
Data Association with Gaussian Processes

Markus Kaiser1,2? �, Clemens Otte1,
Thomas A. Runkler1,2, and Carl Henrik Ek3

1 Siemens AG, markus.kaiser@siemens.com
2 Technical University of Munich

3 University of Bristol

Abstract. The data association problem is concerned with separating
data coming from different generating processes, for example when data
comes from different data sources, contain significant noise, or exhibit
multimodality. We present a fully Bayesian approach to this problem. Our
model is capable of simultaneously solving the data association problem
and the induced supervised learning problem. Underpinning our approach
is the use of Gaussian process priors to encode the structure of both the
data and the data associations. We present an efficient learning scheme
based on doubly stochastic variational inference and discuss how it can
be applied to deep Gaussian process priors.

1 Introduction

Real-world data often include multiple operational regimes of the considered
system, for example a wind turbine or gas turbine [12]. As an example, consider
a model describing the lift resulting from airflow around the wing profile of an
airplane as a function of the attack angle. At low values the lift increases linearly
with the attack angle until the wing stalls and the characteristic of the airflow
changes fundamentally. Building a truthful model of such data requires learning
two separate models and correctly associating the observed data to each of the
dynamical regimes. A similar example would be if our sensors that measure the
lift are faulty in a manner such that we either get an accurate reading or a noisy
one. Estimating a model in this scenario is often referred to as a data association
problem [2, 8], where we consider the data to have been generated by a mixture
of processes and we are interested in factorising the data into these components.

Figure 1 shows an example of faulty sensor data, where sensor readings are
disturbed by uncorrelated and asymmetric noise. Applying standard machine
learning approaches to such data can lead to model pollution, where the expressive
power of the model is used to explain noise instead of the underlying signal.
Solving the data association problem by factorizing the data into signal and noise
gives rise to a principled approach to avoid this behavior.

Early approaches to explaining data using multiple generative processes are
based on separating the input space and training local expert models explaining
? The project this report is based on was supported with funds from the German
Federal Ministry of Education and Research under project number 01 IS 18049A.
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Fig. 1. A data association problem consisting of two generating processes, one of which
is a signal we wish to recover and one is an uncorrelated noise process.

easier subtasks [15, 21, 25]. The assignment of data points to local experts
is handled by a gating network, which learns a function from the inputs to
assignment probabilities. However, it is still a central assumption of these models
that at every position in the input space exactly one expert should explain the
data. Another approach is presented in [4], where the multimodal regression tasks
are interpreted as a density estimation problem. A high number of candidate
distributions is reweighed to match the observed data without modeling the
underlying generative process.

In contrast, we are interested in a generative process, where data at the same
location in the input space could have been generated by a number of global
independent processes. Inherently, the data association problem is ill-posed and
requires assumptions on both the underlying functions and the association of
the observations. In [18] the authors place Gaussian process (GP) priors on the
different generative processes which are assumed to be relevant globally. The
associations are modelled via a latent association matrix and inference is carried
out using an expectation maximization algorithm. This approach takes both the
inputs and the outputs of the training data into account to solve the association
problem. A drawback is that the model cannot give a posterior estimate about
the relevance of the different generating processes at different locations in the
input space. This means that the model can be used for data exploration but
additional information is needed in order to perform predictive tasks. Another
approach in [5] expands this model by allowing interdependencies between the
different generative processes and formulating the association problem as an
inference problem on a latent space and a corresponding covariance function.
However, in this approach the number of components is a free parameter and is
prone to overfitting, as the model has no means of turning off components.

In this paper, we formulate a Bayesian model for the data association problem.
Underpinning our approach is the use of GP priors which encode structure both
on the functions and the associations themselves, allowing us to incorporate
the available prior knowledge about the proper factorization into the learning
problem. The use of GP priors allows us to achieve principled regularization
without reducing the solution space leading to a well-regularized learning problem.
Importantly, we simultaneously solve the association problem for the training
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Fig. 2. The graphical model of DAGP. The violet observations (xn,yn) are generated
by the latent process (green). Exactly one of the K latent functions f (k) and likelihood
y(k)
n are evaluated to generate yn. We can place shallow or deep GP priors on these

latent function values f (k)
n . The assignment an to a latent function is driven by input-

dependent weights α(k)
n which encode the relevance of the different functions at xn.

