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Abstract. In statistics and machine learning, approximation of an in-
tractable integration is often achieved by using the unbiased Monte Carlo
estimator, but the variances of the estimation are generally high in many
applications. Control variates approaches are well-known to reduce the
variance of the estimation. These control variates are typically constructed
by employing predefined parametric functions or polynomials, determined
by using those samples drawn from the relevant distributions. Instead, we
propose to construct those control variates by learning neural networks
to handle the cases when test functions are complex. In many applica-
tions, obtaining a large number of samples for Monte Carlo estimation is
expensive, the adoption of the original loss function may result in severe
overfitting when training a neural network. This issue was not reported in
those literature on control variates with neural networks. We thus further
introduce a constrained control variates with neural networks to alleviate
the overfitting issue. We apply the proposed control variates to both toy
and real data problems, including a synthetic data problem, Bayesian
model evidence evaluation and Bayesian neural networks. Experimental
results demonstrate that our method can achieve significant variance
reduction compared to other methods.

Keywords: Control variates · Neural networks · Variance reduction ·
Monte Carlo method.

1 Introduction

Most of modern machine learning and statistical approaches focus on modelling
complex data, where manipulating high-dimensional and multi-modal probability
distributions is of great importance for model inference and learning. Under this
circumstance, evaluating the expectation of certain function f(θ) with respect to
a probability distribution p(θ) is ubiquitous,

µ = Eθ∼p(θ)[f(θ)] =
∫
f(θ)p(θ)dθ, (1)
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where the random variable of interest θ ∈ RD is typically high-dimensional.
However, in complex models, the integration is often analytically intractable.

This drives the development of sophisticated Monte Carlo methods to facilitate
efficient computation [15]. The Monte Carlo method is naturally employed to
approximate the expectation, i.e.,

µ ≈ 1

n

n∑
i=1

f(θi), (2)

where {θi}ni=1 are samples drawn from the distribution p(θ). According to the
central limit theorem, this estimator converges to µ at the rate O(1/

√
n). For

high-dimensional and complex models, when p(θ) is difficult to sample from [11]
or the test function f is expensive to evaluate [5], a “large-n” estimation is
computationally prohibited. This directly leads to a high-variance estimator.
Therefore, with a limited number of samples, how to reduce the variance of
Monte Carlo estimations emerges as an essential issue for its practical use.

Along this line, various variance reduction methods have been introduced
in the literature of statistics and numerical analysis. One category aims to
develop appropriate samplers for variance reduction, including importance sam-
pling and its variants [2], stratified sampling techniques [16], multi-level Monte
Carlo [4] and other sophisticated methods based on Markov chain Monte Carlo
(MCMC) [15]. Another category of variance reduction methods is called control
variates [1,10,14,13,8,18]. These methods take advantage of random variables
with known expectation values, which are negatively correlated with the test
function under consideration. Control variates techniques can fully employ the
available samples to reduce the variance, which is popular due to its efficiency
and effectiveness.

However, existing control variates approaches have several limitations. Firstly,
most existing methods use a linear or quadratic form to represent the control
function [10,14]. Although these control functions have closed forms, the rep-
resentation power of them is very limited particularly when the test function
f(θ) is complex and non-linear. Control functionals were proposed recently to
tackle this problem [13]. However, these estimators may significantly suffer from
a curse of dimensionality [12]. Secondly, when the available samples are scarce,
optimizing the control variates only based on a small, number of samples might
overfit, which means that it is difficult to generalize on the samples obtained
later. These restrictions limit their practical performance.

In order to overcome the first issue, some works [8,?] employed neural networks
to represent the control variates, utilizing the capability of a neural network to
represent a complex test function. We name these methods as “Neural Control
Variates” (NCV). Unfortunately, in the scenario of learning neural networks,
applying the commonly used loss function to reduce variance causes severe over-
fitting issue, particularly when available training sample size is small. Therefore,
we introduce “Constrained Neural Control Variates” (CNCV) which makes con-
straints on the control variates for alleviating the over-fitting issue. Our method
is particularly suitable for the cases when the sample space is high-dimensional
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or the samples from p(θ) is hard to obtain. We demonstrate the effectiveness of
our approach on both synthetic and real machine learning tasks, including 1)
expectation of a complex function under the mixture of Gaussian distributions, 2)
Bayesian model evidence evaluation and 3) Bayesian neural networks. We show
that CNCV achieved the best performance comparing to the state-of-the-art
methods in literature.

