
Interpretable Discriminative Dimensionality
Reduction and Feature Selection on the Manifold

Babak Hosseini1 �[0000−0003−3335−4289], Barbara Hammer1

CITEC centre of excellence, Bielefeld University
Bielefeld, Germany

{bhosseini,bhammer}@techfak.uni-bielefeld.de

Abstract. Dimensionality reduction (DR) on the manifold includes effec-
tive methods which project the data from an implicit relational space onto
a vectorial space. Regardless of the achievements in this area, these algo-
rithms suffer from the lack of interpretation of the projection dimensions.
Therefore, it is often difficult to explain the physical meaning behind
the embedding dimensions. In this research, we propose the interpretable
kernel DR algorithm (I-KDR) as a new algorithm which maps the data
from the feature space to a lower dimensional space where the classes are
more condensed with less overlapping. Besides, the algorithm creates the
dimensions upon local contributions of the data samples, which makes it
easier to interpret them by class labels. Additionally, we efficiently fuse
the DR with feature selection task to select the most relevant features of
the original space to the discriminative objective. Based on the empirical
evidence, I-KDR provides better interpretations for embedding dimen-
sions as well as higher discriminative performance in the embedded space
compared to the state-of-the-art and popular DR algorithms.

Keywords: Dimensionality reduction · Interpretability · Supervised.

1 Introduction

Dimensionality reduction (DR) is an essential preprocessing phase in the appli-
cation of many algorithms in machine learning and data analytics. The general
goal in any DR approach is to obtain an embedding to transfer the data from the
original high-dimensional (HD) space to a low-dimension (LD) space, such that
this projection preserves the vital information about the data distribution[23].
It is common to split the dimensionality reduction methods into two groups of
unsupervised and supervised algorithms. The first group includes methods such
as Principal Component Analysis (PCA) [13] which finds a new embedding space
in which the dimensions are sorted based on the maximum data variation they
can achieve, or locally linear embedding (LLE) [23] that focuses on preserving
the relational structure of data points in the local neighborhoods of the space
throughout an embedding.

The second group of algorithms, known as supervised (discriminative) DR
methods, assume that data classes can obtain the same or even better separations
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in an intrinsic LD space. As a popular supervised algorithm, Linear Discriminant
Analysis (LDA) [19] tries to find a mapping which increases the distance between
the class centroids while preserving the intra-class variations. Its subsequent
algorithms such as LLDA [14] and CPM [29] tried to relax the constraints on
within-class variations to project the sub-clusters to the LD space more efficiently.

It is possible to consider an implicit mapping of data to a high-dimensional
reproducing kernel Hilbert space (RKHS) primarily to obtain a relational repre-
sentation of the non-vectorial or structured data distributions. Consequently, a
branch of DR algorithms (kernel-DR) is focused on kernel-based data represen-
tations to transfer the data from the original RKHS to a vectorial space. This
projection can become significant especially when it makes the application of
many vectorial algorithms possible on LD embedding of such data. The most
famous kernel-DR algorithms are Kernelized PCA (K-PCA) and K-FDA [19]
which are the kernelized versions of PCA and LDA algorithms respectively. In
these methods and many other kernel-DR algorithms, it is common to construct
the embedding dimensions upon different weighted combinations of data points
in the original RKHS. Other notable examples of kernel-based methods include
algorithms such as KDR [8], KEDR [1], and LDR [24].

Additionally, by assuming a set of non-linear mappings to different sub-spaces
in the feature space, it is possible to obtain one specific kernel representation
for each dimension of the data [6, 10]. Consequently, a specific group of methods
tried to apply DR frameworks also to feature selection tasks on manifolds [16,
12].

One of the important practical concerns regarding dimensionality reduction is
the interpretation of new dimensions. It is common to observe in many DR meth-
ods that the embedding dimensions are constructed upon arbitrary combinations
of many uncorrelated physical dimensions [25, 4]. Such occasions can make the
interpretation of these dimensions difficult or impossible. Such condition becomes
even more severe for kernel-DR methods where the embedding dimensions are
an implicit combination of data points in RKHS. For instance methods similar
to K-PCA, the embedding vectors almost use weighted combination of all data
points from all the classes. Hence, it would be difficult to relate any of the dimen-
sions to any class of data (Figure 1(a)). Furthermore, a high correlation between
embedding directions can be found when considering the class-contributions in
them (Figure 1(b)).

