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Abstract. This paper introduces the Elliptical Basis Function Data
Descriptor (EBFDD) network, a one-class classification approach to
anomaly detection based on Radial Basis Function (RBF) neural networks.
The EBFDD network uses elliptical basis functions, which allows it to
learn sophisticated decision boundaries while retaining the advantages
of a shallow network. We have proposed a novel cost function, whose
minimisation results in a trained anomaly detector that only requires
examples of the normal class at training time. The paper includes a large
benchmark experiment that evaluates the performance of EBFDD network
and compares it to state of the art one-class classification algorithms
including the One-Class Support Vector Machine and the Isolation Forest.
The experiments show that, overall, the EBFDD network outperforms
the state of the art approaches.

Keywords: Anomaly Detection · Elliptical Basis Function · Neural
Networks.

1 Introduction

Chandola & Kumar [4] define anomaly detection as “the problem of finding
patterns in data that do not conform to expected behavior”. Although anomaly
detection is essentially a binary classification problem (i.e. instances are classified
as either normal or anomalous), in anomaly detection scenarios the classes are
highly imbalanced—there is very limited, or sometimes no access to anomalous
instances during training, although there is usually an abundance of normal
instances. Anomaly detection approaches that do not use anomalous instances
during training can be classified as semi-supervised machine learning approaches,
and are often referred to as one-class classifiers [12]. Anomaly detection ap-
proaches have been used in a variety of applications including credit scoring [11],
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intrusion detection [2], forensics [13], medical applications [14], and computer
network security [27].

The main contribution of this paper is to adapt the Radial Basis Function
(RBF) network [3] for one-class classification through a novel cost function. We
have named the resultant one-class neural network the Elliptical Basis Function
Data Descriptor (EBFDD) network. Coupled with our novel cost function, the
EBFDD network is a semi-supervised one-class classification approach that utilizes
elliptical kernels to learn sophisticated decision boundaries, while retaining the
advantages of a shallow network, which include: easy retraining, interpretability,
reduced data requirements, and shorter training time.

The remainder of the paper is structured as follows: Section 2 reviews related
work, and briefly explains the motivation behind the EBFDD network approach. In
Section 3 the EBFDD network approach is explained in detail. Section 4 describes
the design of an evaluation experiment that compares the performance of the
EBFDD network to state of the art algorithms across a number of benchmark
datasets. Section 5 presents the results of the experiment, which then discusses
their implications. Finally, Section 6 concludes the paper and suggests directions
for future work.

2 Related Work

In this section we first describe some of the common approaches to anomaly
detection. Then we describe the standard RBF network before explaining how it
has been adapted for anomaly detection in the EBFDD network.

2.1 Common Approaches to Anomaly Detection

Semi-supervised machine learning approaches to anomaly detection are dominated
by a family of algorithms that are modifications of the Support Vector Machine
(SVM) algorithm [24], designed to work with only examples of a single class:
One-Class SVM (OCSVM) [23]. In fact Khan & Madden [12] go so far as to
say that one-class classification algorithms and methods should be divided into
OCSVMs and non-OCSVMs.

The idea underpinning OCSVM is quite similar to the standard SVM method,
and the kernel trick is still a key part of the OCSVM for the transformation of the
input space into a feature space of higher dimensionality. The OCSVM approach
finds a hyper-plane that separates all of the normal data points in a training
set from the origin, while maximizing the distance between the origin and this
hyper-plane. This results in a binary function, whose output is 1 for the regions
of the input space belonging to the normal data, and -1 anywhere else. The main
disadvantage of the OCSVM is the assumption that the anomalous data instances
are concentrated around the origin [12]. Variations of the OCSVM approach
include the Support Vector Machine Data Description (SVDD) [26], which uses
hyper-spheres rather than hyper-planes to achieve separation. Interestingly, the
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authors in [22] propose the idea of a deep SVDD, where the SVDD is mixed with
deep learning to accomplish anomaly detection.