2 Control Variates

The generic control variates aims to estimate the expectation µ = Ep(θ)[f(θ)] with
reduced variance. The principle behind the control variates relies on constructing
an auxiliary function f̃(θ) = f(θ) + g(θ) such that

Ep(θ)[g(θ)] = 0. (3)

Thus the desired expectation can be replaced by that of the auxiliary function

µ = Ep(θ)[f(θ)] = Ep(θ)[f̃(θ)]. (4)

It is possible to obtain a variance-reduced Monte Carlo estimator by selecting
or optimizing g(θ) so that the variance Vp(θ)[f̃(θ)] < Vp(θ)[f(θ)]. Intuitively,
variance reduction can be achieved when g(θ) is negatively correlated with f(θ)
under p(θ), since much of the randomness “cancels out” in the auxiliary function
f̃(θ).

The selection of an appropriate form of control function g(θ) is crucial for the
performance of variance reduction. A tractable class of so called zero-variance
control variates was proposed in [1,10]. Those control variates are expressed as
a function of the gradient of the log-density, ∇θ log p(θ), i.e. the score function
s(θ). Concretely, it has the following form

g(θ) = ∆θQ(θ) +∇θQ(θ) · ∇θ log(p(θ)), (5)

where the gradient operator ∇θ = [∂/∂θ1, . . . , ∂/∂θD]
T , the Laplace operator

∆θ =
∑D
i=1 ∂

2/∂θ2i , and “·” denotes the inner product. The function Q(θ) is
often referred to as the trial function. The target is now to find a trial function so
that g(θ) and f(θ) are negatively correlated. This could thus reduce the variance
of the Monte Carlo estimation. As the trial function could be arbitrary under
those mild conditions given in [10], a parametric function could be used for Q(θ).
For example, when Q(θ) = aTθ, which is a first degree polynomial function, the
auxiliary function becomes

f̃(θ) = f(θ) + aTs(θ) (6)

as was proposed in [10]. The optimal choice of the parameter a that minimizes
the variance of f̃(θ) is a = −Σ−1ss σ(s, f), where Σss = E[ssT ], σ(s, f) = E[sf ].
Obviously, the representation power of these polynomials is limited, and therefore
control functionals have been proposed recently where the trial function is
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stochastic. For example, the trial function could be a kernel function [13]. In
order for using these control variates, we firstly estimate these required parameters
in the trial function by using some training samples {θi}ni=1. Then the learned
control variates can be used for test samples.

However, there are several drawbacks of the current zero-variance techniques:

– Dilemma between effectiveness and efficiency. Although increasing the order
of polynomial could potentially increase the representation power and reduce
more variance, the number the parameters needs to be learned would grow
exponentially. As pointed out by [10], when quadratic polynomials are used,
Q(θ) = aTθ+θTBx/2, the number of parameters will be D(D+3)/2. Thus,
finding the optimal coefficients requires dealing with Σss which is a matrix
of dimension of order D2. Similar issue occurs when employing the control
functionals. This makes the use of high order polynomials computationally
expensive when faced with high-dimensional sampling spaces.

– Poor generalization with small sample size. With small sizes of training
samples and complex p(θ), the learned control variates could potentially
overfit the training samples, i.e. generalize poorly over new samples. This is
because a small size of training samples might be insufficient for representing
the full distributional information of p(θ).

These limitations motivate the development of neural control variates and a
novel loss function to alleviate overfitting issue when learning the neural control
variates, which will be elaborated below.

3 Neural Control Variates

Firstly, we focus on alleviating the dilemma between effectiveness and efficiency on
designing control variates in high-dimensional sample space. To this end, the trail
function is designed as a neural network [8,18], we name this strategy as neural
control variates (NCV). Equipped with neural network, their excellent capability
of representing complex functions and overcoming the curse of dimensionality
can be fully employed in high-dimensional scenarios [6].

Instead of relying on the control variates (5) introduced in [10], we use the
following Stein control variates based on Stein identity [17,13],

g(θ) = ∇θ · Φ(θ) + Φ(θ) · ∇θ log(p(θ)), (7)

where Φ(θ) is the trial function. Note that in order for E[g(θ)] = 0, we assume
mild zero boundary conditions on Φ, such that p(θ)Φ(θ) = 0 at the boundary or
lim‖x‖→∞ p(θ)Φ(θ) = 0 [10,9,13]. Compared with Eq (5), Stein control variates
is preferred due to its computational advantages since evaluating the second order
derivatives of the trial function is avoided. Note that when the trial function
Q(θ) is a linear or quadratic polynomial, the Stein trial function Φ(θ) is constant
or linear, respectively.