The different parts of the model are determined by the hyperparameters θ,σ (yellow)
and variational parameters u (blue).

data taking both inputs and outputs into account while also obtaining posterior
belief about the relevance of the different generating processes in the input space.
Our model can describe non-stationary processes in the sense that a different
number of processes can be activated in different locations in the input space. We
describe this non-stationary structure using additional GP priors which allows
us to make full use of problem specific knowledge. This leads to a flexible yet
interpretable model with a principled treatment of uncertainty.

The paper has the following contributions: In Section 2, we propose the data
association with Gaussian processes model (DAGP). In Section 3, we present
an efficient learning scheme via a variational approximation which allows us to
simultaneously train all parts of our model via stochastic optimization and show
how the same learning scheme can be applied to deep GP priors. We demonstrate
our model on a noise separation problem, an artificial multimodal data set, and a
multi-regime regression problem based on the cart-pole benchmark in Section 4.

2 Data Association with Gaussian Processes

The data association with Gaussian processes (DAGP) model assumes that there
exist K independent functions {f (k)}Kk=1, which generate pairs of observations
D = {(xn,yn)}Nn=1. Each data point is generated by evaluating one of the K
latent functions and adding Gaussian noise from a corresponding likelihood. The
assignment of the nth data point to one of the functions is specified by the
indicator vector an ∈ {0, 1}K , which has exactly one non-zero entry. Our goal
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is to formulate simultaneous Bayesian inference on the functions f (k) and the
assignments an.

For notational conciseness, we follow the GP related notation in [14] and
collect all N inputs as X = (x1, . . . ,xN ) and all outputs as Y = (y1, . . . ,yN ).
We further denote the kth latent function value associated with the nth data
point as f (k)

n = f (k)(xn) and collect them as F (k) =
(
f (k)

1 , . . . ,f (k)

N

)
and F =

(F (1), . . . ,F (K)). We refer to the kth entry in an as a(k)
n and denoteA = (a1, . . . ,aN ).

Given this notation, the marginal likelihood of DAGP can be separated into
the likelihood, the latent function processes, and the assignment process and is
given by,

p(Y |X) =

∫
p(Y |F ,A) p(F |X) p(A |X) dAdF

p(Y |F ,A) =

N∏
n=1

K∏
k=1

N
(
yn

∣∣∣f (k)

n , (σ(k))
2
)I(a(k)n =1)

,

(1)

where σ(k) is the noise of the kth Gaussian likelihood and I the indicator function.
Since we assume the K processes to be independent given the data and

assignments, we place independent GP priors on the latent functions p(F |X) =∏K
k=1N

(
F (k)

∣∣µ(k)(X),K(k)(X,X)
)
with mean function µ(k) and kernel K(k). Our

prior on the assignment process is composite. First, we assume that the an
are drawn independently from multinomial distributions with logit parameters
αn = (α(1)

n , . . . , α
(K)
n ). One approach to specify αn is to assume them to be known

a priori and to be equal for all data points [18]. Instead, we want to infer them
from the data. Specifically, we assume that there is a relationship between the
location in the input space x and the associations. By placing independent GP
priors on α(k), we can encode our prior knowledge of the associations by the
choice of covariance function p(α |X) =

∏K
k=1N

(
α(k)

∣∣0,K(k)

α (X,X)
)
. The prior

on the assignments A is given by marginalizing the α(k), which, when normalized,
parametrize a batch of multinomial distributions,

p(A |X) =

∫
M(A |softmax(α)) p(α |X) dα. (2)

Modelling the relationship between the input and the associations allows us to
efficiently model data, which, for example, is unimodal in some parts of the input
space and bimodal in others. A simple smoothness prior will encode a belief for
how quickly the components switch across the input domain.

