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Abstract. In the densest subgraph problem, given an undirected graph
G(V,E,w) with non-negative edge weights we are asked to find a set of
nodes S ⊆ V that maximizes the degree density w(S)/|S|, where w(S)
is the sum of the weights of the edges in the graph induced by S. This
problem is solvable in polynomial time, and in general is well studied.
But what happens when the edge weights are negative? Is the problem
still solvable in polynomial time? Also, why should we care about the
densest subgraph problem in the presence of negative weights?
In this work we answer the aforementioned questions. Specifically, we
provide two novel graph mining primitives that are applicable to a wide
variety of applications. Our primitives can be used to answer questions
such as “how can we find a dense subgraph in Twitter with lots of
replies and mentions but no follows?”, “how do we extract a dense
subgraph with high expected reward and low risk from an uncertain
graph”? We formulate both problems mathematically as special instances
of dense subgraph discovery in graphs with negative weights. We study
the hardness of the problem, and we prove that the problem in general is
NP-hard, but we also provide sufficient conditions under which it is poly-
time solvable. We design an efficient approximation algorithm that works
best in the presence of small negative weights, and an effective heuristic
for the more general case. Finally, we perform experiments on various
real-world datasets that verify the value of the proposed primitives, and
the effectiveness of our proposed algorithms.
The code and the data are available at https://github.com/negativedsd.

1 Introduction

Dense subgraph discovery (abbreviated as DSD henceforth) is a major and active
topic of research in the fields of graph algorithms and graph mining. A wide
range of real-world, data mining applications rely on DSD including correlation
mining, fraud detection, electronic commerce, bioinformatics, mining Twitter
data, efficient algorithm design for fast distance queries in massive networks, and
graph compression [15].

In this work we introduce two novel primitives for DSD. These two primitives
are strongly motivated by real-world applications that we discuss in greater
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detail in Section 3.1. The first question that our work addresses is related to
uncertain graphs. Uncertain graphs appear in a wide variety of applications that
we survey in Section 2. We define the uncertain graph model we use formally in
Section 3.1, but intuitively, uncertain graphs model probabilistically real-world
scenarios where each edge may exist or not in a graph (e.g., failure of a link).
Problem 1 aims to find a risk-averse dense subgraph. A similar formulation was
suggested recently by Tsourakakis et al. for graph matchings [31].

Problem 1 (Risk-averse DSD). Given an uncertain graph G, how do we
find a set of nodes S that induces a dense subgraph in expectation, and
the probability of not being dense in a realization/sample of G is low?

Our second problem focuses on multigraphs whose edges are associated with
different types. Such graphs appear naturally in numerous applications, and are
also known as multilayer multigraphs, e.g., [11]. For example, similarity between
two videos can be defined based on different criteria, e.g., audio, visual, and how
frequently these videos are being co-watched on Youtube. Similarity between time
series can be defined using a variety of measures including Euclidean distance,
Fourier coefficients, dynamic time wraping, edit distance among others [28].
Emails between people can be classified based on the nature of the interaction
(e.g., business, family). Twitter users may interact in various ways, including
follow, reply, mention, retweet, like, and quote. We formulate Problem 2, whose
goal is to detect efficiently dense subgraphs that exclude certain types of edges.
Later, we will define two variations, soft- and hard-exclusion queries.

Problem 2 (DSD-Exclusion-Queries). Given a multigraph G(V,E, `),
where ` : E → {1, . . . , L} = [L] is the labeling function, and L is the
number of types of interactions, and an input set I ⊆ [L] of interactions,
how do we find a set of nodes S that induces a dense subgraph but does
not induce any edge e such that `(e) ∈ I?

Contributions. Our contributions are summarized as follows.

• We introduce two novel problems, (i) risk averse DSD, and (ii) DSD in large-
scale multilayer networks with exclusion queries. We show in Section 3.1
that these two problems are special cases of DSD in undirected graphs with
negative weights. To the best of our knowledge, this is the first work that
introduces these algorithmic primitives.

• We prove that DSD in the presence of negative weights is NP-hard in general
by reducing Max-Cut to our problem (Section 3.2), but we also provide
sufficient conditions under which it is exactly solvable in polynomial time.