On the non-OCSVM side, Auto-Encoder networks (AENs) [7], and all their
variations have been increasingly used for anomaly detection [29–31]. An AEN
does not learn a discriminative model, but rather a generative model of the
input data. After transforming the input data into a representation with re-
duced dimensionality, it learns to reconstruct the original input data from the
dimensionally-reduced representation. The error between the input and the re-
construction of the input, referred to as the reconstruction error, can be used as
an anomaly detection signal—normal instances should be accurately reproduced
leading to low reconstruction error, while anomalous instances should be poorly
reproduced leading to large reconstruction errors. The AEN is trained on normal
data only and learns features that could best reconstruct the normal data.

Isolation Forest (iForest) [28] is another interesting non-OCSVM approach
to anomaly detection. The iForest tries to isolate individual data points in the
training set by splitting the space randomly and repeatedly. The intuition behind
this approach is that less splits should be required to isolate anomalous instances.
An anomaly score can be calculated based on the number of splits required to
isolate a data point.

Gaussian Mixture Models (GMMs) [1] are also used for anomaly detection.
GMMs assume that normal data is generated by a collection of H Gaussians,
which are placed randomly in the input space in the beginning of training. Then
using the Expectation Maximization (EM) [1], the means and covariance matrices
of the Gaussians are learned such that the likelihood of observing the training
data is maximised. During testing, one can measure the likelihood of the test
data, and if it is below a certain threshold it could be labeled as anomalous, and
normal otherwise.

2.2 Radial Basis Function Networks

A Radial Basis Function (RBF) network [3] is a local-representation learning
technique, which divides the input space among local kernels. For every input
data point, depending on where in the input space it appears, a fraction of
these locally-tuned kernel units get activated. It is as if these local units have
divided the input space among themselves and each one takes responsibility
for a subspace. The idea of locality, inherently implies the need for a distance
function that measures the similarity between a given input data instance X, with
dimensionality D, and the center, µh, of every kernel unit h. The common choice
for this measure is the Euclidean distance, ‖X − µh‖ . The response function
for these local units, should have a maximum when X = µh, and decrease as X
and µh get less similar. The most commonly used response function for the RBF
units is the Gaussian function. Not only have the RBF networks been used for
traditional classification [18] and regression [25] problems, they have also been
applied to anomaly detection tasks, which we will explore below.

RBF networks have been applied to anomaly detection in two main ways. First,
if examples of both normal and anomalous data are available during training,
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the standard binary/multi-class classification RBF networks can be used with
modifications. For example, in [19], a hybrid optimisation algorithm based on RBF
networks, which combines gradient descent with quantum-behaved particle swarm
optimisation is used to train the RBF network for anomaly detection. Similarly,
in [21], an RBF network is trained for the task of intrusion detection. The model
keeps adding hidden units to the architecture until a certain performance goal is
met.

In the second approach to using RBF networks for anomaly detection, only
examples of the normal class are used at training time. This can be achieved
by modifying the dataset or modifying the algorithm. As an example of the
first type, in [20] an augmented training set is composed using the instances
belonging to the normal class as random proxy anomalous patterns and used
to train an anomaly detection model for time series data. As an example of the
second type, in [17], the RBF network algorithm is combined with the Support
Vector Data Descriptor (SVDD) [26] algorithm, resulting in a hybrid model. The
hidden layer of the RBF network is used as a feature extractor and the outputs
for the subsequent transformed feature space are then used as inputs to the
SVDD algorithm with a linear kernel.

The EBFDD network approach modifies the cost function used to train an
RBF network to ensure that it learns a compact set of Gaussian kernels that
concentrate around the normal region of the input space, covering all of it, while
excluding other regions. During testing, for a given input data, X, the output of
the model would be high, if X belongs to the normal region, and low, otherwise.

3 The Elliptical Basis Function Data Descriptor
(EBFDD) Network

The EBFDD network is a semi-supervised one-class classifier, which is based on
the Radial Basis Function (RBF) network [3]. Fig. 1 illustrates the architecture
of the EBFDD network. This is a shallow network containing one hidden layer
and one output layer with a single node. There are H hidden nodes in the hidden
layer, each of which uses a Gaussian activation function. The activation, ph(X),
of the hth Gaussian node is defined as:

ph(X) = exp

[
−1

2
(X − µh)

T
Σh

−1 (X − µh)

]
(1)

where X is the input vector of length D; xd is the value of the dth dimension of
X; and the parameters µh and Σh are the mean vector (which is D-dimensional)
and the covariance matrix (which is a D ×D matrix) of the hth Gaussian kernel.