Since the GPs of the α(k) use a zero mean function, our prior assumption is a
uniform distribution of the different generative processes everywhere in the input
space. If inference on the an reveals that, say, all data points at similar positions
in the input space can be explained by the same kth process, the belief about α
can be adjusted to make a non-uniform distribution favorable at this position,
thereby increasing the likelihood via p(A |X). This mechanism introduces an
incentive for the model to use as few functions as possible to explain the data
and importantly allows us to predict a relative importance of these functions
when calculating the posterior of the new observations x∗.
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Figure 2 shows the resulting graphical model, which divides the generative
process for every data point in the application of the latent functions on the
left side and the assignment process on the right side. The interdependencies
between the data points are introduced through the GP priors on f (k)

n and α(k)
n

and depend on the hyperparameters θ = {θ(k),θ(k)
α , σ

(k)}Kk=1.
The priors for the f (k) can be chosen independently to encode different prior

assumptions about the underlying processes. In Section 4.1, we use different
kernels to separate a non-linear signal from a noise process. Going further, we
can also use deep GP as priors for the f (k) [9, 23]. Since many real word systems
are inherently hierarchical, prior knowledge can often be formulated more easily
using composite functions [16].

3 Variational Approximation

Exact inference is intractable in this model. Instead, we formulate a variational
approximation following ideas from [13, 23]. Because of the rich structure in
our model, finding a variational lower bound which is both faithful and can
be evaluated analytically is hard. To proceed, we formulate an approximation
which factorizes along both the K processes and N data points. This bound
can be sampled efficiently and allows us to optimize both the models for the
different processes {f (k)}Kk=1 and our belief about the data assignments {an}Nn=1

simultaneously using stochastic optimization.

3.1 Variational Lower Bound

As first introduced by Titsias [24], we augment all GP in our model using sets of
M inducing points Z(k) =

(
z(k)

1 , . . . ,z(k)

M

)
and their corresponding function values

u(k) = f (k)(Z(k)), the inducing variables. We collect them as Z = {Z(k),Z(k)
α }Kk=1

and U = {u(k),u(k)
α }Kk=1. Taking the function f (k) and its corresponding GP as an

example, the inducing variables u(k) are jointly Gaussian with the latent function
values F (k) of the observed data by the definition of GPs. We follow [13] and choose
the variational approximation q(F (k),u(k)) = p(F (k) |u(k),X,Z(k)) q(u(k)) with
q(u(k)) = N (u(k) |m(k),S(k)). This formulation introduces the set {Z(k),m(k),S(k)}
of variational parameters indicated in Figure 2. To simplify notation we drop the
dependency on Z in the following.

A central assumption of this approximation is that given enough well-placed
inducing variables u(k), they are a sufficient statistic for the latent function values
F (k). This implies conditional independence of the f (k)

n given u(k) and X. The
variational posterior of a single GP can then be written as,

q(F (k) |X) =

∫
q(u(k)) p(F (k) |u(k),X) du(k)

=

∫
q(u(k))

N∏
n=1

p(f (k)

n |u(k),xn) du
(k),

(3)
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which can be evaluated analytically, since it is a convolution of Gaussians. This
formulation simplifies inference within single GPs. Next, we discuss how to handle
the correlations between the different functions and the assignment processes.

Given a set of assignments A, this factorization along the data points is
preserved in our model due to the assumed independence of the different functions
in (1). The independence is lost if the assignments are unknown. In this case,
both the (a priori independent) assignment processes and the functions influence
each other through data with unclear assignments. Following the ideas of doubly
stochastic variational inference (DSVI) presented by Salimbeni and Deisenroth
[23] in the context of deep GPs, we maintain these correlations between different
parts of the model while assuming factorization of the variational distribution.
That is, our variational posterior takes the factorized form,

q(F ,α,U) = q
(
α, {F (k),u(k),u(k)

α }
K
k=1

)
=

K∏
k=1

N∏
n=1

p(α(k)

n |u(k)

α ,xn) q(u
(k)

α )

K∏
k=1

N∏
n=1

p(f (k)

n |u(k),xn) q(u
(k)).

(4)

Our goal is to recover a posterior for both the generating functions and the
assignment of data. To achieve this, instead of marginalizing A, we consider the
variational joint of Y and A,

q(Y ,A) =

∫
p(Y |F ,A) p(A |α) q(F ,α) dF dα, (5)

which retains both the Gaussian likelihood of Y and the multinomial likelihood
of A in (2). A lower bound LDAGP for the log-joint log p(Y ,A |X) of DAGP is
given by,

LDAGP = Eq(F ,α,U)

[
log

p(Y ,A,F ,α,U |X)

q(F ,α,U)

]
=

N∑
n=1

Eq(fn)[log p(yn |fn,an)] +
N∑
n=1

Eq(αn)[log p(an |αn)]

−
K∑
k=1

KL(q(u(k))‖ p(u(k) |Z(k)))−
K∑
k=1

KL(q(u(k)

α )‖ p(u(k)

α |Z(k)

α )).

