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Abstract. Research into automated systems for detecting and classify-
ing marine mammals in acoustic recordings is expanding internationally
due to the necessity to analyze large collections of data for conservation
purposes. In this work, we present a Convolutional Neural Network that
is capable of classifying the vocalizations of three species of whales, non-
biological sources of noise, and a fifth class pertaining to ambient noise.
In this way, the classifier is capable of detecting the presence and absence
of whale vocalizations in an acoustic recording. Through transfer learning,
we show that the classifier is capable of learning high-level representa-
tions and can generalize to additional species. We also propose a novel
representation of acoustic signals that builds upon the commonly used
spectrogram representation by way of interpolating and stacking multi-
ple spectrograms produced using different Short-time Fourier Transform
(STFT) parameters. The proposed representation is particularly effective
for the task of marine mammal species classification where the acoustic
events we are attempting to classify are sensitive to the parameters of
the STFT.

Keywords: convolutional neural networks · classification · signal pro-
cessing · bioacoustics

1 Introduction

Since their introduction to the area of computer vision, Convolutional Neural
Networks (CNNs) have continued to improve upon the state-of-the-art. Recently,
a growing collection of research has been brought forward applying CNNs to
tasks which are auditory in nature, including: speech recognition [2, 7], musical
information retrieval [4, 14], and acoustic scene classification [21, 23].
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Inspired by the compelling results obtained in the previously mentioned do-
mains, researchers in oceanography and marine biology have started to investigate
similar solutions to problems in their field. One such problem is the analysis of
underwater acoustic data, which is one of the primary methods used to measure
the presence, abundance, and migratory patterns of marine mammals [28]. The
necessary acoustic data for modelling marine mammal life is often collected
using Passive Acoustic Monitoring (PAM) techniques. PAM is non-invasive and
reduces the risk of altering the behaviour of a species of interest, unlike GPS
tagging. PAM is also less susceptible to harsh weather conditions compared to
visual surveys. Acoustic data collected for PAM is often carried out using moored
recorders equipped with hydrophones. Stakeholders make use of PAM to adjudi-
cate environmental and governmental policy decisions, for example implementing
reduced speed limits on vessels travelling through shipping channels in order to
reduce their risk of collision with endangered species of whales [1].

Due to their high cost of deployment, PAM recording devices may be left
unattended for months or years at a time before resurfacing, producing very large
amounts of data; typically several terabytes per deployment. It is becoming in-
creasingly common for collections of acoustic data to be described at the petabyte
scale, making complete human analysis infeasible. As a result, research into auto-
mated Detection and Classification Systems (DCS) is widespread and continuing
to grow. From a machine learning perspective, a DCS can be interpreted as a
hierarchical model containing a binary classifier recognizing whether a signal
of interest is present within an acoustic recording, combined with a multi-class
classifier for determining the source of the signal. Importantly, marine biologists
and oceanographers are typically concerned with the presence or absence of
specific species in an acoustic recording. While there have been great advances
in the research and development of these systems, many DCS are based on the
acoustic properties of a signal of interest and may be specific on a per-dataset
basis depending on the equipment that was used or the geographic location of
the recordings. Therefore, such systems are often not generalizable and may
require being formulated from scratch for a new data set. Moreover, attempts at
producing generalizable systems yield high rates of false detections [3].

In this work, we present a deep learning implementation of a DCS composed
of a CNN trained on spectrogram representations of acoustic recordings. The
main contributions of this work are:

– A CNN capable of classifying three species of marine mammals as well as
non-biological sources and ambient noise.

– The classifier makes up an automated DCS that is generalizable and can
be adapted to include additional species that produce vocalizations below
1000Hz.

– A novel visual representation of acoustic data based on interpolating and
stacking multiple spectrograms produced using distinct Short-time Fourier
Transform parameters.

This work describes a complete application using original data collected for
scientific research that could have substantial implications towards environmental
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policy and conservation efforts. The data was manually selected based on the
target species of interest, however, it has not been cleaned and manipulated
unlike many research projects in machine learning that use common sets of image
data or preprocessed acoustic recordings. Additionally, while the results focused
on in this paper are centred on detection and classification of marine mammals,
the framework outlined in this paper can be adapted to other tasks such as
acoustic scene classification.

The remainder of this paper is organized as follows. In Section 2 we review
related work on the topic of marine mammal species classification and provide
further details on the complexities of the problem. An overview of common
representations of acoustic data as well as a novel representation formulated
especially for the task of marine mammal species classification is provided in
Section 3. The data set used in training the CNN and additional information
regarding the experimental setup is provided in Section 4. The corresponding
experimental results are analyzed in Section 5. Finally, concluding remarks and
future work are presented in Section 6.