The outputs of the nodes in the hidden layer are connected to a single output
node via a weight vector W , where wh is the weight parameter connecting the
hth hidden node to the output node. In the output node the modified hyperbolic
tangent, tanh, activation function proposed in [15] is used as it avoids saturation:

y = 1.7159× tanh
(

2z(X)

3

)
(2)
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Fig. 1: The Architecture of the EBFDD network.

where z(X) is the weighted sum of the outputs of the hidden layer, when X is
the input vector:

z(X) =

H∑
h=1

wh × ph (X) (3)

The intuition behind the EBFDD network is that, it can be trained to learn a
compact set of elliptical kernels that gather around the region in the input space
where the normal data resides. This means that a trained model will output a
high value for any normal query data point that falls within this region, and
a low value for any anomalous query data point that falls outside this region.
Thresholding this value will allow accurate anomaly detection.

EBFDD training begins with a pre-training phase that provides an initial
set of positions for the H Gaussian kernels at the hidden layer. This phase uses
the k-means [1] clustering algorithm, using Euclidean distance, applied to the
training dataset. The resulting cluster centres are used to initialise the Gaussian
kernel centres, µh, and covariance matrices, Σh, for each of the H hidden nodes.
Initially these kernels are radial and assume equal variance in all directions. The
number of hidden nodes in the network, H, (which is also the number of clusters
found by k-means) is a hyper-parameter set before training starts.

The parameter values in the network (µh, Σh, and wh) for each node in the
network are then optimised using mini-batch gradient descent [1] (mini-batch
sizes are always set to 32) and the back-propagation of error algorithm [1]. The
cost function to be minimised in this process is:

E =
1

2

[
(1− y)

2
+ βRΣ + λRW

]
(4)
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where y is the output of the network; RΣ and RW are regularisation terms defined
below in Eq.(5) and Eq.(6); and β and λ are hyper-parameters that control the
influence of the regularisation terms.

This cost function is a weighted sum of three main terms that ensure the
network learns a compact set of Gaussians that cover just the normal training
data. The first term in this summation, (1− y)2 encourages the network training
process to learn a model that outputs a value as close as possible to 1 for instances
belonging to the normal class.

The second term in the cost function, R(Σ), regularises the variances of the
Gaussian kernels in the hidden layer of the network. This term introduces the
optimisation criterion of having the most compact set of Gaussians possible to
represent the normal data. As the size of a Gaussian ellipsoid is dictated by
the diagonal elements (i.e., the variances) of its covariance matrix, off-diagonal
elements are excluded from the regularisation. RΣ is defined as:

RΣ =

H∑
h=1

D∑
d=1

(
Σh [d, d]

)2
(5)

which is the squared L-2 norm [7] of the variances (i.e., the diagonal elements in
each of the H Gaussian covariance matrices). Here, D denotes the dimension-
ality of the input space and Σh [d, d] refers to the dth diagonal element of the
convariance matrix for the hth hidden node.

The third term in the cost function, RW , is the squared L-2 norm of the
weight vector, W , connecting the hidden layer nodes to the output node. This
discourages the weights from becoming so large that they would actually ignore
the outputs from the hidden nodes. It also makes the EBFDD network robust to
outliers in the training set [7]. RW is defined as:

RW =

H∑
h=1

w2
h (6)

where wh is the weight connecting the hth hidden node to the output node.
We argue that a gradient descent training process based on the minimisation

of the cost function in Eq.(4) will find a compact set of Gaussians, whose collective
output is still high for the normal region of the input space and low, anywhere
else (i.e., where we believe the anomalies would appear).