(6)

Due to the structure of (4), the bound factorizes along the data enabling stochastic
optimization. This bound has complexity O

(
NM2K

)
to evaluate.

3.2 Optimization of the Lower Bound

An important property of the variational bound for DSVI [23] is that taking
samples for single data points is straightforward and can be implemented efficiently.
Specifically, for some k and n, samples f̂ (k)

n from q(f (k)
n ) are independent of all

other parts of the model and can be drawn using samples from univariate unit
Gaussians using reparametrizations [17, 22].
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Note that it would not be necessary to sample from the different processes,
since q(F (k)) can be computed analytically [13]. However, we apply the sam-
pling scheme to the optimization of both the assignment processes α and the
assignments A as for α, the analytical propagation of uncertainties through the
softmax renormalization and multinomial likelihoods is intractable but can easily
be evaluated using sampling.

We optimize LDAGP to simultaneously recover maximum likelihood estimates
of the hyperparameters θ, the variational parameters {Z,m,S}, and assignments
A. For every n, we represent the belief about an as a K-dimensional discrete
distribution q(an). This distribution models the result of drawing a sample from
M(an |softmax(αn)) during the generation of the data point (xn,yn).

Since we want to optimize LDAGP using (stochastic) gradient descent, we need
to employ a continuous relaxation to gain informative gradients of the bound with
respect to the binary (and discrete) vectors an. One straightforward way to relax
the problem is to use the current belief about q(an) as parameters for a convex
combination of the f (k)

n , that is, to approximate fn ≈
∑K
k=1 q(a

(k)
n )f̂ (k)

n . Using this
relaxation is problematic in practice. Explaining data points as mixtures of the
different generating processes violates the modelling assumption that every data
point was generated using exactly one function but can substantially simplify the
learning problem. Because of this, special care must be taken during optimization
to enforce the sparsity of q(an).

To avoid this problem, we propose using a different relaxation based on
additional stochasticity. Instead of directly using q(an) to combine the f (k)

n , we
first draw a sample ân from a concrete random variable as suggested by Maddison
et al. [19], parameterized by q(an). Based on a temperature parameter λ, a
concrete random variable enforces sparsity but is also continuous and yields
informative gradients using automatic differentiation. Samples from a concrete
random variable are unit vectors and for λ→ 0 their distribution approaches a
discrete distribution.

Our approximate evaluation of the bound in (6) during optimization has
multiple sources of stochasticity, all of which are unbiased. First, we approximate
the expectations using Monte Carlo samples f̂ (k)

n , α̂(k)
n , and ân. And second,

the factorization of the bound along the data allows us to use mini-batches for
optimization [13, 23].

3.3 Approximate Predictions

Predictions for a test location x∗ are mixtures of K independent Gaussians, given
by,

q(f∗ |x∗) =
∫ K∑

k=1

q(a(k)

∗ |x∗) q(f (k)

∗ |x∗) da(k)

∗ ≈
K∑
k=1

â(k)

∗ f̂
(k)

∗ . (7)

The predictive posteriors of the K functions q
(
f (k)
∗
∣∣x∗) are given by K inde-

pendent shallow GPs and can be calculated analytically [13]. Samples from
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the predictive density over q(a∗ |x∗) can be obtained by sampling from the
GP posteriors q

(
α(k)
∗
∣∣x∗) and renormalizing the resulting vector α∗ using the

softmax-function. The distribution q(a∗ |x∗) reflects the model’s belief about
how many and which of the K generative processes are relevant at the test
location x∗ and their relative probability.