• We design a space-, and time- efficient approximation algorithm that performs
best in the presence of small negative weights. In the case of existence of
large negative weights, we design a well-performing heuristic.
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• We deploy our developed primitives on the two real-world applications we
introduce. We extract subgraphs from uncertain graphs with high expected
induced weight and low risk. Finally, we mine Twitter data by finding
dense subgraphs that exclude certain types of interactions. A non-trivial
experimental contribution is the creation of an uncertain graph from the
TMDB database and Twitter graphs from the Greek Twitter-verse, that
we will make available to the community. Our tools provide insights, and
we are confident that will find numerous applications in graph mining, and
anomaly detection.

In the following sections we use the notation summarized in Table 1.

Table 1. Notation

Notation Description

deg+(u) (deg−(u)) Positive (negative) degree of node u.
deg+(u) > 0, deg−(u) > 0

d(u) Total degree of u.
d(u) = deg+(u)− deg−(u)

w+(e)(w−(e)) Positive (negative) weight of edge e.
w+(e) > 0, w−(e) > 0

deg+S (u) (deg−S (u)) Positive (negative) degree of node u within node set S ⊆ V .
deg+S (u) =

∑
v∈S w

+(u, v), deg−S (u) =
∑

v∈S w
−(u, v)

w+(S) (w−(S)) Total positive (negative) induced weight by S.
w+(S) =

∑
e∈E(S) w

+(e), w−(S) =
∑

e∈E(S) w
−(e)

dS(u) Total degree of node u within S.
dS(u) = deg+S (u)− deg−S (u)

2 Related Work

Uncertain graphs model naturally a wide variety of datasets and applications
including protein-protein interactions [21], kidney exchanges [27], and influence
maximization [19] While a lot of research work has focused on designing graph
mining algorithms for uncertain graphs, e.g., [6,22,24], there is less work on
designing efficient risk-averse optimization algorithms, and even lesser with solid
theoretical guarantees.

Risk-aversion has been implicitly discussed by Lin et al. in their work on
reliable clustering [22], where the authors show that interpreting probabilities as
weights does not result in good clusterings. Repetitive sampling from a large-scale
uncertain graph in order to reduce the risk is inefficient. Motivated by this
observation, Parchas et al. have proposed a heuristic to extract a good possible
world in order to combine risk-aversion with efficiency [24]. However, their work
comes with no guarantees. Jin et al. provide a risk-averse algorithm for distance
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queries on uncertain graphs [18]. He and Kempe propose robust algorithms for
the influence maximization problem [17]. Closest to our work lies the recent work
by Tsourakakis et al. who studied the problem of finding efficiently risk averse
graph and hypergraph matching algorithms [31].

Dense subgraph discovery (DSD) is a major graph mining topic, with
numerous diverse applications, ranging from fraud detection to bioinformatics,
see [15,30] for a detailed account of such applications. The densest subgraph
problem (DSP) a popular DSD objective, that is solvable in polynomial time
[13,16]. The DSP for undirected, weighted graphs G(V,E,w), w : E → R+

maximizes the degree density ρ(S) = w(S)
|S| over all possible subgraphs S ⊆ V ,

where w(S) =
∑
e∈e[S] w(e) is the total induced weight by subgraph. In addition

to the exact algorithm that is based on maximum flow computation, Charikar
[8] proved that a greedy peeling algorithm produces a 1

2 -approximation of the
densest subgraph in linear time, see also [20]. Galimberti et al. studied core
decompositions – a concept intimately connected to DSD– on multilayer graphs
[12]. Finally, Cadena et al. first studied DSD with negative weights [7], but their
work focuses on anomaly detection, and the streaming nature of their input.

DSD on uncertain graphs is a less well studied topic. Zou was the first who
discussed the DSP on uncertain graphs. His work shows –as expected– that the
DSP in expectation can be solved in polynomial time [32]. The closest work
related to our formulation is the recent work by Miyauchi and Takeda [23].
While their original motivation is also DSD on uncertain graphs, the modeling
assumptions, and the mathematical objective differ significantly from ours. To
the best of our knowledge, there is no work on risk-averse DSD under general
probabilistic assumptions as ours.

3 Proposed Method

3.1 Why Negative Weights?

Risk-averse dense subgraph discovery. Uncertain graphs model the inherent
uncertainty associated with graphs in a variety of applications. Here, we adopt
the general model for uncertain graphs introduced by Tsourakakis et al. [31]. For
completeness we present it in the following.