Based on the application of the back-propagation of error algorithm using
gradient descent, the following update rules for learning the parameters of the
EBFDD network have been derived in Eq.(7), Eq. (8) and Eq.(9) (the update
rules are described for a single training instance for ease of reading, but are
easily expandable to a mini-batch scenario by summing across the instances in
the mini-batch). Below, we have derived the learning rules for all 3 learnable
parameters of the EBFDD network. The general structure of these learning rules
is a = a− η× ∂E

∂a , where a is the learnable parameter, and E is the cost function
defined in Eq.(4). Each of the weights, wh, connecting a hidden unit to the output
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unit is updated using:

wh = wh − η ×
∂E

∂wh

= wh − η

[
∂ 1

2 (1− y)2

∂wh
+
∂ 1

2λRW

∂wh

]

= wh − η

[
∂ 1

2 (1− y)2

∂y
× ∂y

∂zh(X)
× ∂zh(X)

∂wh
+
∂ 1

2λRW

∂wh

]

= wh − η[(y − 1)× [1.1439(1− tanh(
2zh(X)

3
)2)]× ph(X) + λwh] (7)

where η is the learning rate, and zh(X) is defined as in Eq.3 (although we omit
the summation because only the hth hidden unit is relevant). All other terms are
defined as before. Each of the kernel centres, µh, is updated using:

µh = µh − η ×
∂E

∂µh

= µh − η

[
∂ 1

2 (1− y)2

∂µh

]

= µh − η

[
∂ 1

2 (1− y)2

∂y
× ∂y

∂zh(X)
× ∂zh(X)

∂ph(X)
× ∂ph(X)

∂µh

]

= µh − η[(y − 1)× [1.1439(1− tanh(
2zh(X)

3
)2)]× wh (8)

× [ph(X)Σ−1
h (X − µh)]]

And for the covariance matrix of the hth Gaussian, Σh, the learning rule is:

Σh = Σh − η ×
∂E

∂Σh

= Σh − η ×

[
∂ 1

2 (1− y)2

∂Σh
+
∂ 1

2βRΣ

∂Σh

]

= Σh − η ×

[
∂ 1

2 (1− y)2

∂y
× ∂y

∂zh(X)
× ∂zh(X)

∂ph(X)
× ∂ph(X)

∂Σh
+
∂ 1

2βRΣ

∂Σh

]

= Σh − η × [(y − 1)× [1.1439(1− tanh(
2zh(X)

3
)2)]× wh (9)

× [ph(X)(−Σ−T
h (X − µh)(X − µh)TΣ−T

h )] + βDiag(Σh)]

where the function Diag() diagonalises the covariance matrix Σh by turning all
non-diagonal elements to 0.

When Eq. 9 is applied, the resulting covariance matrix my not be invertible.
This is a problem, as the inverse of the covariance matrices are used in both
forward and backward propagation in the network. In such cases, we replace the
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(a) Training Data (b) Converged K-means

(c) Converged EBFDD (d) Decision Boundary

Fig. 2: Considering images of digits 0 and 1 from the MNIST dataset as class
normal instances for training and using the first two principal components,
starting from left to right, we have the visualizations of the transformed training
data after applying PCA in red circles, the Gaussians after K-means pre-training,
trained EBFDD network, and the decision surface of the trained EBFDD network.

covariance matrix generated with its closest positive semi-definite matrix found
using the method proposed by Higham [8].

As explained earlier, the output of the EBFDD network, y, needs to be thresh-
olded for the anomaly detection to take place. Any of the common thresholding
schemes used with other anomaly detection algorithms [4] can be used with
EBFDD networks. The thresholding method is not the focus of this paper as we
have used the Area Under the Curve (AUC) of the ROC curve as the metric of
evaluation. This gives us a good estimate of the performance of the algorithms
assuming that we have a method of choosing the best threshold on the outputs
for each one of the algorithms used in our experiments.

To illustrate the behaviour of an EBFDD network we present a simple example
based on the MNIST dataset of handwritten digits [16], and we have used 10
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Gaussians in this illustration. We have also used images of digits 0 and 1 as
the normal class. So that the behaviour of the network can be visualised, the
dimensionality of the input data is reduced to 2 using Principal Component
Analysis (PCA) [1]. Fig. 2a shows the training dataset of normal instances (images
of digits 0 and 1). Fig. 2b shows the output of the k-means algorithm after the
pre-training phase, which provides the EBFDD network with an initial set of well
positioned Gaussian kernels. Fig. 2c shows the compact set of kernels covering
the normal region after the EBFDD network is trained. Finally, Fig. 2d shows
the decision surface that has been learned, where brighter colors correspond to
higher outputs by the EBFDD network.