3.4 Deep Gaussian Processes

For clarity, we have described the variational bound in terms of a shallow GP.
However, as long as their variational bound can be efficiently sampled, any model
can be used in place of shallow GPs for the f (k). Since our approximation is based
on DSVI, an extension to deep GPs is straightforward. Analogously to [23], our
new prior assumption about the kth latent function values p(F ′(k) |X) is given
by,

p(F ′(k) |X) =

L∏
l=1

p
(
F ′(k)l

∣∣∣u′(k)l F ′(k)l−1,Z
′(k)
l

)
, (8)

for an L-layer deep GP and with F ′(k)0 := X. Similar to the single-layer case,
we introduce sets of inducing points Z′(k)l and a variational distribution over
their corresponding function values q

(
u′(k)l

)
= N

(
u′(k)l

∣∣m′(k)l ,S′(k)l

)
. We collect

the latent multi-layer function values as F ′ = {F ′(k)l }
K,L
k=1,l=1 and corresponding

U ′ and assume an extended variational distribution,

q(F ′,α,U ′) = q
(
α, {u(k)

α }
K
k=1,

{
F ′(k)l ,u′(k)l

}K,L
k=1,l=1

)
=

K∏
k=1

N∏
n=1

p(α(k)

n |u(k)

α ,xn) q(u
(k)

α )

K∏
k=1

L∏
l=1

N∏
n=1

p
(
f ′(k)n,l

∣∣∣u′(k)l ,xn

)
q
(
u′(k)l

)
,
(9)

where we identify f ′(k)n = f ′(k)n,L. As the n
th marginal of the Lth layer depends only

on the nth marginal of all layers above sampling from them remains straightfor-
ward [23]. The marginal is given by,

q(f ′(k)n,L) =

∫
q(f ′(k)n,L |f ′(k)n,L−1)

L−1∏
l=1

q(f ′(k)n,l |f ′(k)n,l−1) df
′(k)
n,l . (10)

The complete bound is structurally similar to (6) and given by,

L′DAGP =

N∑
n=1

Eq(f ′
n)[log p(yn |f ′n,an)] +

N∑
n=1

Eq(αn)[log p(an |αn)]

−
K∑
k=1

L∑
l=1

KL(q(u(k)

l )‖ p(u(k)

l |Z(k)

l ))−
K∑
k=1

KL(q(u(k)

α )‖ p(u(k)

α |Z(k)

α )).

(11)

To calculate the first term, samples have to be propagated through the deep GP
structures. This extended bound thus has complexity O

(
NM2LK

)
to evaluate

in the general case and complexity O
(
NM2 ·max(L,K)

)
if the assignments an

take binary values.
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Table 1. Comparison of qualitative model capabilities. A model has a capability if it
contains components which enable it to solve the respective task in principle.

Predictive
Posterior

Multimodal
Data

Scalable
Inference

Interpretable
Priors

Data As-
sociation

Predictive
Associa-
tions

Separate
Models

Experiment Table 2 Table 3 Figure 4

DAGP (Ours) X X X X X X X

OMGP [18] X X – X X – X
RGPR [21] X X – X – – –
GPR X – X X – – –

BNN+LV [10] X X X – – – –
MDN [4] X X X – – – –
MLP X – X – – – –

4 Experiments

In this section, we investigate the behavior of the DAGP model. We use an
implementation of DAGP in TensorFlow [1] based on GPflow [20] and the
implementation of DSVI [23]. Table 1 compares qualitative properties of DAGP
and related work. All models can solve standard regression problems and yield
unimodal predictive distributions or, in case of multi-layer perceptrons (MLP),
a single point estimate. Both standard Gaussian process regression (GPR) and
MLP do not impose structure which enables the models to handle multi-modal
data. Mixture density networks (MDN) [4] and the infinite mixtures of Gaussian
processes (RGPR) [21] model yield multi-modal posteriors through mixtures with
many components but do not solve an association problem. Similarly, Bayesian
neural networks with added latent variables (BNN+LV) [10] represent such a
mixture through a continuous latent variable. Both the overlapping mixtures of
Gaussian processes (OMGP) [18] model and DAGP explicitly model the data
association problem and yield independent models for the different generating
processes. However, OMGP assumes global relevance of the different modes. In
contrast, DAGP infers a spacial posterior of this relevance. We evaluate our
model on three problems to highlight the following advantages of the explicit
structure of DAGP:

Interpretable priors give structure to ill-posed data association problems. In
Section 4.1, we consider a noise separation problem, where a signal of interest is
disturbed with uniform noise. To solve this problem, assumptions about what
constitutes a signal are needed. The hierarchical structure of DAGP allows us to
formulate independent and interpretable priors on the noise and signal processes.

