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Abstract. Partial label learning (PLL) is a weakly supervised learning
framework which learns from the data where each example is associated
with a set of candidate labels, among which only one is correct. Most
existing approaches are based on the disambiguation strategy, which ei-
ther identifies the valid label iteratively or treats each candidate label
equally based on the averaging strategy. In both cases, the disambigua-
tion strategy shares a common shortcoming that the ground-truth label
may be overwhelmed by the false positive candidate labels, especially
when the number of candidate labels becomes large. In this paper, a
probability propagation method for partial label learning (PP-PLL) is
proposed. Specifically, based on the manifold assumption, a biconvex
regular function is proposed to model the linear mapping relationships
between input features and output true labels. In PP-PLL, the topolog-
ical relations among training samples are used as additional information
to strengthen the mutual exclusiveness among candidate labels, which
helps to prevent the ground-truth label from being overwhelmed by a
large number of candidate labels. Experimental studies on both artificial
and real-world data sets demonstrate that the proposed PP-PLL method
can achieve superior or comparable performance against the state-of-the-
art methods.

Keywords: Partial label learning · Disambiguation strategy · Manifold
assumption · Biconvex regular function.

1 Introduction

In many real-world scenarios, data with explicit label information is hard to
obtain. Thus, we have to face with the problem of learning from ambiguous data.
Recently, partial label learning (PLL) provides an effective solution to cope with
this problem and has been widely used in many real-world applications such as
automatic image annotation [3], web mining [13], ecoinformatics [12], etc. Partial
label learning is regarded as a weakly-supervised learning where each sample is
associated with a set of candidate labels, among which only one is correct [2].
During the training process, the correct label of each training sample is concealed
in its candidate label set and not directly accessible to the learning algorithm.
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Since the exact labeling information is concealed in the candidate label set,
the key to partial label learning is to disambiguate labels in candidate label set.
To this end, many disambiguation methods have been proposed to extract the
ground-truth label from the ambiguously labeled data. These methods can be
categorized into two groups, i.e. identification based disambiguation strategies
(IDS) and averaging based disambiguation strategies (ADS). The IDS methods
regard the ground-truth label as a latent variable which is identified via iterative
refining procedure [10, 12, 15, 17, 19]. The ADS methods treat each candidate la-
bel equally and make the final prediction by averaging the modeling outputs [2,
21]. Although IDS and ADS methods have yielded relatively good performance
for partial label learning, they still suffer from some defects. Due to some mis-
leading information in the candidate label set, both IDS and ADS methods have
the risk that the ground-truth label may be overwhelmed by false positive labels,
especially when the number of partially labeled training samples or the size of
candidate label set becomes large[19].

To extract as much useful information about the ground-truth label as possi-
ble from the partially labeled data, many weakly-supervised learning algorithms
assume that there exists a potential structure in the feature space of data, which
helps to reveal the mapping from input features to ground-truth labels. Clus-
tering based assumption and manifold based assumption are among the most
common ones of them[24]. In the clustering based assumption, data samples are
clustered into several clusters based on some similarity criterion such as Eu-
clidean distance, and samples within the same cluster are assumed to belong to
the same label. The manifold based assumption can be viewed as the extension of
clustering based assumption. It assumes that the feature space of data follows a
manifold structure, and the output of each sample is similar to its neighbors. Fur-
thermore, manifold assumption based disambiguation strategies (MADS) have
also been proposed to alleviate the negative impact of false positive labels [5, 14,
19, 21]. However, the existing MADS methods ignore the mapping relationships
from input features to ground-truth label and excessively rely on the potential
topological structure of feature space, which makes the prediction trend to be
the frequent labels.

In this paper, a probability propagation method for partial label learning
(PP-PLL) is proposed. In PP-PLL, based on the manifold assumption we fur-
ther assume that neighboring samples have similar label distribution, and we
utilize the maximum entropy model to form a biconvex objective function. The
objective function is then optimized by the alternating method, which can be
regarded as a process of probability propagation. Different from the strategies
mentioned above, our proposed PP-PLL method utilizes the potential topo-
logical structure of feature space as additional information, which strengthens
the exclusiveness among labels and mitigates the risk of the ground-truth label
being overwhelmed by candidate labels. Furthermore, in the process of proba-
bility propagation the mapping from input features to the ground-truth labels is
modeled, which makes it less dependent on the intrinsic topological, and more
accurately distinguishes the ground-truth label from false positive labels in the
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candidate label set. Compared with many state-of-the-art partial label learning
methods, our proposed method can achieve better generalization performance
and superior prediction performance.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
related works. The concrete formulation of our proposed PP-PLL method is
presented in Section 3. In Section 4, the optimization of our model is presented.
Section 5 provides experimental studies on various data sets, followed by the
conclusions and future works in Section 6.