As an improvement, sparse K-PCA [27] applies an l1-norm sparsity objec-
tive to form embedding vectors from sparse combinations of training samples.
However, these samples still belong to different classes which makes the resulting
embeddings weak according to the class-based interpretation (Figure 1).

1.1 Motivation

As discussed in the previous paragraphs, one crucial challenge for kernel-DR
algorithms is the interpretation of their projection dimensions. Based on the
relation of these dimensions to the selection of data points, it is logical to focus
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Fig. 1. When embedding vectors use all data points: (a) its projection on class-labels
is coupled and (b) the embedding vectors are highly correlated in the label space. A
class-based interpretable embedding: (c) provides a more distinct projection on class
labels and (d) its dimensions can be distinguished and explained based on class labels.

on having each selection linked to mostly one class of data. This strategy can
lead to the class-based interpretation as in Figure 1(c)(d).

Besides, current kernel-DR methods cannot efficiently embed the multi-cluster
data classes to an LD space such that the clusters could still be separated from
each other. In particular, they suffer from considering the local distributions
inside the classes.

Based on the current state-of-the-art, the research in kernel-DR is always
distinct from feature selection on the manifold. Although in some research, these
concerns are employed in a single framework [16, 12], the DR aspect of the problem
was not well investigated. Nevertheless, in particular for discriminative tasks,
these two aspects should act as each other’s complements in a single framework.

1.2 Contributions

In this work, we propose a novel discriminative dimensionality reduction method
which projects the data from an implicit RKHS space to a low-dimension vectorial
space. Besides, it can join this embedding with feature selection in case of having
multiple representations for the data on the manifolds. We can summarize our
contributions as follows:

– We introduce the class-based interpretation concern for the kernel-DR frame-
works through which the embedding dimensions can be explained according
to the classes they most represent.

– We show that focusing on the within-class local similarities and between-class
dissimilarities can provide a more discriminative embedding.

– We fuse feature selection with our kernel-DR framework which leads to a
more discriminative feature selection compared to the state-of-the-art.

In the rest of this paper, we provide preliminaries in Sec. 2 and discuss
our discriminative kernel-DR framework in Sec. 3. The optimization steps and
the experimental results are discussed in Sec. 3.5 and Sec. 4 respectively. We
summarize our findings in the conclusion section.
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2 Preliminaries

2.1 Notations

We denote the matrix of training data by X = [x1, ...,xN ] ∈ Rd×N , and the
corresponding class label matrix is given as H = [h1, . . . ,hN ] ∈ {0, 1}c×N . Each
hi is a zero vector except in its q-th entry where hqi = 1 if xi belongs to class q
in a c-class setting. In general, for a given matrix A, ai denotes its i-th column,
A(j, :) denotes its j-th row, and aji refers to the j-th entry in ai.

2.2 Kernel-based Dimensionality Reduction

Assume there exists an implicit non-linear mapping Φ(X) corresponding to the
mapping of X into an RKHS, which corresponds to a kernel matrix K(X,X) =
Φ>(X)Φ(X). Generally, a kernel-DR algorithm tries to obtain an embedding
γ = U>Φ(x) as a mapping from the features space to an LD space. Since the
dimensions of Φ(x) are not directly accessible in the feature space, it is common
to assume embedding dimensions are constructed as

U = Φ(X)A, (1)

where A ∈ RN×k. Hence, the matrix A projects the data from the HD feature
space to a k-dimensional space, where each embedding vector ai is a combination
of the training samples in RKHS.

Regarding the above, the K-PCA method preserves the variance of the
reconstruction and to obtain embedding dimensions which are orthogonal and
sorted based on their maximum variations. To that aim, K-PCA uses the following
optimization:

min
A
‖Φ(X)− Φ(X)AA>Φ(X)>Φ(X)‖2F

s.t. A>Φ(X)>Φ(X)A = I,
(2)

Although K-PCA is a powerful preprocessing algorithm to eliminate the low-
variate dimensions, it does not have any direct focus on the discrimination of
the embedded data classes. Also, each embedding vectors νi consists of both
positive and negative contributions from all training samples which makes their
interpretation difficult.