Predictive associations represent knowledge about the relevance of generative
processes. In Section 4.2, we investigate the implicit incentive of DAGP to explain
data using as few processes as possible. Additional to a joint posterior explaining
the data, DAGP also gives insight into the relative importance of the different
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Table 2. Results on the ChoiceNet data set. The gray part of the table shows RMSE
results for baseline models from [7]. For our experiments using the same setup, we report
RMSE comparable to the previous results together with MLL. Both are calculated
based on a test set of 1000 equally spaced samples of the noiseless underlying function.

Outliers DAGP OMGP DAGP OMGP CN MDN MLP GPR RGPR
MLL MLL RMSE RMSE RMSE RMSE RMSE RMSE RMSE

0% 2.86 2.09 0.008 0.005 0.034 0.028 0.039 0.008 0.017
20% 2.71 1.83 0.008 0.005 0.022 0.087 0.413 0.280 0.013
40% 2.12 1.60 0.005 0.007 0.018 0.565 0.452 0.447 1.322
60% 0.874 1.23 0.031 0.006 0.023 0.645 0.636 0.602 0.738
80% 0.126 -1.35 0.128 0.896 0.084 0.778 0.829 0.779 1.523

0

2
y

−2 0 2

0

2

X

y

−2 0 2

X

−2 0 2

X

Fig. 3. DAGP on the ChoiceNet data set with 40% outliers (upper row) and 60%
outliers (lower row). We show the raw data (left), joint posterior (center) and assignments
(right). The bimodal DAGP identifies the signal perfectly up to 40% outliers. For 60%
outliers, some of the noise is interpreted as signal, but the latent function is still
recovered.

processes in different parts of the input space. DAGP is able to explicitly recover
the changing number of modes in a data set.

Separate models for independent generating processes avoid model pollution.
In Section 4.3, we simulate a system with multiple operational regimes via mixed
observations of two different cart-pole systems. DAGP successfully learns an
informative joint posterior by solving the underlying association problem. We
show that the DAGP posterior contains two separate models for the two original
operational regimes.

4.1 Noise Separation

We consider an experiment based on a noise separation problem. We apply
DAGP to a one-dimensional regression problem with uniformly distributed
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asymmetric outliers in the training data. We use a task proposed by Choi
et al. [7] where we sample x ∈ [−3, 3] uniformly and apply the function f(x) =
(1 − δ)(cos(π/2 · x) exp(−(x/2)2) + γ) + δ · ε, where δ ∼ B(λ), ε ∼ U(−1, 3) and
γ ∼ N (0, 0.152). That is, a fraction λ of the training data, the outliers, are
replaced by asymmetric uniform noise. We sample a total of 1000 data points
and use 25 inducing points for every GP in our model.

Every generating process in our model can use a different kernel and therefore
encode different prior assumptions. For this setting, we use two processes, one
with a squared exponential kernel and one with a white noise kernel. This encodes
the problem statement that every data point is either part of the signal we wish
to recover or uncorrelated noise. To avoid pathological solutions for high outlier
ratios, we add a prior to the likelihood variance of the first process, which encodes
our assumption that there actually is a signal in the training data.

The model proposed in [7], called ChoiceNet (CN), is a specific neural network
structure and inference algorithm to deal with corrupted data. In their work, they
compare their approach to the MLP, MDN, GPR, and RGPR models. We add
experiments for both DAGP and OMGP. Table 2 shows results for outlier rates
varied from 0% to 80%. Besides the root mean squared error (RMSE) reported
in [7], we also report the mean test log likelihood (MLL).

Since we can encode the same prior knowledge about the signal and noise
processes in both OMGP and DAGP, the results of the two models are comparable:
For low outlier rates, they correctly identify the outliers and ignore them, resulting
in a predictive posterior of the signal equivalent to standard GP regression without
outliers. In the special case of 0% outliers, the models correctly identify that the
process modelling the noise is not necessary, thereby simplifying to standard GP
regression. For high outlier rates, stronger prior knowledge about the signal is
required to still identify it perfectly. Figure 3 shows the DAGP posterior for an
outlier rate of 60%. While the function has still been identified well, some of the
noise is also explained using this process, thereby introducing slight errors in the
predictions.