2 Related work

In partial label learning framework, the label information is no longer unique and
explicit. Real semantic information is concealed in the candidate label set, mak-
ing the learning from data extremely difficult. Existing methods for partial label
learning can be roughly grouped into three categories: ADS (Averaging-based
Disambiguation Strategies) ,IDS (Identification-based Disambiguation Strate-
gies) and MADS (Manifold Assumption-based Disambiguation Strategies).

ADS methods identify the ground-truth label via giving the label in can-
didate label set the same weight for each sample, and then obtain prediction
by averaging the outputs from all candidate labels or the candidate labels in
its neighbors. Following such strategy, ADS methods can be further divided into
discrimination-based learning and instance-based learning. For the discrimination-
based learning, Cour et al.[2, 3] suppose that a parametric model F (xi, y; θ) dis-
criminates the average modeling output of candidate labels from non-candidate
labels as much as possible. For the instance-based learning, Hüllermeier and
Beringer[9] suppose that the model predicts unseen instance by aggregating the
weight of its neighbors’ candidate labels. Although ADS methods are intuitive
with strong explanatory, the critical defect is that the false positive labels in each
set of candidate labels have greater advantages in weight assignment, especially
when the size of each candidate label set becomes large.

Different from ADS, existing IDS approaches consider the ground-truth label
as a latent variable, determined directly as ŷi = arg maxy∈Si F (xi, y;θ). Further-
more, the objective function is defined according to the maximum likelihood cri-

terion [7, 10, 12, 23]:
∑m
i=1 log

(∑
y∈Si

F (xi, y;θ)
)

which is generally refined iter-

atively via utilizing Expectation-Maximization (EM) procedure [4], or the maxi-
mum margin criterion [15, 18]:

∑m
i=1

(
maxy∈Si

F (xi, y;θ)−maxy/∈Si
F (xi, y;θ)

)
which is optimized via the Pegasos method that alternately performs sub-gradient
descent and projection operations to update the model iteratively. Experimental
results demonstrate that IDS have achieved more desirable performance than
ADS. Nonetheless, the information from the false positive labels in all sets of
candidate labels would mislead the model into updating towards the wrong di-
rection, especially when the number of partially labeled training samples become
large.

The strategies mentioned above utilize the set of candidate labels to construct
partial label learning algorithms. However, their performance improvements are
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usually limited by false positive labels. To break through this limitation, manifold
assumption-based disambiguation strategies (MADS) are proposed to extract
as much useful labeling information as possible from the ambiguously labeled
data through manifold assumption. To the best of our knowledge, the concept
of neighbor samples in partial label learning was first proposed by Hüllermeier
and Beringer [9]. However, it is unable to guarantee that the prediction of each
sample is similar to its neighbors. This is why we generalize it into ADS. Fol-
lowing manifold assumption, existing MADS can be divided into nonparametric
and parametric model. Regardless of the model proposed, a weighted graph of
k-nearest neighbors should be constructed at first stage. At second stage, the
prediction is obtained directly by label propagation [5, 19] for nonparametric,
and by a feature-aware disambiguation for parametric model [21]. Different from
IDS and ADS, MADS can extract additional information from the ambiguously
labeled data, however, existing MADS excessively relies on the potential topo-
logical structure of feature space.

In the next section, a novel partial label learning approach named PP-PLL
will be introduced. To address the problem mentioned above, PP-PLL utilizes
the character of the optimizing a biconvex formulation presented in this paper
to achieve probability propagation.