On the other hand, the K-FDA algorithm tries to obtain an embedding W
which increases the between-class covariance matrix SφB while preserving the

total within-class covariance matrix SφW in RKHS [19]. It uses the following
optimization framework:

max
W

Tr(W>SBW) s.t.W>SWW = I, (3)

where W has a structure analogous to Eq. (1). Regardless of its supervised
performance, the constraint on intra-class variances can become a critical weakness
when there are sub-clusters in each data class. In such cases, the constraint in
Eq. (3) cause considerable overlapping between different classes.

Our proposed framework improves the state-of-the-art in both discriminative
kernel-DR and class-based interpretation of embedding dimensions.



Interpretable Dimensionality Reduction 5

3 Interpretable Discriminative Dimensionality Reduction

We want to obtain the embedding

γ = A>Φ(X)>Φ(x) Γ ∈ Rk (4)

as a projection from the original implicit RKHS to a k-dimensional explicit space
which also preserves the essential characteristics of X in the original space.

Definition 1 The embedding vector Φ(X)ai is class-based interpretable if we

have
H(q|hqi=1,:)ai

‖Hai‖1 ≈ 1, and it acts as the projection of data points on class q.

In other words, Φ(X)ai can be interpreted as a projection to class q if it is
constructed only from that class of data. Although Definition 1 considers an ideal
situation regarding the interpretability of an embedding dimension, we consider
the value of

H(q|hqi = 1, :)ai/‖Hai‖1 (5)

as a measure of class-based interpretation as well. To be more specific regarding
our framework, we aim for the following objectives:

O1: Increasing the class-based interpretation of embedding dimensions.
O2: The embedding should make the classes more separated in the LD space.
O3: The classes should be locally more condensed in the embedded space.
O4: The DR framework should also support the feature selection objective if

a multiple kernel representation is provided.
Therefore, we formulate the following optimization scheme w.r.t. all the above

objectives:
min
A,β
JSim + λJDis + µJIp

s.t.
∑
m=1

d
βm = 1,

∑
j=1

N
aji = 1,∀i

aij , βi ∈ R+, ∀ij.

(6)

In Eq. (6), the cost functions JDis, JIp, and JSim and the constraints on the
optimization variables are designed to fulfill our research objectives O1-O4. In
the following sub-sections, we explain each specific term in our framework in
detail and provide the rationales behind their definitions.

3.1 Interpretability of the Dimensions

In Eq. (4), each dimension ai of the embedding is composed of a weighted
selection of data points in RKHS. In K-PCA, typically all aji,∀j = 1, . . . , N have
non-zero values. More specifically, for each ai, a wide range of training data from
different classes are selected with large weights which weaken the interpretation
of ai regarding the class to which it could be related.

To make each ai more interpretable in our framework, we propose the cost
function JIp that its minimization enforces ai to be constructed using similar
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samples in the RKHS:

JIp(X,A) = 1
2

k∑
i=1

N∑
s,t=1

asiati‖Φ(xs)− Φ(xt)‖22, (7)

where we restrict aij ≥ 0,∀ij. We call JIp as the interpretability term (Ip-term)
which is an unsupervised function and independent from the value of H. The
Ip-term enforces each embedding dimension ai to use samples in Φ(X) that are
located in a local neighborhood of each other in RKHS (Figure 2) by introducing a
penalty term asiati‖Φ(xs)−Φ(xt)‖22 on its entries. Resulting from this term along
with the non-negativity constraint on A, non-zero entries of ai correspond to the
neighboring points such as (s, t) where their pairwise distance ‖Φ(xs)−Φ(xt)‖22 is
small. Furthermore, although Ip-term does not employ the label information, by
assuming a smooth labeling for the data, this regularization term constructs each
ai by contributions from more likely one particular class. Therefore, as a solution
to our first research objective (O1), using Ip-term improves the class-based
interpretation of ai to relate it a sub-group of data points mostly belonging to
one specific class of data (Eq. (5)).

a⃗i
(a) (b)

a⃗i

Fig. 2. Effect of using JIp on the formation of an embedding vector ai as the weighted
combination of selected data points (inside the hatched area) in the RKHS. (a): Without
using JIp, the learned ai cannot be assigned to either of {circle, square} classes. (b):
After employing JIp, the formed ai can almost be interpreted by the circle class.