We now represent the trial function Φ(θ) by a neural network Φ(θ;w)
parameterized by the weights w. The control function becomes g(θ;w) =
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∇θ ·Φ(θ;w) +Φ(θ;w) · ∇θ log p(θ). In order for variance reduction, we solve the
following optimization problem

min
w

Vp(θ)[f(θ) + g(θ;w)], (8)

which does not have a closed-form in general. Typically, it is assumed that the
variance could be approximated by using independent Monte Carlo samples and
so the optimization problem is given by

min
w

1

n

n∑
i=1

[f(θi) + g(θi;w)]2 − (µ0 + µg)
2, (9)

where µ0 = E(f(θ)) and µg = E(g(θ;w)) = 0. Instead, the following optimization
problem will be solved

min
w

1

n

n∑
i=1

[f(θi) + g(θi;w)]2 (10)

where {θi}ni=1 are samples drawn from p(θ). Standard back-propagation tech-
niques and stochastic gradient descent (SGD) can then be adopted to obtain the
optimal weights of the neural networks.

Unfortunately, when the distribution p(θ) is high-dimensional and multi-
modal, such as Bayesian neural networks, it would be very expensive to draw
many samples for training control variates. Given a limited computational budget,
it typically produces a rather small number of samples that are not sufficient for
learning the control variates. Consequently, the learned parameters for control
variates can easily overfit over the training samples, and thus could not generalize
well on new samples drawn from p(θ). This overfitting phenomenon was not
noticed in [8,18], since the considered applications in their scenarios only involve
either a simple probability distribution p(θ) or simple target function f(θ).

Therefore, in the following, we propose a new objective function for learning
the neural control variates to alleviate the overfitting; and demonstrate its benefits
in various applications.

4 Constrained Neural Control Variates

In this section, we propose constrained neural control variates (CNCV) for
alleviating overfitting. Now we take a closer look at why the original objective
function of NCV tends to bring a poor control variates if one optimizes the Eq.(10)
in the scenario that only a small number of samples from p(θ) are available.

Firstly we note that the objective functions in Eq. (9) and Eq. (10) are not
the same although µ0 is a constant, because the variance must be non-negative.
For example, if we have a small number of samples, the learned neural network
for g could overfit the data so that the objective function in Eq. (10) could hit
the global minimum 0 due to the powerful capacity in approximation of the
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neural networks. Therefore, we have to optimize Eq. (10) with a constraint such
that 1

n

∑n
i=1[f(θi) + g(θi;w)]2 ≥ µ2

0. With this constraint, the solution would
be g(θi;w) = −f(θi) + µ0 when using a small number of samples. Without
this constraint, we can easily observe that with a small n and a large-capacity
neural network for representing Φ(θ;w), optimizing Eq. (10) can easily result in
“point-wise” fitting, g(θi;w) = −f(θi), for each sample θi, thus achieving the
minimal value of the objective. So it violates the constraint that the population
mean of g(θ;w) is zero. Therefore, directly minimizing Eq. (10) can cause severe
overfitting. We thus propose two strategies for dealing with this issue.

1. Centering control variates. Based on our analysis on optimizing Eq. (10),
it introduces bias for the true g(θ;w). To compensate this bias, we center
the function g(θ;w) and set g(θ;w) = g̃(θ;w)− µ where µ should be close
to µ0. The parameter µ could also be learned during the training. Now if we
substitute g in Eq. (10), the optimal function would be g̃(θi;w) = −f(θi)+µ
which would assure the required constraint 1

n

∑n
i=1[f(θi) + g̃(θi;w)]2 ≥ µ2

0.
Note that in the following we assume g is a centered function, and so denote
g̃ by g for simplicity.

2. Regularization. We prefer a minimized variance of the function g. Thus the
other strategy is to control the variance of the function g, E[g2], to regularize
the complexity of the neural networks.