3 The PP-PLL Method

Let X = Rd denote the d-dimensional feature space, and Y = {1, 2, . . . , q} be a
label set with q class labels. Partial label learning is aimed at learning a classifier
f : X → Y from training data D = {(xi, Si) |1 ≤ i ≤ m} to predict the ground-
truth label of the unseen samples, where xi ∈ X is a d-dimensional feature
vector (xi1, xi2, . . . , xid)

>
, and Si ⊆ Y is the candidate label set associated with

xi. The ground-truth label yi for xi is concealed in Si, i.e. yi ∈ Si, and is not
directly accessible to the learning algorithm.

Let F denote the set of m × q matrices with nonnegative entries. A matrix

F =
[
F>1 , . . . , F

>
m

]> ∈ F corresponds to ultimate label probability distribution
of m partial label samples, and each sample x is labeled as ŷi = arg maxj≤q Fij .
Therefore, one of the main goals is to obtain the ultimate label distribution
matrix F . To this end, some existing partial label learning approaches [7, 10,
12] regard the ground-truth label as a latent variable and estimate the ground-
truth label by an iterative procedure. Although this kind of strategies have the
capability of mapping from input features to ground-truth label, they are failed
to correct the wrong updating direction caused by false positive labels during
the iterative learning process.

Accordingly, we proposed PP-PLL under the assumption that the probabil-
ity distribution of candidate labels for each sample is similar to its neighbors.
At first stage, we construct a weighted graph G = (V,E) over the ambigu-
ously labeled data, where each sample is considered as a node of the graph.
In order to characterize the manifold structure of feature space via conducting
some affinity relationship, E = {(xi,xj) |xi ∈ kNN (xj) , i 6= j} is denoted as
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the set of directed edges from xi to xj in graph G if xi belongs to the k-nearest
neighbors of xj . Furthermore, W = [wij ]m×m is denoted as the non-negative
weight matrix where wij = 0 if (xi,xj) /∈ E. Otherwise, the j-th weight col-

umn w·j = (wi1j , wi2j , . . . , wikj)
>

is denoted as the k-nearest neighbors’ opti-
mal weight column corresponding to the j-th sample via optimizing the following
linear least square problem:

min
w·j

∥∥∥∥∥∥xj −
∑

(xi,xj)∈E

wij · xi

∥∥∥∥∥∥
2

2

(1)

s.t. wij ≥ 0 (∀ (xi,xj) ∈ E, 0 ≤ i, j ≤ m)

The OP(1) can be re-written as

min
w·j

(
xj −X>j ·w.j

)>
·
(
xj −X>j ·w.j

)
(2)

As shown in OP(2), the k × d matrix Xj = (xi1 ,xi2 , . . . ,xik)
>

denotes the
k-nearest neighbors of xj . We further convert OP(2) into a standard quadratic
programming (QP) problem:

min
w·j

1

2
w>.j

(
2XjX

>
j

)
w.j − 2x>j X

>
j w.j (3)

s.t. wij ≥ 0 (∀ (xi,xj) ∈ E, 0 ≤ i, j ≤ m)

Therefore, the optimized weight of OP(3) can be obtained through any off-
the-shelf QP method. Although the restriction

∑
(xi,xj)∈E wij = 1 is to avoid

probability divergence during subsequent iterative probability propagation pro-
cedure, it would cause some linear combinations of k-nearest neighbors far away
from the center sample. As a consequence, we would rather apply the normal-
ization of each weight column than embed restriction

∑
(xi,xj)∈E wij = 1 for the

j-th sample. In other words, for each weight column, we utilize the following
normalized column vector to replace primary weight column vector:

h·j = w·j/
∑

(xi,xj)∈E

wij (0 ≤ j ≤ m) (4)

At second stage, we develop a novel regularization framework that incorpo-
rates probabilistic propagation with the maximum entropy model:

J (D,θ,F ) = L (D,F ,θ) + λΩ (θ) + µQ (F ) (5)

As shown in Eq.(5), the first term L in the object function J is denoted
as fidelity term with a definition of the conditional probability matrix of the
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ground-truth labels C = [p(yi = j|xi,θ)]m×q. The definition of C is shown as:

P (yi = j|xi,θ) =

{
exp

(
θ>j x

)
/
∑
j′∈Si

exp
(
θ>j′x

)
, if j ∈ Si

0, otherwise
(6)

where θ ∈ Rd×q is a parameter matrix learned from the object function J . This
term suggests that the finally obtained label distribution matrix F is closed to
the maximum entropy model which builds a linear discriminative mapping from
input features to ground-truth labels smoothly. Meanwhile, we choose to apply
the Kullback-Leibler divergence of F relative to C rather than the quadratic
form to preserve the convex properties of the object function J with respect to
θ. Therefore L is formalized as:

L (D,F ,θ) =

m∑
i=1

∑
j∈Si

F ij log
F ij
Cij

(7)

The second term Ω in the object function J is aimed at avoiding parameter
redundancy caused by conditional probability matrix, which is defined as an
Frobenius norm:

Ω (θ) =
1

2
‖θ‖2F (8)

The third term Q (F ) in the object function J is formalized a smoothness
constraint which is to ensure the probability distribution candidate labels of
each sample not to vary too much from its k-nearest neighbors to satisfy the
realization of the manifold assumption. Based on the above description, Q can
be defined as:

Q (F ) =
1

2

n∑
i,j=1

wij

∥∥∥∥∥ 1√
Dii

F i −
1√
Djj

F j

∥∥∥∥∥
2

2

(9)

where wij is the similarity weight between the i-th sample and the j-th sam-
ple in graph G, and Dll is the l-th diagonal element in diagonal matrix D =
diag [

∑m
i=1 wi,1,

∑m
i=1 wi,2, . . . ,

∑m
i=1 wi,m]. As shown in Eq.(9), minimizing Q

will force F i (i = 1, 2, . . . ,m) to get closer to F j (if xj ∈ kNN (xi)) when wij is
larger.

Finally, a novel regularization framework that incorporates probabilistic label
propagation with maximum likelihood criterion is presented as a constrained
optimization problem:

min
θ,F

m∑
i=1

∑
j∈Si

F ij log
F ij
Cij

+
λ

2
‖θ‖2F +

µ

2

n∑
i,j=1

wij

∥∥∥∥∥ F i√
Dii

− F j√
Djj

∥∥∥∥∥
2

2

(10)

s.t.

q∑
j=1

Fij = 1,Fij ≥ 0, ∀i = 1, 2, . . . ,m
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4 Optimization

Apparently, OP(10) is convex with respect to θ when F is fixed, and it is also
convex with respect to F when θ is fixed. Therefore, OP(10) is regarded as a
biconvex problem which can be solved in an alternating way [6]. Specifically,
we first optimize OP(10) regarding F when θ is treated as a constant, and then
optimize OP(10) regarding θ when F is substituted by F ∗ which is the optimized
value of F in previous step.

4.1 Updating F

When θ is assumed as a constant, the conditional probability matrix C ∈ Rm×q
corresponding to θ is also considered as a constant.Therefore the optimization
of OP(10) can be simplified to

min
F

m∑
i=1

∑
j∈Si

F ij log
F ij
Cij

+
µ

2

n∑
i,j=1

wij

∥∥∥∥∥ 1√
Dii

F i −
1√
Djj

F j

∥∥∥∥∥
2

2

(11)

s.t.

q∑
j=1

Fij = 1,Fij ≥ 0, ∀i = 1, 2, . . . ,m

which is similar to a label propagation problem [22]. The first term of the OP(11)
guarantees that the ultimate label distribution F should be close to constant
matrix C, which is denoted as the mapping relationship from input features
to the ground-truth label. The second term guarantees that the ultimate label
distribution F of each sample should be close to its k-nearest neighbors, which
satisfies manifold assumption. In this paper, we present another convex function
with respect to F :

OB =
1

2
‖F − C‖2F +

µ

2

n∑
i,j=1

wij

∥∥∥∥∥ 1√
Dii

F i −
1√
Djj

F j

∥∥∥∥∥
2

2

(12)

As shown in OB, the first term in OP(11) is replaced by the quadratic form,
which is convex regarding F , and the optimal solution of OB can be obtained
directly via derivation rather than traditional Lagrangian method which is time-
consuming. Through label propagation method, the obtained optimal solution
of OB is the approximation of the solution of OP(11). Differentiating the OB
below with respect to F , we have