4.2 Multimodal Data

Our second experiment applies DAGP to a multimodal data set. The data,
together with recovered posterior attributions, can be seen in Figure 4. We
uniformly sample 350 data points in the interval x ∈ [−2π, 2π] and obtain
y1 = sin(x) + ε, y2 = sin(x)− 2 exp(−1/2 · (x− 2)2) + ε and y3 = −1− 3/8π · x+
3/10 · sin(2x) + ε with additive independent noise ε ∼ N

(
0, 0.0052

)
. The resulting

data set D = {(x, y1) , (x, y2) , (x, y3)} is trimodal in the interval [0, 5] and is
otherwise bimodal with one mode containing double the amount of data than
the other.

We use squared exponential kernels as priors for both the f (k) and α(k) and 25
inducing points in every GP. Figure 4 shows the posterior of a DAGP with K = 4
modes applied to the data, which correctly identified the underlying functions.
The figure shows the posterior belief about the assignments A and illustrates
that DAGP recovered that it needs only three of the four available modes to
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Fig. 4. The DAGP posterior on an artificial data set with bimodal and trimodal parts.
The joint predictions (top) are mixtures of four Gaussians weighed by the assignment
probabilities α (bottom). The weights are represented via the opacity of the modes.
The model has learned that the mode k = 2 is irrelevant, that the mode k = 1 is only
relevant around the interval [0, 5]. Outside this interval, the mode k = 3 is twice as
likely as the mode k = 4. The concrete assignments a (middle) of the training data
show that the mode k = 1 is only used to explain observations where the training data
is trimodal. The mode k = 2 is never used.

explain the data. One of the modes is only assigned points in the interval [0, 5]
where the data is actually trimodal.

This separation is explicitly represented in the model via the assignment
processes α (bottom panel in Figure 4). Importantly, DAGP does not only cluster
the data with respect to the generating processes but also infers a factorization of
the input space with respect to the relative importance of the different processes.
The model has disabled the mode k = 2 in the complete input space and has
learned that the mode k = 1 is only relevant in the interval [0, 5] where the three
enabled modes each explain about a third of the data. Outside this interval,
the model has learned that one of the modes has about twice the assignment
probability than the other one, thus correctly reconstructing the true generative
process. The DAGP is implicitly incentivized to explain the data using as few
modes as possible through the likelihood term of the inferred an in (6). At
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Table 3. Results on the cart-pole data set. We report mean log likelihoods with their
standard error for ten runs. The upper results are obtained by training the model on the
mixed data set and evaluating it jointly (left) on multi-modal predictions. We evaluate
the two inferred sub-models for the default system (center) and short-pole system
(right). We provide gray baseline comparisons with BNN+LV and GPR models which
cannot solve the data assignment problem. BNN+LV yields joint predictions which
cannot be separated into sub-models. Specialized GPR models trained the individual
training sets give a measure of the possible performance if the data assignment problem
would be solved perfectly.

Mixed Default only Short-pole only

Train Test Test Test

DAGP 0.575 ± 0.013 0.521 ± 0.009 0.844± 0.002 0.602 ± 0.005
DAGP 2 0.548± 0.012 0.519 ± 0.008 0.859 ± 0.001 0.599± 0.011
DAGP 3 0.527± 0.004 0.491± 0.003 0.852± 0.002 0.545± 0.012

OMGP −1.04 ± 0.02 −1.11 ± 0.03 0.66 ± 0.02 −0.81 ± 0.12

BNN+LV 0.519± 0.005 0.524± 0.005 — —
GPR Mixed 0.452± 0.003 0.421± 0.003 — —
GPR Default — — 0.867± 0.001 −7.54 ± 0.14
GPR Short — — −5.14 ± 0.04 0.792± 0.003

x = −10 the inferred modes and assignment processes start reverting to their
respective priors away from the data.