Combining the two strategies, the novel objective function can be formulated as
the following,

min
w,µ

1

n

n∑
i=1

[
[f(θi) + g(θi;w)− µ]2 + λg(θi;w)2

]
, (11)

where λ is the regularization parameter, and the population variance V[g] is
estimated by its empirical samples as regularization term.

The random initialization of µ can slow down the training process and cause
overfitting. To obtain a better performance, two optional initializing strategies
could be used:

1. Simply using 1
n

∑n
i=1 f(θi) as the initializing value of µ;

2. Pre-train the model with larger λ till converged, then retain the value of µ,
randomly initializing other variables and re-train the model with smaller λ.

When the number of samples n is big enough, strategy 1 is recommended; when
n is small or V(f(θ)) is relatively large compared with Ef(θ), strategy 2 is
recommended.

5 Experiments

To evaluate our proposed method, we apply CNCV to a synthetic problem and
two real scenarios, which are thermodynamic integration for Bayesian model
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Fig. 1. Synthetic data. (Left) Variance reduction ratio v.s. number of training samples
with D = 10; (Right) Variance reduction ratio v.s. dimension with training sample size
n = 5000.

evidence evaluation, and Bayesian neural networks. For comparison purposes,
control functionals (CF) [13] and polynomial control variates [10,14] are also
applied to these problems. The performance of the trained control variates are
measured by the variance reduction ratio on the test data set, i.e.,

Vp(θ)[f(θ) + g(θ)]

Vp(θ)(f(θ))]
.

We used fully connected neural networks to represent the trial function in all
the experiments. We found that for the experiments presented in the following,
a medium-sized network is empirically sufficient to achieve good performance.
More details on network architectures are provided in Appendix.

5.1 Synthetic Data

To illustrate the advantage of NCV on dealing with high-dimensional problems
over other methods, we consider to approximate the expectation of f(θ) =

sin(π/D
∑D
i=1 θi) where θ ∈ RD which is a mixture of Gaussians, i.e., p(θ) =

0.5N (−1, I) + 0.5N (1, I).
Figure 1 shows the variance reduction ratio on test data (N = 500) with

respect to varying the number of training samples and the dimensions. In both
cases, we can observe that CNCV outperforms linear, quadratic control variates
and control functional. Particularly, when increasing the dimensions of θ, CNCV
can still achieve much lower variance reduction ratio compared with control
functional.

Furthermore, we evaluated the two constraints made on the control variates
in the Section 4. To highlight the comparison, we consider the modified function
f(θ) = 10 sin(π/D

∑D
i=1 θi)+µ0 where p(θ) = 0.5N (−1, I)+0.5N (1, I), θ ∈ R10.

Here µ0 ∈ [0, 9] represents the mean of f(θ), and
√
var(f(θ)) ≈ 7.5. To evaluate

our methods, we generated 1000 samples, where 500 samples were used for



8 R. Wan et al.

0 2 4 6 8
3.0

2.5

2.0

1.5

1.0

0.5

0.0

Va
ria

nc
e 

Re
du

ct
io

n 
Ra

tio
(lo

g 1
0)

training = 0, = 0
testing = 0, = 0
training 0, = 0
testing 0, = 0
training = 0, 0
testing = 0, 0
training 0, 0
testing 0, 0

Fig. 2. Variance reduction ratio of four types of NCV versus the oracle mean µ0. The
µ in the control variates was initialized to 0. Dashed and solid lines plot the results on
training and test data respectively.
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Fig. 3. Boxplot of the samples for the function f on test data. The orange solid line
represents the median, the green dashed represents the sample mean, and the grey
dashed line represents the oracle mean µ0 = 7.

training and the rest were used for testing. Four neural control variates schemes
with and without the constraints were applied to these samples. These schemes
are: 1) not regularized, and not centered (λ = 0, µ = 0); 2) regularized, and
not centered(λ 6= 0, µ = 0); 3) not regularized, and centered(λ = 0, µ 6= 0); 4)
regularized, and centered(λ 6= 0, µ 6= 0).

Figure 2 reports the variance reduction ratio values for training and test data
when varying µ0. It can be shown that NCV without constraints can easily be
over-fitted with the training data. As µ0 increases, NCV with λ = 0, µ = 0 and
NCV with λ 6= 0, µ = 0 were not able to reduce the variance for the test data.
This shows that when µ0 is too large compared to the standard deviation, the
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control variates without constraints tends to fit −f(θ) rather than −f(θ) + µ0

on the training data, which results in over-fitting.
Figure 3 suggests that CNCV (λ 6= 0, µ 6= 0) outperforms all the other

methods. The NCV schemes with centered control variates (µ 6= 0) were always
better than the ones without centered control variates (µ = 0). We can also see
that the regularized control variates (λ 6= 0) can improve the performance.