3.2 Inter-class dissimilarity

Regarding our second objective (O2), we focus on increasing the inter-class
dissimilarities in the LD space which makes the embedded classes more distinct.
To that aim, we define the loss term JDis as

JDis(X,H,A) =

Tr(H
>

HΦ(X)>Φ(X)AA>Φ(X)>Φ(X)),
(8)

where H is the logical complement of H. Throughout simple algebraic operations,
we can show that Eq. (8) is the reformulation of∑

i

∑
j|hj 6=hi

〈A>Φ(X)>Φ(xi),A
>Φ(X)>Φ(xj)〉. (9)
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Hence, minimizing JDis motivates the global separation of the classes in the
embedded space by reducing the similarity between their projected vectors
A>Φ(X)>Φ(x).

3.3 Intra-class similarities

Even though the introduced cost term JDis helps the embedded classes to obtain
more distance from each other, it still does not consider the intra-class similarities
which concerns our third objective (O3). It is important to note that we want
to make the projected vectors γi of each class more similar to each other, while
still preserving the local structure of the class respecting the possible sub-classes.
This characteristic works against the drawback of K-FDA when facing distinct
sub-classes as pointed out by [17].

To address the above concern, we proposed the following cost function

JSim =

N∑
i=1

(H(q|hqi = 1, :)AA>Φ(X)>Φ(xi)− 1)2, (10)

in which q is the class to which xi belongs. Furthermore, based on Eq. (6), we
apply an affine constraint on columns of A as ‖as‖1 = 1,∀s = 1, . . . , N . By
combining Eq. (10) with γi from Eq. (4) we have

JSim =

N∑
i=1

(H(q|hqi = 1, :)Aγi − 1)2, (11)

which applies constraints on columns of A corresponding to large entries of γi.
Specifically, those constraints aim the entries which are related to the data points
which have the same label as xi. For instance, if γsi has a relatively large value,
minimizing JSim optimizes the entries ajs where hj = hi. Besides, the applied
l1-norm sparsity constraint ‖as‖1 = 1 enforces some entries in as to shrink near
to zero. Therefore, it is simple to conclude that these entries would mostly include
ajs where hj 6= hi.

On the other hand, γsi =
∑N
t=1 atsΦ(xt)

>Φ(xi). Hence, Having the l1-norm
of as restricted along with its non-negativity constraint naturally motivates the
optimization process to assign large values to entries ats corresponding to data
points xt with large Φ(xt)

>Φ(xi). In other words, as selects the nearby data
points of xi as its most similar neighbors. Combining this finding with our first
conclusion about the effect of Eq. (10), along with the localization role of JIp,
minimizing JSim helps each data point xi to be encoded in particular by its
nearby embedding vectors as, which are also constructed mostly by the same-class
of samples in the vicinity of xi (O1). Consequently, the data points from each
local sub-class are embedded by similar sets of columns in A and are mapped into
a local neighborhood in the LD space. In other words, This embedding increases
the intra-class similarities for the projected columns in Γ = [γ1, . . . ,γN ].
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3.4 Feature Selection on the Manifold

It is a feasible assumption for any structured and non-structure X to have d
different kernel representations available [2], such that each Km(X,X),∀m =
1, . . . , d, maps the m-th dimension of the original data into an RKHS or is derived
from the m-th descriptor (e.g., for images). Given the above, we can assume

Φ(x) = [φ>1 (x), . . . , φ>d (x)]>, (12)

where each φm : R→ Rfm ,∀m = 1, . . . , d represents an implicit mapping from the
original space to a subspace of the RKHS, such that Km(xt,xs) = φ>m(xt)φm(xs).
Therefore, we can consider a diagonal matrix B ∈ Rd×d which provides scaling
of the RKHS by

Φ̂(x) = BΦ(X) = [
√
β1φ

>
1 (x), · · · ,

√
βdφ

>
d (x)]>, (13)

where β is the vector of combination weights derived from diagonal entries of B.
We can compute the weighted kernel matrix K̂ corresponding to Φ̂(X) as

K̂(xt,xs) =
∑d
m=1 βmKm(xt,xs). (14)

Additionally, we apply a non-negativity constraint on entries of β as βi ≥ 0 to
make the resulted kernel weights interpreted as the relative importance of each
kernel in the weighted representation Φ̂(X) [10]. Consequently, we can obtain a
feature selection profile by sorting entries of β based on their magnitude. For the
ease of reading, in the rest of the paper, we denote K̂(X,X) and Ki(X,X) by K̂
and Ki respectively.