∂OB
∂F

∣∣∣∣
F=F̃ ∗

= F̃ ∗ − C + µ
(
F̃ ∗ −HF̃ ∗

)
= 0 (13)

where H is equal to the m ×m matrix (h·1,h·2, · · · ,h·m). Since I − µ
1+µH is

invertible, we have

F̃ ∗ =
1

1 + µ

(
I − µ

1 + µ
H

)−1
C (14)
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In order to satisfy the constraints in OP(11), F̃ ∗ is re-scaled into F ∗ via
consulting the sample in the ambiguously labeled data, which is similar to the
E-step in PL-EM [10]:

∀1 ≤ i ≤ m : F ∗i,j =

{
F̃ ∗i,j/

∑
j′∈Si

F̃ ∗i,j′ , if j ∈ Si
0, otherwise

(15)

4.2 Updating θ

When F ∈ Rm×q is replaced by F ∗, we have

min
θ

m∑
i=1

∑
j∈Si

F ∗ij log
F ∗ij
Cij

+
λ

2
‖θ‖2F (16)

which is optimized via L-BFGS [11]. Apparently, the process of optimizing
OP(16) is similar to M-step in PL-EM, which models the mapping relationship
from input features to the ground-truth label.

At the beginning of optimization, it is necessary to initialize the conditional
probability matrix C = [p(yi = j|xi,θ)]m×q as follows:

p(yi = j|xi,θ) =

{ 1
|Si| if j ∈ Si
0, otherwise

(17)

Then we iteratively update the parameter θ by combining label propagation
with PL-EM algorithm, which is collectively called probability propagation pro-
cedure. During the testing phase, the conditional probability matrix C′ of each
unseen sample x′ is calculated as:

C′ =

exp
(
θ>k x

′
)
/
∑
j′∈Y

exp
(
θ>j′x

′
)

1×q

(18)

And then, the ultimate label distribution F ′ of each unseen sample x′ can
be calculated according to Eq.(14) and Eq.(15). Finally, the predicted label y′

of each unseen sample x′ is given as follows:

y′ = arg max
k∈Y

[
F ′1,k

]
1×q (19)

The complete procedure of PP-PLL is presented in Algorithm 1, where we
creatively embed alternating optimization method into PL-EM algorithm to up-
date parameter θ. At first, given a partial label training dataset, a weighted graph
is constructed via asymmetric k-NN graph (Steps 1-9). And then, an probability
propagation procedure based on EM procedure with alternating optimization
is implemented to calculate the optimal parameters (Step 10-15). Finally, the
predicted label of the unseen data is obtained according to the optimal param-
eters(Step 16).
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Algorithm 1 PP-PLL

Input:
D: the PL training set {(xi, Si) |1 ≤ i ≤ m}
k: the number of nearest neighbors used for the similarity matrix
λ, µ: the parameters trading off each term in the object function
T : the number of iterations
x′: the unseen data
Output:
y′: the predicted label for x′

Process:

1: Construct weight graph G = (V,E) by the asymmetric k-NN graph with V =
{xi|1 ≤ i ≤ m} and E = {(xi,xj) |xi ∈ kNN (xj) , i 6= j};

2: Initialize weight matrix W = [wij ]m×m with wij = 0;
3: for j = 1 to m do
4: Determine the j-th weight column corresponding to the j-th sample ŵ·j =

(ŵi1j , ŵi2j , . . . , ŵikj)
> via solving OP(3);

5: Normalize the ŵ·j to ĥ·j = ŵ·j/
∑k

a=1 ŵiaj =
(
ĥi1j , ĥi2j , . . . , ĥikj

)>
6: for xia ∈ kNN (xj) do
7: Set wiaj = ĥiaj ;
8: end for
9: end for

10: Initial C ∈ Rm×q according to Eq.(17);
11: for t = 1 to T do
12: Update F according to Eq.(15);
13: Caculate θ by solving OP(16);
14: Update C by updated θ ∈ Rd×q ;
15: end for
16: Return the predicted label y′ according to Eq.(18) and Eq.(19).

5 Experiments

5.1 Experimental Setup

To verify the performance of the proposed PP-PLL method, we conduct exten-
sive experiments on four controlled UCI datasets and five real-world datasets.
Characteristics of the experimental datasets are summarized in Table 1.

Controlled UCI Datasets To generate artificial PL datasets, controlled UCI
datasets are controlled by two parameters p and r, where p controls the propor-
tion of partially labeled samples, and r controls the size of distracting labels set
in the candidate label set.