The µ was initialized to 0 in all experiments shown in Figure 2. To better
understand the effect of the constraints on NCV, we reported the distribution
of the samples f(θ) from test sets in Figure 3. It shows that although NCV,
which was not regularized but centered (λ = 0, µ 6= 0), reduced the variance, the
method does introduced bias so that the sample mean was away from the true
mean µ0. The CNCV reduced the variance without introducing bias.

In the following, we apply our proposed CNCV to two difficult problems with
small number of samples. In these two cases, original NCV approach tends to
severely overfit the training samples, leading to extremely poor generalization
performance. Thus, we will not report the results of NCV.

5.2 Thermodynamic Integral for Bayesian Model Evidence
Evaluation

In Bayesian analysis, data y is assumed to have been generated under a collection
of putative models, {Mi}. To compare these candidate models, the Bayesian
model evidence is constructed as p(y|Mi) =

∫
p(y|θ,Mi)p(θ|Mi)dθ where θ are

the parameters associated with modelMi. Unfortunately, for most of the models
of interest, this integral is unavailable in closed form. Thus many techniques
were proposed to approximate the model evidence. Thermodynamic integration
(TI) [3] is among the most promising approach to estimate the evidence. This
approach is derived from the standard thermodynamic identity,

log p(y) =

∫ 1

0

Ep(θ|y,t)[log p(y|θ)]dt, (12)

where p(θ|y, t) ∝ p(y|θ)tp(θ) (t ∈ [0, 1]) is called power posterior. Note that
we have dropped the model indicator Mi for simplicity. Here t is known as
an inverse temperature parameter. In many cases, the posterior expectation
Ep(θ|y,t) log(p(y|θ)) can not be analytically computed, thus the Monte Carlo
integration is applied. However, Monte Carlo integration often suffer large variance
when sample size is not large enough.

In [14], the zero-variance control variates (5) were used to reduce the variance
for TI, so that the posterior expectation is approximated by

1

N

N∑
i=1

log p(y|θti) +∆Qt(θ
t
i) +∇Qt(θti) · ∇ log(p(θti |y, t) (13)

where {θti}Ni=1 are drawn from the posterior p(θ|y, t). In [14], the trial function
Qt(θ) was assumed as a linear or quadratic function, which corresponds to a
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constant or linear function for Φ(θ) in Stein control variates 6. These meth-
ods achieved excellent performance for simple models [14]. However, they are
struggling in some scenarios, for example, a negative example which is Goodwin
Oscillator given in [14]. Note that Goodwin Oscillator is a nonlinear dynamical
system,

dx

ds
= f(x, s;θ), x(0) = x0, (14)

where the form of f(·) is provided in Appendix. Assuming within only a subset of
time points {si}Ni=0, the solution of (14), i.e. x(si,θ), is observed under Gaussian
noise ε(s) ∼ N (0, σ2I), where σ2 denotes the variance of the noise. That means
the observation y(si) = x(si) + ε(si). Then we have the likelihood

p(y|θ,x0, σ) =

N∏
i=1

N (y(si)|x(si;θ;x0), σ
2I). (15)

The expectation of log likelihood under the power posterior, i.e., Ep(θ|y,t) log p(y|θ),
needs to be evaluated. In [14], the authors demonstrated the failure of polynomial-
type of control function since the log-likelihood surface is highly multi-modal
and there is much weaker canonical correlation between the scores and the log
posterior.

In practice, sampling from Goodwin Oscillator is difficult and computation-
ally expensive since simulating the underlying ordinary differential equation is
extremely time-consuming. This directly leads to the situation that the available
training samples for control variates are not sufficient. We show in the following
that the proposed CNCV can be employed to deal with this issue. To illustrate
the benefits of CNCV, we compared it to other methods with various sizes of
training samples and temperatures. For comparison purposes we evaluated the
variance reduction ratios on both training and test sets (500 samples for test).
The experiment settings are the same as those in [14].