Substituting Φ(X) by Φ̂(X) in the definitions of JDis, JIp, and JSim refor-
mulates them also as a function of B. Therefore, minimizing those terms also
optimizes the value of B regarding their specific purposes. Furthermore, we apply
an l1-norm restriction on the value of B as the affine constraint

∑d
m=1 βm = 1.

This constraint prevents β from becoming a vector of zeros as the trivial solution
and additionally results in a sparse feature selection to reduce the redundancies
between different kernel representations [22]. We can claim that by using Φ̂(X)
in each of the defined terms, the resulted feature selection also complies with
those specific characteristics. In the next section, we discuss the optimization
scheme of Eq. (6).

3.5 Optimization Scheme

The cost function JSim is non-convex which makes the objective function of
Eq. (6) non-convex as well. Hence, we define a variable matrix S and relax Eq. (6)
to the following optimization problem

min
A,β,S,Γ

∑N
i=1(H(q|hqi = 1, :)si − 1)2

+λTr(A>K̂H
>

HK̂A) + µTr(A>K̃A)
+τ‖S−AΓ‖2F + ζ‖Γ−A>K‖2F

s.t.
∑
m=1

d
βm = 1,

∑
j=1

N
aji = 1,∀i

aij , βi ∈ R+, ∀ij,

(15)
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in which K̃ = diag(K̂1)− K̂, and the operator diag(.) creates a diagonal matrix
from its vector argument. The constants λ, µ are the control parameters for the
role of introduced loss terms in the optimization scheme, and the constants τ, ζ
should be large enough to make sure the slack variables S,Γ have appropriate
values. The second and third parts of the objective in Eq. (15) are reformulations
of JDis and JIp, which can be obtained by using the kernel trick and the
Laplacian matrix [26]. We initialize the embedding matrix A using random
entries and adjust its columns to have unit l1-norm. Then, we optimize Γ,S,A,
and β alternatively based on the following steps.

(1) Fix S,A, and β and update Γ as:

Γ∗ = A>K̂. (16)

(2) Fix Γ,A, and β and update S:

si
∗ = arg min

si

si
>(ui

>ui + I)si − 2(ui + γ>i A>)si, (17)

where ui = H(q|hqi = 1, :). This unconstrained quadratic programming has the
closed-form solution

si
∗ = (ui

>ui + I)−1(ui + γ>i A>)>. (18)

(3) Fix Γ,S, and β and update A as:

A∗ = arg min
A

λTr(A>K̂H
>

HK̂A) + µTr(A>K̃A)

+τ‖S−AΓ‖2F + ζ‖Γ−A>K‖2F
s.t. A>1 = 1, aij ∈ R+,∀ij.

(19)

Calling the objective of Eq. (19) JA, it is possible to show that JA consists of
convex parts and its gradient w.r.t. A can be computed as:

∇AJA = ΩA + Ψ, (20)

where (Ω,Ψ) can be obtained by simple algebraic operations. Therefore, we use
the direction method of multipliers (ADMM) [3] by defining the Lagrangian
formulation for Eq. (19):

Lρ(A,A+, ∆, δ)
= JA + ρ

2‖A−A+‖22 + ρ
2‖A

>1− 1‖22
+tr(∆>(A−A+)) + δ>(A>1− 1),

(21)

and following these steps:
A(t+1) = arg min

A
Lρ(A,A+, ∆, δ),

A
(t+1)
+ = max(A(t+1) + 1

ρ∆
(t), 0),

∆(t+1) = ∆(t) + ρ(A(t+1)1− 1),

δ(t+1) = δ(t) + ρ(A(t+1) −A
(t+1)
+ ),

(22)
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In Eq. (22), A+ is an axillary matrix related to the non-negativity constraint,
∆ ∈ RN×N and δ ∈ RN are the Lagrangian multipliers, and ρ ∈ R+ is the penalty
parameter. We update the matrix A(t+1) based on its closed-form solution derived
from having ∇ALρ = 0.