Real-world Datasets In addition, we have also collected five real-world datasets
which are partially labeled. The real-world datasets can be summarized into four
task domains:
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– Bird Song Classification: Spectrogram of the birds are considered as in-
stances while candidate labels is composed of bird species jointly singing [1].

– Automatic Face Naming: Each face recognized from images or a videos
are considered as instances and the names extracted from the corresponding
image captions or video subtitles are regarded as candidate labels, such as
Yahoo! News [8] and Lost [2];

– Facial Age Estimation: Human faces constitute the instance space and
candidate labels is composed of the ages annotated by ten crowd-sourced
labels and the ground-truth ages, such as FG-NET [16];

– Objective Classification: Image segmentations are considered as instances
and the objects appearing within the same image are represented as the
candidate labels, such as MSRCv2 [12].

The average number of the candidate labels (Avg. CLs) for each real-world
dataset is also recorded in Table 1.

Controlled UCI datasets Real-world datasets

Dataset Glass Ecoli Segment Letter Lost FG-NET MSRCv2 BirdSong Yahoo! News
Examples 214 336 2310 20000 1122 1002 1758 4,998 22991
Features 10 7 18 16 108 262 48 38 163
Classes 7 8 7 26 16 78 32 13 219

Avg. CLs - - - - 2.23 7.48 3.16 2.18 1.91
Table 1. Characteristics of the experimental datasets

Comparing Algorithms In this paper, the effectiveness of PP-PLL is evalu-
ated against five state-of-the-art partial label learning algorithms, and the rec-
ommended parameters for each comparing algorithm in corresponding literature
are used in our experiments:

– PL-KNN [9]: An k-nearest neighbor approach based on ADS averages the
output of respective neighbors to disambiguate the set of candidate labels
[Recommended configuration: k = 10]

– PL-SVM [15]: A maximum margin approach based on IDS incorporates
maximum margin to disambiguate the set of candidate labels [Recommended
configuration: regularization parameter pool with

{
10−3, · · · , 103

}
]

– PL-LEAF [21]: A partial-label learning method disambiguate the set of
candidate labels via postulating that the potentially useful information from
feature space [Recommended configuration: k = 10, C1 = 10, C2 = 1 ];

– PL-ECOC [20]: It learns from partial-label training instances via adapting
error-correcting output codes [Recommended configuration: the codeword
length L = dlog2(q)e ];
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– GM-PLL [14]: A partial-label learning method disambiguate the set of
candidate labels via incorporating the instance relationship and the co-
occurrence possibility of varying label basd on Graph Matching (GM) scheme
[Recommended configuration:set β among {0.3, 0.4, . . . , 0.8}].

The parameters employed by PP-PLL are set as T = 60, k = 10, µ = 1 and
λ = 0.005, which the analysis of parameter configuration is conducted in Sub-
section 5.3. In this paper, we perform ten runs of 50%/50% random train/test
on four controlled UCI datasets as well as five real-world partial label datasets,
and we evaluate comparing algorithms by the mean predictive accuracies (with
standard deviation). Furthermore, we adopt pairwise t-test at 0.05 significance
level to investigate whether PP-PLL is significantly superior/inferior to the com-
paring algorithms.

Fig. 1. The classification accuracy of each comparing method on four controlled UCI
datasets with stochastic r.

5.2 Experimental Results

Since four controlled UCI datasets are generated manually via two parameters
while five real-world datasets are generated via real world scenarios, we perform
two series of experiments to evaluate the performance of the proposed method.
Meanwhile, the following two subsections exhibit the experimental results sepa-
rately.

Controlled UCI Datasets In Figure 1, the classification accuracy of each
comparing algorithm is illustrated where the probability of generating partial
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labeled data p varies from 0.1 to 0.7 with step-size 0.1, while the size of distracting
labels set r is randomly selected among {1, 2, 3}.

From Figure 1, we can see that PP-PLL achieves better classification accu-
racy than the comparing algorithms in most cases. Table 2 reports the experi-
mental results with fixed value of r, along with the win/tie/loss counts between
PP-PLL and other comparing algorithms. The result of statistical comparisons
in Table 2 shows that PP-PLL achieves competitive classification performance
against other state-of-the-art partial label learning algorithms on most controlled
UCI datasets .