Figure 4 shows the experimental results when applying different types of
control variates. It can be easily observed that the linear and quadratic methods
could hardly reduce the variance of the Goodwin Oscillator model on testing
set, while CNCV obtained the lowest variance reduction ratio comparing to all
other methods. Control functional can significantly reduce the variance when
dimension is low, but CNCV still can get the lowest variance reduction ratio,
inspite of the problem dimensions or temperatures.

5.3 Uncertainty Quantification in Bayesian Neural Network

Standard neural network training via optimization is equivalent to maximum
likelihood estimation (MLE for short). Given the training samples, {(xi,yi)}Ni=1,

6 We will call the trial function Q(θ) as the constant or linear type trial functions Φ(θ)
in the following.
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Fig. 4. Variance reduction ratio on test set of four different types of control variates
(linear, quadratic, CF and CNCV). 3000 samples were used for training and the other
3000 samples were used for testing. (a) The average variance reduction ratio on test
data versus the problem dimension; (b) The average variance reduction ratio on the
test data for different temperatures.

and denote X = {xi}Ni=1 and Y = {yi}Ni=1, the weight parameter θ of the neural
networks is estimated by

θ̂ = argmaxθ
N∑
i=1

log p(yi|xi;θ) (16)

However, the solution of MLE lacks theoretical justification from the probabilistic
perspective to deal with the parameter uncertainty as well as structure uncer-
tainty. Moreover, standard neural networks are often susceptible to producing
over-confident predictions. Bayesian natural network [11] was introduced for
implementing uncertainty quantification. Firstly, one provides a prior distribution
over the weights, p0(θ) = N (0, σ2

0I), where σ2
0 is the variance magnitude. Assum-

ing the likelihood function has the form, p(yi|xi;θ) = N
(
yi|NN(xi;θ), σ

2I
)
,

then the posterior of the weights θ,

p(θ|X,Y ) ∝
N∏
i=1

p(yi|xi,θ)p0(θ).

The uncertainty of the model, typically formulated as the expectation of a specific
statistics f(θ,x,y) could be computed based on the posterior distribution of the
weights,

µf = E[f(θ;x,y)] =
∫
f(θ;x,y)p(θ|X,Y )dθ (17)

Due to the analytic intractability of the integral, the expectation of f(θ,x,y)
is estimated using Monte Carlo integration

µf ≈
1

M

M∑
i=1

f(θi,x,y) (18)
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where {θi}Mi=1 is drawn from the posterior p(θ|X,Y ).
However, the large number of parameters and complex structure of networks

make the sampling from the posterior extremely hard. Typically, only a small
number of samples could be obtained. Consequently, small sample size and the
complex structure of the posterior distribution will lead to a high variance of the
estimator (18). Thus, we consider reducing the variance of Monte Carlo estimator
by NCVA.

Uncertainty quantification on predictions with out-of-distribution inputs. The
neural networks learned with the MLE principal could achieve a high-accuracy
performance, when the training data and test data come from the same data
distribution. But when an out-of-bag (OOB) sample, i.e., a sample whose label
is not included in the training set, is fed into the models, the MLE model is
very likely to identify the OOB sample as a certain in-bag class with very high
confidence, i.e. the prediction score is close to 1. We hope to construct a robust
classifier which won’t misclassify the OOB samples with very high confidence.
The Bayesian neural network is considered to be effective to handle this situation.
However, evaluating the expected prediction score under the posterior of w still
suffers large variance issues. Hence we considered to reduce the variance of BNN
prediction score and handle the over-confident issues of OOB samples.

We implemented a simple image classification task to evaluate the effectiveness
of CNCV. We selected all the images with label "6" and "9" from the MNIST
dataset and constructed a convolutional neural network for Bayesian classifier
with the output {f(x,θi)}Mi=1 as the probability of class assignment, where
θi ∼ p(θ|X,Y ) on the two categorizes and select the images with label "8" as
the out-of-distribution samples xout for test. We constructed the control variates
to reduce the variance of the estimator P̂ (y = “6”|xout) using NCV,

P̂ (y = “6”|xout) =
1

M

M∑
i=1

P̂ (y = “6”|xout,θi) + g(θi,xout) (19)

The parameters {θi} are sampled based on the training set, and hyperpa-
rameters are tuned using the validation set. Both the training and validation
data are composed of the images with labels ”6” or ”9”. We evaluated the control
variates methods on the test set, consisting of the images with the label “8”. We
evaluate the control variates by computing the following variance ratio

1

N

N∑
i=1

Vp(θ|X,Y )[p(yi = "6"|xi) + g(xi,θ)]

Vp(θ|X,Y )[p(yi = "6"|xi)]
(20)

Due to the high dimensionality of this problem, quadratic control variates
and control functional failed to obtain satisfying variance reduction, and we thus
do not report their results.