4 Experimental Method

This section describes the design of an experiment conducted to measure the
performance of the EBFDD network and compare it with a number of state of
the art anomaly detection approaches. In these experiments, we have trained
EBFDD networks with 2 kernel options: 1) Elliptical Gaussian kernels and 2)
Radial Gaussian Kernels. In the case of the latter, we are hoping that a less
computationally expensive kernel, the radial kernel, would bring us an advantage.
The state of the art algorithms in our experiments are the One-Class SVM
(OCSVM) models [23], Auto-Encoders (AEN) [7], Gaussian Mixture Models
(GMM) [1], and the Isolation Forests (iForest) [28]). These algorithms have
performed anomaly detection tasks on a selection of datasets using only normal
examples during training. The remainder of this section describes the datasets
and performance metrics used in the experiments.

4.1 Benchmark Datasets and Anomaly Detection Scenarios

Following Emmott, et al [5] we use fully labelled classification datasets to simulate
anomaly detection scenarios so that performance metrics can be calculated. For
each dataset used, where possible, we have considered different anomaly detection
scenarios, where we consider different normal and anomalous classes to add more
variety into our experiments.

We have chosen a random subset of the datasets used in [5] for our exper-
iments1. All of these datasets come from the UCI repository 2. From these
datasets a number of different anomaly detection scenarios can be generated.
These scenarios can be divided into two main groups:

– Binary Classification Datasets: In this case, the instances in each dataset
belong to either of 2 classes. The normal class is selected based on the
recommendations in [5], and only examples from this class are used for
training.

1 Since every dataset leads to multiple experiments (One vs All/ All vs One/ difficult
scenarios in [5]) we chose a subset of the datasets available to reduce the computation
required to run the complete set of experiments.

2 https://archive.ics.uci.edu/ml/datasets.html
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– Multi-Class Classification Datasets: In this case, we have followed 3 ap-
proaches. First, is the one-vs-all approach where we select instances in a
particular class as normal and treat all other classes as anomalous. Only
normal instances are used during training. This is interesting, because it
explores scenarios where anomalous instances might come from a variety of
different distributions, but a compact distribution defines the normal class.
So, if a dataset has K classes, we define K one-vs-all experiments. The
second approach is the all-vs-one approach, where we choose instances of one
class as anomalous and the instances of the other classes as normal. Only
normal instances are used during training. This method explores scenarios
where we might have a variety of definitions of the normal data coming from
different distributions but a well-defined compact distribution generating
the anomalous instances. Similarly, if a dataset has K classes, we define
K all-vs-one experiments. The last type are more difficult scenarios recom-
mended by Emmott, et al, [5] where an analysis is performed to find the
most challenging partition of classes, in terms of separability, into normal
and anomalous groups for the datasets they use in their experiments. We use
these partitions to define the third set of scenarios in our experiments.

Table 1 summarises the datasets that have been used in our experiments. The
number of rows, classes, and features in each one, as well as the number of
anomaly detection scenarios extracted are shown. For all datasets feature values
have been normalised to [0, 1] using range normalisation.

Table 1: The datasets used in our experiments
Number Number Number Number of

of of of Generated
Dataset Name Rows Classes Features Scenarios

Magic Gamma Telesacope 19021 2 10 1
Spambase 4602 2 57 1
Skin Segmentation 245058 2 3 1
Steel Plates Faults 1941 7 27 15
Image Segmentation 2311 7 18 15
Page Blocks Classification 5473 5 10 11
Statlog (Landsat Satellite) 6436 6 36 13
Waveform Database Generator (Version 1) 5000 3 21 7

4.2 Experimental Method & Performance Metrics

For each algorithm, dataset and scenario combination we use an experimental
design that is similar to bootstrapping [10]. We extract an 80% sample (with
no replacement) from the whole normal portion of a dataset to use to train
a model. The remaining 20% is then mixed with all the anomalous data to
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Table 2: Hyper-parameter ranges for each algorithm
Algorithms Hyper-parameters Investigated Hyper-Parameters