PP-LEAFPL-KNNPL-SVMPL-ECOC GM-PLL

vary p(r = 1) 26/1/1 28/0/0 28/0/0 28/0/0 19/7/2

vary p(r = 2) 26/2/1 26/2/0 28/0/0 26/2/0 14/9/5

vary p(r = 3) 26/2/0 26/1/1 28/0/0 25/2/1 16/8/4

In Total 79/3/2 80/3/1 84/0/0 79/4/1 49/24/11

Table 2. Win/tie/loss counts (pairwise t-test at 0.05 significance level) on the con-
trolled UCI datasets between PP-PLL and the comparing algorithms with classification
accuracy.

Real-World Datasets We compare the PP-PLL with all above comparing al-
gorithms on the real-world datasets from four task domains mentioned above.
The classification performance of each algorithm in terms of accuracy is reported
in Table 3. As shown in Table 3, which is classification accuracy of each algorithm
on the real-world datasets, it is obvious that PP-PLL achieves superior classifica-
tion accuracy comparing with all the counterpart algorithms on these real-world
datasets except for GM-PLL, PL-SVM and PL-ECOC on Yahoo! News.

Lost MSRCv2 Yahoo!News BirdSong FG-NET

PP-PLL 0.748± 0.031 0.546± 0.045 0.554± 0.004 0.850± 0.24 0.128± 0.007

GM-PLL 0.737± 0.043 • 0.530± 0.019 • 0.629± 0.007 ◦ 0.663± 0.010 • 0.065± 0.021 •
PL-KNN 0.332± 0.030 • 0.417± 0.012 • 0.457± 0.009 • 0.614± 0.024 • 0.037± 0.008 •
PL-SVM 0.639± 0.056 • 0.417± 0.027 • 0.636± 0.018 ◦ 0.662± 0.032 • 0.058± 0.010 •

PL-ECOC 0.703± 0.052 • 0.505± 0.027 • 0.662± 0.010 ◦ 0.740± 0.016 • 0.040± 0.018 •
Table 3. Classification accuracy (mean ± standard deviation) of each algorithm on the
real-world datasets. Furthermore, • or ◦ is denoted as whether PP-PLL is statistically
superior or inferior to the comparing algorithm (pairwise t-test at 0.05 significance
level).
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Fig. 2. Parameter sensitivity analysis of PP-PLL on the real-world datasets BirdSong
and Lost.

5.3 Sensitivity Analysis

Figure 2 shows the performance of PP-PLL under different parameter config-
urations, and the convergence of PP-PLL on BirdSong and Lost. As shown
in (a), ‖C(t) − C(t − 1)‖2F which is the square of Frobenius norm about dif-
ference in the conditional probability matrix C between two continuous iter-
ations gradually approaches 0 as t tends to be infinite. Especially when the
number of iterations reaches 20-40 loops, PP-PLL becomes convergent. There-
fore, the convergence of PP-PLL is demonstrated, and PP-PLL shows relative
stability with the varying of parameters (k, µ, λ) in (b)-(d). In addition, Fig-
ure 2 also reports that the parameter configuration specified for Subsection 5.1
(T = 60, k = 10, µ = 1, λ = 0.005) naturally follows from the analysis mentioned
above, and makes PP-PLL obtain relatively superior performance compared with
other parameter combinations.

6 Conclusion

In this paper, we present a biconvex formulation containing a mapping relation-
ships from input features to the ground-truth label based on manifold assump-
tion, which is optimized by the alternating optimization method, to deal with
partial label learning via probability propagation procedure. Extensive experi-
mental results on controlled UCI datasets as well as real-world datasets demon-
strate that our proposed method can achieve superior classification performance
than the state-of-the-art partial label learning algorithms. However, In terms of
weighted graph, how to create a more meaningful weight matrix will be one of
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the future directions of partial label learning. It would help all MADS (Manifold
Assumption based Disambiguation Strategies) extend to the more special situ-
ations, especially when the size of each candidate label set is too large, which
causes the information of the ground-truth label in each candidate label set to
disappear. For PP-PLL, an important future work is to combine weighted graph
with probability distribution of candidate label sets, to improve the availability
of candidate label sets.
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