided to condition, not only on weekdays
W but also on the knowledge of the holidays H. In this representation, non-
working days could still be predicted and we decided to include all the labels
of Experiment 3 to even more properly condition our latent representation over
daily effects. The only remaining working days still predicted were during the
Christmas week of 2015, and it is understandable for a weather perspective since
it was the hottest Christmas week in French history, hence sharing an additional
atypical condition. The resulting weather representation is shown in Figure 7
(middle).

After creating a representation which qualitatively makes sense to explore
the temperature factor, we tried to locate in it the previously detected weather-
related events.From Experiment 3, we observed that some previous weather
events were actually clustered in this new latent space. We discovered that 2017-
01-21 and 2017-01-28 were part of a cold snap starting mid-January and lasting
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Fig. 7: Left, latent representation from CV AE|{W}. Holidays are recovered as
an important feature here as well and hide the temperature dependency. When
conditioning additionally over non-working days with CV AE|{W,H+}, a smooth
3D V-shape appears, similar to a scatter plot consumption vs temperature.

until the end of the month rather than just punctual snowy days: by reusing
some previous discovery from a previous representation we here confirmed the
underlying condition and strengthen our knowledge. As for the other snowy days
mentioned in Experiment 3, they were all surrounded by other snowy days at
different times, which let us identify new labels.

In order to discover other weather-related atypical events, we looked for the
top-100 outliers. As we could expect, some of them had already been manually
identified as snowy days. Bridge day 6th of May 2016 also appears as a strong
outlier here, indeed associated with a rare dry wind event from the Sahara over
France increasing consumption, explaining why it was not strongly detected as
a non-working day before with a lower expected consumption. Finally we also
discovered recurring hot periods in August accounting for almost a quarter of the
top-100 outliers. In this CVAE model, almost all August days between the 7th
and 28th of August (except for the 15th, a bank holiday) appeared as atypical.
We believe it is due to another underlying feature of interest, not taken into
account yet in our data: the significant proportion of employees taking a two-
week vacation in August. A new representation, conditioned on temperature
additionally, might be interesting to explore in the future to study remaining
monthly characteristics.

Across all these experiments, we have explored how these conditional repre-
sentations could help an expert improve its intuitions on the influent factors for
consumption in an interpretable and iterative process, building and strengthen-
ing knowledge iteration after iteration. We have first recovered existing expert
knowledge, which can be seen as a functionally-grounded evaluation in the tax-
onomy of [9]: a first level of interpretability. We further showed that we could
explore specific representations to discover new events and interpret them as
non-working days and weather characteristics. Such experiments can be used in
the future for a human-grounded evaluation, the second level of interpretability.



16 A. Marot et al.

6 Conclusion

We showed how CVAEs could actually be used to recover existing expert knowl-
edge and further learn specific representations for atypical conditions discovery
in electrical consumption. This helped study those peculiar situations collectively
to eventually interpret quickly some latent additional conditions to augment ex-
pert knowledge. In particular, we recovered holidays and their characteristics
and discovered similar non-working days as daily events. We eventually detected
unknown influential weather events and interpreted them in the appropriate rep-
resentation. New time scales could be explored and our method improved with
more specific architectures such as temporal convolution or attention-based ones.
New scores for atypical condition detection could also be used for an even deeper
exploration. More generally, given the ability of neural nets to deal with many
kinds of data, we believe our approach could be applied more generically to other
systems. It could finally be integrated in new iterative and interactive tools for
experts [26], to help them explore, interpret and label more exhaustively specific
cases of interest within relevant representations of their data.
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