EBFDD

number of kernels (H) [1, 5, 10, ..., D]
η [0.01, 0.001, 0.0001]
β [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]
λ [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

RBFDD

number of kernels (H) [1, 5, 10, ..., D]
η [0.01, 0.001, 0.0001]
β [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]
λ [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

OCSVM
ν [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]
γ [0.9, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001]

AEN

number of hidden units (H) [1, 5, 10, ..., D]
η [0.01, 0.001, 0.0001]
hidden layer activation functions [sigmoid, relu]
output layer activation functions [sigmoid, relu, linear]
error functions [mean squared error, cross entropy]

GMM number of kernels (H) [1, 5, 10, ..., D]

Isolation Forest number of estimators [100, 200, 500, 800, 1000]

constitute the test set. This is repeated 10 times and average performance results
are reported. For every algorithm a grid search is performed to find the best set of
hyper-parameters and the results of the best performing set of hyper-parameters
are reported. All of our code and scripts used in our experiments are available
on GitHub3.

The tunable hyper-parameters used to generate these results, for each al-
gorithm across all the datasets and scenarios, are presented in Table 2. It is
important to mention that the values for H in the hyper-parameter grid search
are determined by the dimensionality of each dataset, and in our experiments
they do not exceed the dimensionality of the input. The range tested for H starts
with 1 and then increases in steps of 5 all the way up to the dimensionality of
the data, D. In the case of the Page Blocks Classification, and Magic Gamma
Telescope datasets we reduce the step size to 2, and for the Skin Segmentation
dataset the step size of 1, as the dimensionality of these datasets is rather low.
As a result, the EBFDD/RBFDD, and AEN always tend to compress the input
data in their hidden representation and similarly, the number of Gaussians in the
GMM is also bounded by the dimensionality of the input, D. However, in the
case of the Isolation Forest, we have chosen the same number of estimators across
all the datasets. In the case of OCSVM, ν is the upper bound on the fraction of
training errors and a lower bound of the fraction of support vectors, and γ is the
kernel coefficient.

The area under the ROC curve [9] has been chosen as the evaluation metric in
these experiments. This allows us to avoid defining a specific thresholding function

3 https://github.com/MLDawn/EBFDD
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(a) All Scenarios (b) One vs All (c) All vs One

Fig. 3: The average rank of the algorithms across the experiments. On each box
plot the median ranks are shown via the horizontal orange lines and the mean
ranks are shown using green triangles.

2 3 4 5

EBFDD

RBFDD

GMM

AEN

iForest

OCSVM

(a) All Scenarios (b) One vs All (c) All vs One

Fig. 4: Friedman’s aligned test results where the statistical significance is α = 0.05

to use with each model, but still measures the ability of a model to distinguish
between normal and anomalous classes. The ROC curves are generated from the
raw output of each model type.

5 Results & Discussion

The performances of each algorithm on each anomaly detection scenario for
each dataset were compared and ranked. The distribution of the ranks for each
algorithm for all anomaly detection scenarios are shown in Fig. 3a, and the
average rank scores are summarised in Table 34. The average ranks in Table 3
show that the EBFDD network has the lowest average rank over all experiments.

4 The full tables of results are provided in the supplementary material
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It is also clear from Fig. 3a that the ranks of EBFDD have low variance indicating
its consistent strong performance.

Table 3: Average Rank Across All Experiments
EBFDD RBFDD AEN GMM iForest OCSVM

Average Rank 2.59 2.85 3.20 3.20 4.26 4.80

Fig. 3 also shows the distribution of ranks of the different approaches on the
one-vs-all and all-vs-one scenarios (distributions for the other scenarios are not
included as there are too few results to generate meaningful distributions). While
the overall pattern is largely the same for these subsets as for the overall results,
it is worth noting that there is a marked difference in the performance of the
AEN models on the one-vs-all scenarios—performance is relatively poor—and on
the all-vs-one scenarios—performance is quite good.