Model: Let G([n], E, {ge(θe)}e∈E) be an uncertain complete graph on n nodes,

with the complete edge set E =
(
[n]
2

)
. The weight w(e) (reward) of each edge

e ∈ E is drawn according to some probability distribution ge with parameters
θe, i.e., w(e) ∼ ge(x;θe). We assume that the weight of each edge is drawn
independently from the rest; each probability distribution is assumed to have
finite mean, and finite variance. Given this model, we define the probability of a
given graph G with weights w(e) on the edges as:

Pr [G; {w(e)}e∈E ] =
∏
e∈E

ge(w(e);θe). (1)
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This model includes the standard Bernoulli model that is used extensively
in the existing literature as a special case. Specifically, in the standard binomial
uncertain graph model an uncertain graph is modeled by the triple G = (V,E, p)
where p : E → (0, 1] is the function that assigns a probability of success to
each edge independently from the other edges. According to the possible-world
semantics [5,10] that interprets G as a set {G : (V,EG)}EG⊆E of 2|E| possible
deterministic graphs (worlds), each defined by a subset of E. The probability of
observing any possible world G(V,EG) ∈ 2E is

Pr [G] =
∏
e∈EG

p(e)
∏

e∈E\EG

(1− p(e)).

A key property of these models to keep in mind, is that each edge e in the
uncertain graph is independently distributed from the rest, and is associated with
an expected reward µe (expectation) and a risk σ2

e (variance). Finally, observe
that without any loss of generality in our general model described by equation (1)

we have assumed that the edge set is
(
[n]
2

)
; non-edges can be modeled as edges

with probability of existence zero.
Problem formulation. Intuitively, our goal is to find a subgraph G[S] induced

by S ⊆ V such that its average reward

∑
e∈E(S)

we

|S| is large and the average associated

risk is low

∑
e∈E(S)

σ2
e

|S| . To achieve this purpose we model the problem as a densest

subgraph discovery problem in a graph with positive (reward) and negative (risk)
edge weights. Specifically, for every edge e = (u, v) ∈ E(G) we create two edges,
a positive edge with weight equal to the expected reward, i.e., w+(e) = µe and
a negative edge with weight equal to the opposite of the risk of the edge, i.e.,
w−(e) = σ2

e . We wish to find a subgraph S ⊆ V that has large positive average

degree w+(S)
|S| , and small negative average degree w−(S)

|S| . We combine the two

objectives into one objective f : 2V → R that we wish to maximize:

f(S) =
w+(S) + λ1|S|
w−(S) + λ2|S|

.

The parameters λ1, λ2 ≥ 0 are positive reals. First, observe that this dense
subgraph discovery formulation is applicable to any graph with positive and
negative weights. Parameters λ1, λ2 allow us to control the size of the output
as follows. Let us reparameterize the two parameters as λ1 = ρλ, λ2 = λ. Then

f(S) = w+(S)+ρλ|S|
w−(S)+λ|S| , so if the ratio ρ ≥ 1, then the objective favors larger node

sets, whereas when ρ < 1 we favor smaller node sets.
We show how to solve the problem maxS⊆V f(S) by reducing it to standard

dense subgraph discovery [16]. We perform binary search on f(S) by answering
queries of the following form:

Does there exist a subset of nodes S ⊆ V such that f(S) ≥ q, where q is
a query value?
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Assuming an efficient algorithm for answering this query, and that the weights
are polynomial functions of n, then using O(log n) queries we can find the optimal
value for our objective f : V → R. By analyzing what each query corresponds to,
we find:

w+(S) + λ1|S|
w−(S) + λ2|S|

≥ q → w+(S) + λ1|S| ≥ q(w−(S) + λ2|S|)→ (2)∑
e∈E(S)

(
w+(e)− qw−(e)

)
︸ ︷︷ ︸

w̃(e)

≥ |S| (qλ2 − λ1)︸ ︷︷ ︸
q′

→
∑

e∈E(S)

w̃(e)

|S|
≥ q′.