(4) Fix Γ,S and A and update β: By combining Eq. (14) and Eq. (15)
and removing the constant terms, β can be updated by the following quadratic
programming (QP)

β∗ = arg min
β

1
2β
>Qβ + v>β,

s.t. β>1 = 1, βi ∈ R+,∀i.
(23)

In this formulation, ∀ij = 1, . . . , d:

Qij = λTr(A>K̂iH
>

HK̂jA) + ζTr(K̂iA>AK̂j), (24)

and
vi = µTr(A>K̃iA)− 2Tr(Γ>A>K̂i). (25)

The optimization problem of Eq. (23) is an instance of constraint quadratic
programming and can be efficiently solved by QP solvers such as CGAL[9] or
MOSEK [20].

As a result, in each iteration of the main optimization loop, we compute the
closed-form solution of Γ,S and update A,β rapidly using the ADMM and QP
solvers respectively. The precise implementation of our kernel-DR framework is
available on the online repository1

3.6 Time Complexity of the Algorithm

In the training phase, we update A,S,Γ, and β alternatively. For each iteration of
the algorithm, the variables {A,S,Γ,β} are updated with the time complexities
of O(M(k3 + k2N + kN2)), O(N(N3 +N)), O(kN), and O(d2(kc+ kN + k2) +
d(k2 + kN) + d2L) respectively, where M is the number of iterations which takes
for the ADMM algorithm to update A, and O(d2L) is the time complexity of the
QP for updating β. In practice, values of k, c, and d are much smaller than N .
Hence, the computationally expensive part of the algorithm is due to computing
the inverse of (ui

>ui+I)−1 to update each column of S. However, this particular
computation is independent of update rules in the iterations, and we conduct
it only once in the initialization phase of the algorithm, which considerably
accelerates the convergence speed.

4 Experiments

In this section, we implement our proposed I-KDR algorithm on real-world
datasets to analyze its DR and feature selection performance. For all the datasets
we compute the kernels based on the Gaussian kernel function

K(xi,xj) = exp(−‖xi − xj‖22/δ), (26)

1 https://github.com/bab-git/
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Table 1. Selected datasets. {Dim: #dimensions, Cls: #classes, Num: #data samples}.

Dataset Num Dim Cls Dataset Num Dim Cls

Yale 165 1024 15 Gli85 85 22283 2
Sonar 208 60 2 CNS 60 7129 2
Colon 62 2000 2 Dbwork 64 4702 2
20NG 4852 28299 4 XM2VTS50 1180 1024 20

in which δ denotes the average of ‖xi − xj‖2 for all training samples.

4.1 Datasets

We implement our DR algorithm on real-world benchmark datasets including
Yale face recognition2, {Sonar, Dbworld} from the UCI repository3, XM2VTS50
image dataset [18], the text datasets 20newsgroups74, and {Colon, Gli85, Central-
Nervous-System (CNS)} from the feature selection repository5. For the 20news-
groups7 dataset, we choose the large topic comp, and for Colon and Gli35 datasets
we use the first two classes. The characteristics of the datasets are reported in
Table 1

We evaluate the performance of the algorithms based on the average classi-
fication accuracy with 10-fold cross-validation (CV), and we use the 1-nearest
neighbor method (1-NN) to predict the label of test data based on Γ of the
training set. Moreover, the parameters λ and µ are tuned based on conducting
CV on the training sets. The same policy is applied to the selected baseline
algorithms.

4.2 Dimensionality Reduction

In this section, we only evaluate the dimensionality reduction performance of our
I-KDR in a single-kernel scenario, meaning that we use K in Eq. (15) instead of K̂,
and β is not involved in the framework. As baseline kernel-DR methods, we choose
the supervised algorithm K-FDA, LDR [24], SDR [21], KDR [7], and unsupervised
DR algorithms JSE [15], SKPCA [5], and KEDR [1]. The classification results
are reported in Table 2.

We can observe that I-KDR obtains better performance than baselines on
almost all selected datasets. For the Colon dataset, I-KDR obtained 8.26%
higher accuracy than the best approach. We can conclude that our designed
elements of Eq. (6) results in better discriminative projections than other baselines.
Regarding other algorithm, the supervised methods (e.g., LDR and SDR) generally
outperform the unsupervised ones which is due to their advantage of using the
supervised information in the trainings. For Sonar and Dbwork datasets, LDR
almost achieved a performance comparative to I-KDR.