A Friedman test [6] with a significance level of α = 0.05 was performed on the
rank data. This showed a statistically significant difference in the performance
of the different algorithms and so, following the recommendations of [6], a
post-hoc Friedman aligned rank test, with α = 0.05, was performed to further
investigate the pairwise differences between the performance of the algorithms.
Fig. 4 summarises the results of these tests (tests were performed for all scenarios
and independently for the one-vs-all and all-vs-one scenarios)5.

In all cases the performance of a group of the best performing algorithms
cannot be separated in a statistically significant way. This group includes EBFDD,
RBFDD, GMM, and (except for the one-vs-all scenario subset) AEN. The poorer
performances of the OCSVM and iForest approaches are statistically significantly
different to the performance of the other approaches. The poor performance of
OCSVM is somewhat surprising, however, it is in line with previous benchmarks,
for example [5].

Both the EBFDD and RBFDD algorithms accomplish their training through
minimizing our proposed cost function in Eq.(4). We believe that the EBFDD out-
performs RBFDD because of the more flexible nature of the decision boundaries
that it is able to learn because of the use of elliptical kernels.

It is worth noting, however, that the cost of the good performance of the
EBFDD algorithm is the very large number of parameters that must be learned in
this model. For an EBFDD network, as the full covariance matrices are learnable,
the number of trainable parameters is quite high:

(H ×D) +

(
H × D(D + 1)

2

)
+H (10)

where H is the number of hidden nodes, and D is the dimensionality of the input.
Moreover, if we consider radial kernels for the EBFDD networks, i.e. an RBFDD

5 The Win/Loss/Draw tables for the Friedman aligned rank test for α=0.1, 0.05, and
0.01 are provided in the supplementary material
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network, the number of trainable parameters is reduced to:

(H ×D) + (H ×D) +H (11)

This means that training EBFDD networks can take longer than training equiva-
lently sized RBFDD networks.

There is a minor difference in the number of trainable parameters in a GMM
compared to an EBFDD network. As the weights used to combine distributions
in a GMM sum to 1, for H Gaussians only (H − 1) weights need to be learned as
the last weight can be computed by subtracting the sum of those weights from 1.
As a result, the number of trainable parameters in a GMM is equal to:

(H ×D) +

(
H × D(D + 1)

2

)
+ (H − 1) (12)

In addition the number of trainable parameters for the AEN is:

(H ×D) +H (13)

It is not possible to talk about the number of trainable parameters for the
iForest and OCSVM models in a meaningful way and so these are not compared.
Moreover, as the implementations of algorithms used in these experiments come
from different packages with differing levels of optimisation we do not believe
that detailed comparisons of training times are appropriate.

As observed in Table 3, the empirical results show that the added complexity
of the EBFDD network has made it a stronger anomaly detector compared
to its simpler version that is the RBFDD network. In addition, even though
the EBFDD network and GMM have almost the same number of trainable
parameters, it seems that the optimisation of the proposed cost function in the
EBFDD network, which utilises gradient descent, allows it to find better solutions
than the expectation maximisation approach used in a GMM.

6 Conclusions and Future Work

This paper presents a novel cost function, whose minimisation can adapt the
Radial Basis Function (RBF) network into a one-class classifier. We have named
the resultant anomaly detector the Elliptical Basis Function Data Descriptor
(EBFDD) network. EBFDD utilises elliptical kernels that can elongate and rotate
to allow it to learn sophisticated decision surfaces. An evaluation experiment
conducted using a large set of datasets compared the EBFDD network with state
of the art anomaly detection algorithms. Although statistical significance is not
shown in all cases, the empirical results show that the EBFDD network has a
better overall performance across all the experiments.

In future work, we plan to add recurrent connections to the EBFDD network
architecture to allow contextual anomalies within streams to be identified, as
well as the point anomalies identified by the current architecture. Moreover,
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we would like to investigate the idea of building a deep architecture where
the EBFDD network and a deep network would be trained in an end to end
fashion, the motivation being that the backpropagation signal for training the
EBFDD network might push the deep network into learning better features
for the Gaussian kernels of the EBFDD network to work with. An alternative
would be to train the deep architecture separately and use the extracted features
to train the EBFDD network, and this will also be explored. Finally, we will
investigate how EBFDD can be adapted to handle concept drift scenarios in
which the characteristics of what constitutes normal change over time.
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