The latter inequality suggests that our original problem corresponds to
querying in G̃, a modified version of G where the edge weight of any edge e
becomes w+(e)− qw−(e), whether there exists a subgraph S with density greater
than q′, where q′ = qλ2 − λ1. However, this does not imply that our problem is
poly-time solvable. The densest subgraph problem is poly-time solvable using a
maximum flow formulation when the weights are positive rationals [16]. As we
will prove in the next section, the densest subgraph problem when there exist
negative weights is NP-hard in general. However, our analysis above leads to a
straight-forward corollary that is worth stating. Intuitively, when for each edge e

the ratio w+(e)
w−(e) is large enough, then our problem is solvable in polynomial time.

Corollary 1. Assume that w+(e) ≥ qmaxw
−(e) for all e ∈ E+ ∪ E−, where

qmax is the maximum possible query value. Then, the densest subgraph problem
is solvable in polynomial time.

Proof. If w+(e) ≥ qmaxw−(e) for each e ∈ E, we obtain w̃(e) ≥ 0 for each e ∈ E
in inequality (2) is equivalent to solving the densest subgraph problem in an
undirected graph with non-negative weights, see [16,29].

Observe that a trivial upper bound of qmax can be obtained by setting
w+(S) =

∑
e∈E(G) w

+(e), w−(S) = 0, and since λ1|S| ≤ λ1n, λ2|S| ≥ λ2 for all

S 6= ∅, we see that qmax ≤
∑

e∈E(G) w
+(e)+λ1n

λ2
. For polynomially bounded weights,

this is a polynomial function of n, hence the number of binary search iterations
is logarithmic.

Controlling the risk in practice. There exist real-world scenarios where the
practitioner wants to control the trade-off between reward and risk, see [31]. An
effective way to change the risk tolerance is as follows by multiplying the negative
induced weight w−(S) by B ∈ (0,+∞). Namely, our objective f : 2V → R
is f(S) = w+(S)+λ1|S|

Bw−(S)+λ2|S| . An interesting open problem is to develop a formal

(bi-criteria) approximation for risk averse DSD along the lines of [26,31].

Soft and hard exclusion dense subgraph queries. Given the Twitter net-
work, where user accounts may interact in more than one ways (e.g., follow,
retweet, mention, quote, reply), can we find a dense subgraph that does not
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contain any follow but contains many reply interactions? We ask this question in
a more general form.

Problem 3. Given a large-scale multilayer network, how do we find a dense
subgraph that excludes certain types of edges?

We consider two types of such queries, the soft and hard queries. In the former
case we want to find subgraphs with perhaps few edges of certain types, in the
latter case we want to exclude fully such edges. An algorithmic primitive that
can answer efficiently these queries can be used to understand the structure of
large-scale multilayer networks, and find anomalies and interesting patterns. In
principle, we set the edge weight of an excluded type to −W where W > 0 is
an input parameter. If we set W = +∞, subgraphs that do not induce any edge
of any excluded type will have positive weight, whereas subgraphs that induce
even one edge of a forbidden type will have −∞ weight. If we set W to a small
value, then there may be some undesired edges in the output subgraph. The
pseudo-code in Algorithm 1 describes this approach.

Algorithm 1: Exclusion-Queries

Input: G(V,E), {labels},W > 0
for e ∈ E(G) do

for c ∈ labels do
if If type(e) = c then

w(e)← −W (else w(e) remains 1)
end

end

end
return S ⊆ V that achieves maximum average degree in G(V,E,w).

3.2 Hardness

We prove that solving the densest subgraph problem on graphs with negative
weights is NP-hard. We formally define our problem Neg-DSD.

Problem 4 (Neg-DSD). Given a graph G with loops and possibly negative

weights, find the subset A of V that maximizes w(A)
|A| .

We prove that Neg-DSD is NP-hard. Our reduction is based on the the proposed
strategy by Peter Shor for showing that the max-cut problem on graphs with
possibly negative edges is NP-hard [1]. This is stated as the Theorem 1. For
convenience, we also define the decision version of the maximum cut problem [1].

Theorem 1. Neg-DSD is NP-hard.
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Problem 5 (Max-Cut). Given a graph G(V,E) and a constant c, find a partition
(V1, V2) of V such that cut(V1, V2) =

∑
u∈V1,v∈V2

w(u, v) > c.