Figure 5(a) shows that the overall distribution of BNN ensemble prediction
does not change significantly, where CNCV produces slightly better results. This
is expected since the classifier has not seen the OOB samples during training,
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Fig. 5. Performance of CNCV on BNN with OOB samples (a) boxplot of the prediction
score of OOB samples defined in Equation (19). The prediction scores were computed
based on BNN ensemble classifier for those variance reduction methods. (b) The
accumulated empirical distribution of the entropy computed by prediction scores using
Equation (21).

which makes it impossible to yield a stable prediction probability. On the other
hand, Figure 5(b) depicts the the entropy of these OOB samples computed using
prediction score via BNN:

Entropy(xOOB) = −p̂ log(p̂)− (1− p̂) log(1− p̂), (21)

where p̂ is the BNN prediction score evaluated from Eq. (19). Entropy(xOOB) is
in the range [0, log 2]. Samples with low entropy close to 0 means they will be
classified as 6 or 9 with very high confidence. It could be seen from Figure 5(b)
that BNN prediction with control variates has less over-confident scores over
OOB samples. That means that BNN prediction with CNCV yields the least
over-confident scores compared with vanilla BNN and that with linear control
variates.

6 Conclusion

We have proposed neural control variates for variance reduction. We have shown
that the neural control variates could have the over-fitting problem when using
a small number of samples. To alleviate this over-fitting problem, we proposed
constrained neural control variates, where the control variates is centered and
regularized. We demonstrated the effectiveness of the proposed methods on
synthetic data and two challenging Monte Carlo integration tasks. However, the
theoretical justification of the proposed method will be investigated in our future
research.
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A Formulas for Goodwin Oscillator

The nonlinear dynamic system of the Goodwin Oscillator used in [14] is given
by:

dx1
ds

=
a1

1 + a2x
ρ
g
− αx1

dx2
ds

= k1x1 − αx2
...

dxg
ds

= kg−1xg−1 − αxg.

(22)

The solution x(s; θ,x0) of this dynamical system depends on the uncer-
tain parameters α, a1, a2, k1, . . . , kg−1. Similar to the settings in [14], we assume
x0 = [0, . . . , 0] and σ = 0.1 are both known and take sampling times to be
s = 41, . . . , 80. Parameters were assigned independent Γ (2, 1) prior distributions.
We generated data using a1 = 1, a2 = 3, k1 = 2, k2, . . . , kg−1 = 1, α = 0.5. We
generated the posterior samples of the weights using MCMC with parallel tem-
pering. In each dimension cases (g ∈ {3, 4, · · · , 8}) the Markorv Chain runs 100,
000 iterations to ensure converge, 6000 samples randomly drawn from the last
50, 000 iterations were used in the final experiments.

The trial function φ used in Goodwin Oscillator is a two layers fully connected
neural network, where each layer has 40 neurons. The activation function is the
Sigmoid function.

B Uncertainty Quantification in Bayesian Neural
Network: Out-of-Bag Sample Detection

The basic model consists of two convolutional layers, two max-pooling layers
and a fully connected layers, with kernel size (5 × 5 × 2), (2 × 3 × 3 × 3),
(147× 2) respectively. The prior distribution of the weight was set to standard
normal distribution N (0, 1). The samples of the weights were generated using
preconditioned Stochastic Gradient Langevin Dynamic [7]. 1000 samples were
generated to construct the Bayesian neural network prediction. The trial function
φ(θ, x) : Θ × X −→ R was defined as:

φ(θ, x) = αTh(W0θ + ψ(x)) (23)

where ψ(x) consists of two convolutional layers with kernel size (5 × 5 × 2),
(2× 3× 3× 3), two max-pooling layers and relu activation. W0 ∈ R147×407, h is
the sigmoid function. and α ∈ R147. Thus the neural control varaites of the BNN
prediction is:

g(θ, x) = ∇θ · φ(θ, x) + φ(θ, x)∇θ · log p(θ|X) (24)

where ∇ · f =
∑
i
∂f
∂xi

.
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