2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html
3 http://archive.ics.uci.edu/ml/datasets.html
4 http://qwone.com/ jason/20Newsgroups/
5 http://featureselection.asu.edu/datasets.php
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Table 2. Classification accuracies (%) on the selected datasets.

Dataset I-KDR LDR SDR KDR K-FDA JSE KEDR SKPCA

Yale 79.43 72.80 71.13 69.50 67.88 66.23 64.61 60.75
Sonar 87.01 86.79 84.59 85.92 83.45 81.11 82.44 71.26
Colon 83.37 75.09 74.03 73.19 72.05 70.81 70.00 68.12
20NG 85.74 80.76 79.62 80.18 78.99 77.82 76.82 72.73
Gli85 76.45 72.15 70.66 69.26 67.50 65.79 66.68 61.38
CNS 72.96 68.77 67.09 65.84 64.61 63.21 63.96 58.93
Dbwork 88.24 87.67 86.28 84.90 83.27 81.74 80.40 77.32
XM2VTS50 95.51 92.67 91.62 92.17 90.88 89.52 88.55 84.86

The best result (bold) is according to a two-valued t-test at a 5% significance level.

In Figure 3, we compare the classification accuracy of the baselines for differ-
ent numbers of selected dimensions. Based on the accuracy curves, I-KDR shows
a distinct performance compared to other methods for the datasets Yale, Colon,
and Gli85. Especially for the high-dimensional datasets Colon and Gli85, our DR
algorithm achieves the peak of its performance for a smaller number of selected
dimensions in comparison. For Sonar and Dbwork, I-KDR algorithm shows a
competitive performance to the best baseline (LDR algorithm). Considering the
classification accuracies for Yale dataset in Figure 3, I-KDR’s curve reaches the
peak accuracy of each baseline while selecting fewer dimensions for the embed-
dings. Regarding the baseline DR algorithms, the supervised methods generally
outperform the unsupervised algorithms in both the accuracy and number of
selected dimension. This finding also complies with the reported information in
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Fig. 3. Classification accuracy (%) of the baselines respect to the number of selected
dimensions for the datasets Yale, Sonar, Colon, 20NG, Dbwork, and Gli85.
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Table 2. Therefore, applying constraints regarding the interpretability of the DR
model in I-KDR does not sacrifice its discriminative performance.

4.3 Interpretation of the Embedding Dimension

To evaluate the effect of JIp in Eq. (6), we use the Ip measure defined as Ip =
1
k

∑k
i=1 (maxq H(q, :)ai)/‖Hai‖1. The Ip value considers the interpretability of

each ai based on the data points from which it is constructed. Assuming there
exists considerable similarities between the class members in RKHS, a highly
interpretable embedding dimension would be formed by contributions taken from
mostly one class of data. In such a case, the value of Ip should grow towards
1. Table 3 reports the value of this measure for those experiments in Table 2
where computing Ip is possible. Based on the results, I-KDR obtained the most
interpretable embeddings among other baselines, K-FDA has the weakest Ip
performance while SKPCA and KDR are jointly the runner up methods in this
Table. Regardless of the interpretation-effective sparsity term of SKPCA, its
unsupervised model allows cross-class contributions to happen in the formation of
the columns of A. From another point of view, for Yale and CNS datasets, I-KDR
has smaller Ip values compared to XM2VTS and 20NG datasets for instance.
This difference happened due to substantial overlapping of the classes in the first
group of datasets.

Additionally, to visualize the interpretation of the embeddings, we project the
embedding dimensions on the label-space by computing D = HA ∈ Rc×k. Each
column of D is a c-dimensional vector that its q-th entry explains how strong is
the relation of this dimension to the class q. Figure 4 visualizes the columns of
D for I-KDR, K-FDA, SKPCA, and KDR according to their implementations
on the Sonar dataset. Each embedding was done for 10 target dimensions. Based
on the results, I-KDR’s embedding dimensions are almost separated into two
distinct groups each of which mostly related to one class in the data. Although
for SKPCA and KDR the vectors almost belong to two separate groups, they
cannot be assigned to any of the classes confidently. For K-FDA, almost none of
the above can be observed.