Our proof strategy is inspired by Peter Shor’s proof that max-cut with negative
weight edges is NP-hard [1]. We provide a detailed proof sketch.

Proof. First, we define the Positive-Cut problem, and show that it is NP-hard
by reducing the Max-Cut problem to it.

Problem 6 (Positive-Cut). Given a graph G with possibly negative weights, find
a partition (V1, V2) of V such that cut(V1, V2) > 0.

We choose two nodes u, v that lie on opposite sides of an optimal max cut
(V ∗1 , V

∗
2 ). Despite the fact we do not know the max cut, we can perform this step

in polynomial time by repeating the following procedure for all possible pairs of
nodes; if we cannot find a positive cut for any of the pairs, then the answer to the
Max-Cut is negative. With a vary large value d (e.g. d = 1 + maxe∈E(w+(e))),
we construct a graph G′ by adding negative weight equal to −d from u and v to
all other vertices, and an edge of weight (n− 2)d− c between u, v. All cuts that
place u, v on the same side will be negative in G′ provided d is sufficiently large.
All other cuts will be positive if and only if the corresponding cut in G is greater
than c. Therefore, Positive-Cut is NP-hard.

Finally we prove that Neg-DSD is NP-hard using a reduction from Positive-
Cut. We construct a graph G′ by negating every weight in G putting a loop
on every vertex so that its weighted degree is zero. Therefore, the sum of the
degrees of any set A in G′ is equal to

∑
v∈A 0 = 2w(A) + cut(A, V \A). Finally,

observe that a cut (V1, V2) has positive weight in G if and only if V1 has positive
average degree.

3.3 Algorithms and Heuristics

A popular algorithm for the densest subgraph problem is Charikar’s algorithm [8].
We study the performance of this algorithm in the presence of negative weights.
The pseudocode is given as Algorithm 2. The algorithm iteratively removes from
the graph the node of the smallest degree d(v) = deg+(v)− deg−(v), and among
the sequence of n produced graphs, outputs the one that achieves the highest
degree density. Our main theoretical result for the performance of Algorithm 2 is
stated as Theorem 2.

Theorem 2. Let G(V,E,w), w : E → R be an undirected weighted graph with
possibly negative weights. Let S∗ be the optimal densest subgraph in G with

average density w(S∗)
|S∗| = ρ∗. If the negative degree deg−(u) of any node u is upper

bounded by ∆, then Algorithm 2 outputs a set whose density is at least ρ∗

2 −
∆
2 .

Proof. By the optimality of S∗ we obtain that dS∗(v) ≥ ρ∗, and then trivially
deg+(v) ≥ ρ∗. Consider the execution of algorithm 2, and let u ∈ S∗ be the first
vertex from S∗ removed during the peeling. Let S be the set of nodes at that
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Algorithm 2: Peeling

Input: G
n← |V |, Hn ← G;
for i← n to 2 do

Let v be the vertex of Gi of minimum degree, i.e.,
d(v) = deg+(v)− deg−(v) (break ties arbitrarily);
Hi−1 ← Hi\v;

end
return Hj that achieves maximum average degree among His, i = 1, . . . , n.

iteration, including u. By the peeling process, we have dS(v) ≥ dS(u) for all
v ∈ S. Furthermore,

dS(u) = deg+S (u)− deg−S (u) ≥ deg+
S (u)−∆,

since by our assumption deg−S (u) ≤ deg−(u) ≤ ∆. This implies that

2w(S) =
∑
v∈S

dS(v) ≥
∑
v∈S

deg+S (v)− |S|∆ ≥ |S|(ρ∗ −∆)→ w(S)

|S|
≥ ρ∗

2
− ∆

2
.

This yields that the output of Algorithm 2 outputs a set of nodes S̄ with
density at least ρ∗

2 −
∆
2 .

When the additive error term in the approximation is small compared to the
term ρ∗

2 , then the peeling algorithm performs effectively with strong guarantee.
In practice, Algorithm 2 performs well on large-scale graphs where the negative
weights are small. In the presence of very large negative weights, the approximation
guarantees become meaningless.

Claim. In the presence of large negative weights, Algorithm 2 may perform
arbitrarily bad.