4.3 Mixed Cart-pole Systems

Our third experiment is based on the cart-pole benchmark for reinforcement
learning as described by Barto et al. [3] and implemented in OpenAI Gym [6]. In
this benchmark, the objective is to apply forces to a cart moving on a frictionless
track to keep a pole, which is attached to the cart via a joint, in an upright
position. We consider the regression problem of predicting the change of the
pole’s angle given the current state of the cart and the action applied. The
current state of the cart consists of the cart’s position and velocity and the pole’s
angular position and velocity. To simulate a dynamical system with changing
system characteristics our experimental setup is to sample trajectories from two
different cart-pole systems and merging the resulting data into one training set.
The task is not only to learn a model which explains this data well, but to solve
the association problem introduced by the different system configurations. This
task is important in reinforcement learning settings where we study systems with
multiple operational regimes.

We sample trajectories from the system by initializing the pole in an almost
upright position and then applying 10 uniform random actions. We add Gaussian
noise ε ∼ N

(
0, 0.012

)
to the observed angle changes. To increase the non-linearity

of the dynamics, we apply the action for five consecutive time steps and allow
the pole to swing freely instead of ending the trajectory after reaching a specific
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angle. The data set consists of 500 points sampled from the default cart-pole
system and another 500 points sampled from a short-pole cart-pole system in
which we halve the mass of the pole to 0.05 and shorten the pole to 0.1, a tenth of
its default length. This short-pole system is more unstable and the pole reaches
higher speeds. Predictions in this system therefore have to take the multimodality
into account, as mean predictions between the more stable and the more unstable
system can never be observed. We consider three test sets, one sampled from
the default system, one sampled from the short-pole system, and a mixture of
the two. They are generated by sampling trajectories with an aggregated size of
5000 points from each system for the first two sets and their concatenation for
the mixed set.

For this data set, we use squared exponential kernels for both the f (k) and
α(k) and 100 inducing points in every GP. We evaluate the performance of deep
GPs with up to three layers and squared exponential kernels as models for the
different functions. As described in [16, 23], we use identity mean functions for all
but the last layers and initialize the variational distributions with low covariances.
We compare our models with OMGP and three-layer relu-activated Bayesian
neural networks with added latent variables (BNN+LV). The latent variables
can be used to effectively model multimodalities and stochasticity in dynamical
systems for model-based reinforcement learning [11]. We also compare DAGP to
three kinds of sparse GPs (GPR) [14]. They are trained on the mixed data set,
the default system and the short-pole system respectively and serve as a baseline
comparison as these models cannot handle multi-modal data.

Table 3 shows results for ten runs of these models. The GPR model predicts
a unimodal posterior for the mixed data set which covers both systems. Its mean
prediction is approximately the mean of the two regimes and is physically implau-
sible. The DAGP and BNN+LV models yield informative multi-modal predictions
with comparable performance. In our setup, OMGP could not successfully solve
the data association problem and thus does not produce a useful joint posterior.
The OMGP’s inference scheme is tailored to ordered one-dimensional problems.
It does not trivially translate to the 4D cart-pole problem.

As BNN+LV does not explicitly solve the data association problem, the model
does not yield sub-models for the two different systems. Similar results would be
obtained with the MDN and RGPR models, which also cannot be separated into
sub-models. OMGP and DAGP yield such sub-models which can independently
be used for predictions in the default or short-pole systems. Samples drawn from
these models can be used to generate physically plausible trajectories in the
respective system. OMGP fails to model the short-pole system but does yield
a viable model for the default system which evolves more slowly due to higher
torque and is therefore easier to learn. In contrast, the two sub-models inferred
by DAGP perform well on their respective systems, showing that DAGP reliably
solves the data association problem and successfully avoids model pollution by
separating the two systems well. Given this separation, shallow and deep models
for the two modes show comparable performance. The more expressive deep GPs
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model the default system slightly better while sacrificing performance on the
more difficult short-pole system.

5 Conclusion

We have presented a fully Bayesian model for the data association problem.
Our model factorises the observed data into a set of independent processes and
provides a model over both the processes and their association to the observed
data. The data association problem is inherently ill-constrained and requires
significant assumptions to recover a solution. In this paper, we make use of
interpretable GP priors allowing global a priori information to be included into
the model. Importantly, our model is able to exploit information both about the
underlying functions and the association structure. We have derived a principled
approximation to the marginal likelihood which allows us to perform inference for
flexible hierarchical processes. In future work, we would like to incorporate the
proposed model in a reinforcement learning scenario where we study a dynamical
system with different operational regimes.
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