Table 3. Comparison of the Ip measure between the baselines.

Dataset I-KDR SKPCA KDR SDR K-FDA

Yale 0.80 0.64 0.61 0.58 0.55
Sonar 0.88 0.64 0.66 0.63 0.57
Colon 0.91 0.72 0.69 0.66 0.63
20NG 0.94 0.75 0.77 0.73 0.64
Gli85 0.84 0.69 0.64 0.59 0.57
CNS 0.83 0.66 0.67 0.66 0.63
Dbwork 0.86 0.73 0.77 0.70 0.61
XM2VTS50 0.96 0.82 0.86 0.79 0.60

The best result (bold) is according to a two-valued t-test at a 5% significance level.
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Fig. 4. Projecting the embedding dimensions on the label-space for the Sonar dataset.

4.4 Feature Selection

In order to evaluate the feature selection performance of our I-KDR algorithm, we
compute Eq. (26) for each dimension of the data individually which results in a
set of kernels {Ki}di=1 for each dataset. We feed these kernels to the optimization
framework of Eq. (15) to optimize their corresponding weights in β. Besides the
classification accuracy, we also measure ‖β‖0 to evaluate the feature selection
performance of the algorithms. Accordingly, we choose the following relevant set
of baselines: MKL-TR [12], MKL-DR [16], KNMF-MKL [11], and DMKL [28].
Based on Table 4, by optimizing the value of β in Eq. (6), I-KDR achieves
better discriminations in the embedded space. Consequently, as a general trend
among the datasets, I-KDR’s accuracies are improved after we optimized it in
the multiple kernel framework (Compared to Table 2). Regarding the number of
selected features, I-KDR, MKL-TR, and DMKL obtained similar results. Even
more, for some of the datasets, the baselines obtained sparser feature selections
than I-KDR. Nevertheless, I-KDR demonstrates that its number of selected
features are more efficient than others due to its supremacy in classification
accuracies. Therefore, we can claim that I-KDA performed more efficient than
others in discriminative feature selection scenarios. For CNS and Sonar dataset,
I-KDR obtains competitive accuracy and feature selection performance compared
to MKL-TR and DMKL, while for the Colon dataset, it outperforms the next best
method (MKL-TR) with 7.73% accuracy margin. As an explanation regarding

Table 4. Comparison of classification accuracies (%) and ‖β‖0 (in parenthesis).

Dataset I-KDR DMKL MKL-TR MKL-DR KNMF-MKL

Yale 83.22 (20) 78.25 (39) 79.88 (34) 70.34 (93) 68.43 (543)
Sonar 87.91 (37) 87.53 (34) 87.94 (41) 70.34 (93) 68.43 (543)
Colon 89.29 (25) 80.32 (21) 81.56 (34) 80.67 (67) 78.43 (1321)
20NG 88.41 (73) 85.01 (57) 84.42 (55) 86.24 (384) 83.11 (14483)
Gli85 79.65 (33) 73.13 (54) 74.46 (50) 72.83 (79) 71.78 (10764)
CNS 76.53 (47) 76.37 (32) 75.84 (25) 74.23 (109) 72.43 (4872)
Dbwork 91.98 (29) 87.23 (41) 86.53 (46) 85.14 (85) 85.34 (1049)
XM2VTS50 97.74 (17) 92.76 (31) 93.84 (29) 92.88 (55) 90.89 (389)

The best result (bold) is according to a two-valued t-test at a 5% significance level.
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the relatively high values of ‖β‖0 for KNMF-MKL, this algorithm uses a DR
model, but it does not have a discriminative objective in its optimization.

5 Conclusion

In this paper, we proposed a novel algorithm to perform discriminative dimen-
sionality reduction on the manifold. Our I-KDR method constructs its embedding
dimensions by selecting data points from local neighborhoods in the RKHS. This
strategy results in embeddings with better class-based interpretations for their
bases. Besides, by focusing on within-class local similarities and between-class
dissimilarities, our method improves the separation of the classes in the projected
space. The I-KDR algorithm has a bi-convex optimization problem, and we use
the alternating optimization framework to solve it efficiently. Furthermore, our
approach can fuse the feature selection and dimensionality reduction for RKHS.
Our empirical results show that I-KDR outperforms other relevant baselines in
both DR and feature selection scenarios.
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