This is illustrated in Figure 1(a) that provides an instance of a graph with
large negative weights. Intuitively, in bad instances when there exist large negative
degrees, nodes that should not be removed early on by the peeling process, are
actually removed. Specifically, consider when W = n−4

3 , then 3W − n < −3. The
degrees of nodes are

3W − n︸ ︷︷ ︸
one node

< −3︸︷︷︸
n−2 nodes

< −2︸︷︷︸
two nodes

< 0 < 2ε+W︸ ︷︷ ︸
three nodes

.

Therefore, the center node is removed first, and the peeling algorithm will
output as the densest subgraph the triangle of density ε. The optimal densest
subgraph has 3W+3ε

4 . By allowing ε to be arbitrarily small, we observe that the
approximation ratio becomes arbitrarily bad. To tackle such scenarios, i.e., where
nodes from the densest subgraph are peeled earlier than when they should, we
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.............

+eps
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-1
-1 -1

-1

-1 -1 -1 -1
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-
G(n,p)

Kr
G(n,p)
+

(a) (b)

Fig. 1. Bad peeling instances. For details, see Section 3.

propose an effective heuristic which is outlined in Algorithm 3. The algorithm
again peels the nodes but scores every node u according to Cdeg+(u)− deg−(u),
where C > 0 is a parameter that is part of the input.

Remark about C in Algorithm 3. While Figure 1(a) suggests the use of
C ≥ 1, it could be the case that C has to be set to a value less than 1 to obtain
good results. We provide an example where using C < 1 can help in providing
a better peeling permutation of the nodes. Consider a graph whose weights are
either +1 or −1, that consists of two connected components. The first component
is a positive clique on r nodes. The second component is the union of two random
binomial graphs G(n, p) where p = 1

2 . This is illustrated in Figure 1(b). The degree
of any node u in the first component is deg(u) = deg+(u)−deg−(u) = (r−1)−0.
The expected degree of any node in the second component is 0. Furthermore, the
average degree of any subset of nodes in the 2nd component is 0 in expectation.
However, using concentration bounds (details omitted) one can show that it is
likely that there will exist a node u in the second component with positive degree
κ
√
n and negative degree κ′

√
n with κ > κ′, and therefore positive total degree.

Only the use of a C < 1 will improve the peeling ordering; e.g., in the extreme
case where C = 0 the nodes of the second component will be removed first.

Rule-of-thumb. In practice, given that each run of the algorithm takes linear
time, we can afford to run the algorithm for a bunch of C values and return the
densest subgraph among the outputs produced by each run, instead of using one
value for C. This strategy is applied in Section 4.

Algorithm 3: Heuristic-Peeling

Input: G,C ∈ (0,+∞)
n← |V |, Hn ← G for i← n to 2 do

Let v be the vertex of Gi of minimum degree, i.e.,
d(v) = Cdeg+(v)− deg−(v) (break ties arbitrarily) Hi−1 ← Hi\v

end
return Hj that achieves maximum average degree among His, i = 1, . . . , n.

Shifting the negative weights. Finally, for the sake of completeness, we
mention that the perhaps natural idea of shifting all the weights by the most
negative weight in the graph, in order to obtain non-negative weights, and apply
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the exact polynomial time algorithm on the weight-shifted graph may perform
arbitrarily bad. To see why, consider a graph that consists of three components,
a triangle with positive weights equal to 1, an edge with a large negative weight
−∆ < 0, and a large clique with small negative weight −ε < 0. In this graph, the
densest subgraph is the positive triangle, but by shifting the weights by +∆, there
exists values for ε,∆ such that the densest subgraph in the weight-shifted graph
is the negative clique. Also experimentally, this heuristic performs extremely
poorly.

4 Experimental results

4.1 Experimental setup

Datasets. All the datasets we have used in our experiments are publicly available,
and are described in Table 2. We use four protein-protein interaction uncertain
graphs, Biogrid, Collins, Gavin, Krogan that have been used in prior biological
studies (e.g., [9,14,21]) and are available at [2]. The set of nodes represents
proteins and the probability of the edge is equal to the existence probability
of the interaction. Another uncertain graph, available at [4], is created from
the TMDB movie database as follows. The set of nodes corresponds to actors,
and the probability of the edge is equal to the probability that these two actors
co-star in a movie. Specifically, for actors u, v, the probability p(u, v) is equal

to the Jaccard coefficient J(Mu,Mv) = |Mu∩Mv|
|Mu∪Mv| , where Mu,Mv are the sets of

movies that u, v have co-starred. We choose weights to represent a function of the
popularity of the movies, i.e., a score assigned to each movie by TMDB (1 is the
lowest score in our collected dataset). Intuitively, these scores reflect the reward
of a potential collaboration between two actors. While there are many ways to
set the weight of an edge for two actors (e.g. average popularity), we focus on
the most popular movies they have co-starred in. The main rationale behind this
choice is that the majority of actors play in movies whose majority popularity is
1, i.e., the lowest possible. For a pair of actors {u, v}, let s0 ≥ . . . ≥ sk−1 where
k = min(|Mu ∩Mv|, 5) be the popularity scores of movies they have co-starred

in. We set w(u, v) =
∑k−1
j=0

sj
2j , i.e., a discounted sum of popularities, focusing

more on the most popular movies the two actors have co-starred in.
Finally, we used an open-source twitter API crawler to monitor twitter

traffic between February 1st and February 14th, 2018 [25]. We provided detailed
information about each daily graph. Here, the number of edges is a five dimensional
vector, whose coordinates correspond to the number of follows, mentions, retweets,
quotes, and replies respectively. We will make the Twitter datasets available
upon proper anonymization. The datasets we use are overall small, and medium
sized, therefore our proposed algorithm for a fixed C value, requires few seconds
or few minutes for the largest graphs.

Unfortunately, due to space constraints we present a representative sample of
our findings. The interested reader can find an extended version of this paper
online [3].
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Table 2. Datasets used in our experiments. The number of vertices n and edges m is
recorded for each graph. The datasets annotated by � have been created by us, and
are publicly available. For details, see Section 4.1.

Name n m

� Biogrid 5 640 59 748
� Collins 1 622 9 074
� Gavin 1 855 7 669
� Krogan core 2 708 7 123
� Krogan extended 3 672 14 317
� TMDB 160 784 883 842

� Twitter (Feb. 1) 621 617 (902 834, 387 597, 222 253, 30 018, 63 062)
� Twitter (Feb. 2) 706 104 (1 002 265, 388 669, 218 901, 29 621, 64 282)
� Twitter (Feb. 3) 651 109 (1 010 002, 373 889, 218 717, 27 805, 59 503)
� Twitter (Feb. 4) 528 594 (865 019, 435 536, 269 750, 32 584, 71 802)
� Twitter (Feb. 5) 631 697 (999 961, 396 223, 233 464, 30 937, 66 968)
� Twitter (Feb. 6) 732 852 (941 353, 407 834, 239 486, 31 853, 67 374)
� Twitter (Feb. 7) 742 566 (1 129 011, 406 852, 236 121, 30 815, 68 093)

Machine specs and code. The experiments were performed on a single machine,
with an Intel Xeon CPU at 2.83 GHz, 6144KB cache size, and 50GB of main
memory. The code is written in Python, and available at https://github.com/
negativedsd.

4.2 Risk-averse DSD

We perform two risk averse DSD experiments. First, for various fixed pairs of
(λ1, λ2) values, we range the parameter B (reminder: B is the multiplicative
factor of w−(S), see Controlling the risk in practice, Section 3.1) to control the
trade-off between expected average reward and average risk. A typical outcome of
our algorithm on the set of uncertain graphs we have tested it on for λ1 = λ2 = 1,
and C = 1 is summarized in Table 3. As B increases, we tolerate less risk, but
the expected average reward drops as well.

Table 3. Exploring the effect of risk tolerance parameter B on the gavin dataset. For
details, see Section 4.2.

B Average exp. reward average risk |S∗|
0.25 0.18 0.09 6

1 0.17 0.08 10
2 0.13 0.06 31

In our second experiment we test the effect of rest of the parameters. We fix
B = 1, and then we perform the following procedure. For each dataset, we fix a
pair of (λ1, λ2) values and run our proposed algorithm using 7 values of C. The

https://github.com/negativedsd
https://github.com/negativedsd
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Fig. 2. Risk averse DSD results for Biogrid (a) average expected weight, (b) average
risk, (c) output size, and for TMDB (d) average expected weight, (e) average risk, (f)
output size. For details, see Section 4.2.

C value 0.5 always resulted in trivial results that would skew a lot the plots so
it is omitted. Specifically, for C = 0.5 for all three pairs of λ values we use, we
obtain (almost) the whole graph as output of the peeling process. The three pairs
of λ values we use are (λ1, λ2) ∈ {(0.5, 1), (1, 1), (2, 1)}. Our results are shown in
Figure 2. For the TMDB graph, the last pair of λ values results in obtaining the
whole graph as the optimal solution, so we omit it from Figures 2(d), (e), and
(f). We include these two datasets as they show that the change in the C value
in principle does not affect risk aversion (Figure 2(b)), but it could happen due
to the different peeling orderings it produces that the output will be associated
with different risk (Figure 2)(d)). We also observe that as we increase λ1 the size
of the output increases. This agrees with the insights we provide in Section 3;
namely, we reward larger sets of nodes.

4.3 Mining Twitter using DSD-Exclusion queries

We test our DSD exclusion query primitive on the Twitter daily data. We present
results that we obtain for different pairs of graphs induced by different types of
interactions, for C = 1. For each such pair, we perform all possible non-trivial
exclusion queries:

• Every type of interaction is allowed (query denoted as [1, 1]).

• One of the two interaction types is excluded (queries denoted as [1, 0], and
[0, 1] for excluding the first and second type of interactions respectively).

Figure 3 shows for each pair of interactions the degree density (1st row), and
the output size (2nd row). Interestingly, observe that in Figure 3(c) the exclusion
query [0, 1] that excludes mentions and allows retweets results in density close
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Fig. 3. Degree density (1st row), and output size(2nd row) for three exclusion queries
per each pair of interaction types over the period of the first week of February 2018.
(a),(d) Follow and mention. (b),(e) Follow and retweet. (c),(f) Mention and retweet.

to 0. This is because the Twitter API considers every retweet as a mention. By
excluding mentions, we exclude all retweets. The density is not exactly zero,
due to some small noise in the crawled mentions, i.e., there exist a few retweets
that have not been included in the mentions. We have performed more exclusion
queries that involve more types of interactions. For instance, by looking into
reply, quote, retweet interactions, we find the following results for two queries on
February 1st, 2018.

• When we allow all types we find a subset of 351 nodes, whose retweet density
is 72.6, reply density 3.86, and quote density 1.08. We observe this difference
since the retweet layer of interactions is much denser than the other two.

• When we exclude the retweets, but allow quotes and replies, we find a set
of 30 nodes whose reply degree density is 15.46, and quote degree density
0.066.

Effect of C, and W . As we discussed earlier, ranging W , from small values
to +∞ quantifies how much we care about excluding the undesired edge types.
Table 4 shows what we observe typically on all experiments we have performed.
Specifically, we perform an exclusion query [1, 0] on the retweet, reply interactions.
We denote by S∗ the output of Algorithm 3. By inspecting the last column
ρreply(S∗) of the table, we observe that even when we set the weight of each
reply interaction to -1 (soft query), our algorithm outputs a set S∗ with very few
replies, for all C ∈ { 1

10 , 1, 10} values we use. When W is set to the very large
value 200 000 (hard query), ρreply(S∗) becomes 0 but we also observe a drop in
the degree density of the retweets. For instance for C = 1, ρretweet(S

∗) drops
from 72.70 to 30.38.
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Table 4. Exploring the effect of the negative weight −W on the excluded edge types
for various C values. For details, see Section 4.3.

C W |S∗| ρretweet(S
∗) ρreply(S∗)

0.1
1 296 63.44 -0.75
5 99 45.67 -0.01

200 000 200 30.37 0

1
1 346 72.70 -2.75
5 319 68.70 -1.29

200 000 200 30.38 0

10
1 351 73.10 -3.31
5 351 73.10 -3.31

200 000 200 30.37 0

5 Open Problems

In this work we have initiated a formal study of DSD with negative weights.
Understanding better the complexity of the problem remains open. For example,
we provided sufficient conditions under which the problem is poly-time solvable.
Developing an approximation or bi-criteria approximation algorithms for risk
averse DSD that aims to maximize the expected reward subject to bounds on
the risk is also an interesting open problem. Finally, and more broadly, designing
risk-averse, efficient graph mining algorithms is an interesting direction.
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