2 Background and Related Work

CNNs have traditionally been applied to visual recognition tasks on large col-
lections of labelled images. Most notably, CNNs have lead to state-of-the-art
performance for classifying commonly used benchmark image data sets and have
surpassed human levels of performance [13]. Beyond image classification, CNNs
have also been used for object detection [10, 12] and in conjunction with Recurrent
Neural Networks for natural language processing [15].

Recently, several factors have led researchers to apply CNNs outside of the
visual paradigm such as classifying events or patterns found in acoustic recordings.
An obvious reason for adapting CNNs to acoustic tasks is the performance levels
of the classifiers cited above. A less obvious reason to those not working in the
field of acoustics or digital signal processing, is that human analysis of acoustic
data is often carried out visually using spectrograms as it is faster to visually
identify signals of interest without having to listen to the entire recording. Another
reason for using visual representations of acoustic data is that they allow for the
analysis and interpretation of sounds outside of the human hearing range. One
area, alluded to in Section 1, that makes frequent use of visual representations of
acoustic data is the detection and classification of marine mammal vocalizations
within underwater acoustic recordings (i.e., DCS research).

Research into automated DCS has been a growing topic of interest, in part,
as a by-product of the reduced costs in recording equipment which has produced
vast amounts of data. Another reason for the growth in DCS research is for
conservation purposes, particularly as it relates to endangered species of whales.
In developing an automated DCS for marine mammal vocalizations, one hopes
to accurately detect and assign a label to an instance of an acoustic recording
containing one or more vocalizations produced by a species of interest. However,
developing a generalizable DCS presents several distinct challenges. For one,
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underwater recordings often have a low signal-to-noise ratio making feature
extraction difficult. Another challenge is that ground truth labelled data is
difficult to obtain due to the required expertise and training of the labeller. As
a result, only a very small fraction of the large collections of acoustic data is
suitable for supervised learning. Furthermore, the small numbers of some species
coupled with the low rate of occurrence of their vocalizations make for highly
unbalanced data.

Traditionally, many of the algorithms used to detect and classify marine
mammal vocalizations are derived from the properties of a signal of interest. In
general, these approaches can be divided into two categories. The first category
of algorithms involves comparing unlabelled data to templates of certain vocal-
izations. Examples of this approach include matched filtering, where a template
corresponding to the vocalization of interest is convolved with a signal to produce
a detection function that is evaluated using a pre-determined threshold parameter
[5]. Another example is spectrogram correlation, which first computes a correlation
kernel using segments of template spectrograms, following which, the correlation
kernel is convolved over a spectrogram of the unlabelled data producing a vector
representing the similarity between the spectrogram and the kernel over time.
Large similarity values correspond to possible detections. The second category of
algorithms involves detecting regions of interest in a spectrogram and extracting
features (e.g.: the duration of the detection or the absolute change in frequency)
to be used as input vectors for classification. Various detection algorithms are used
in the first step of this approach including: neighbourhood search algorithms (e.g.,
pixel connectivity) in spectrograms that have been filtered, smoothed, and cast
to binary representations [3] and contour detectors that operate by continually
searching for local maxima within pre-specified frequency bands of normalized
spectra over time [19]. These detection algorithms are heavily dependent on
the filtering, normalization, and smoothing operations that are performed on
each spectrogram. Once the regions of interest are determined, feature vectors
are then handed to commonly used classification algorithms such as: linear and
quadratic discriminant analysis [3, 9], support vector machines [8], and artificial
neural networks [8]. Researchers have also likened the task to automatic speech
recognition and used Gaussian mixture models and hidden Markov models for
classification [22, 25].

The algorithms described above involve a large amount of human input–often
from experts–which is a limitation to the development of future classifiers for
several reasons. In the former category the templates used for detection and
classification are largely specific to not only certain species, but also different
types of vocalizations produced by the same species. Furthermore, the detection
threshold may require fine-tuning depending on the noise characteristics of the
data set. For the latter category of algorithms, many of the hyper-parameters
provided to the smoothing and noise-removal routines are dependent on the
data set. Subsequently, the hand-engineered features are contaminated by these
specifications as well as human bias. These limitations yield systems which are
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not easily generalizable to a broad category of species using data collected at
different sampling rates, geographic locations, or using different recording devices.

More recently, researchers have attempted to use deep learning to learn gener-
alizable representations of spectrograms for the purpose of DCS development. In
one study, Halkias et al. [11] contrast the performance of a restricted Boltzmann
machine and a sparse auto-encoder for classifying five species of baleen whales
(mysticetes), however, the regions of interest containing the whale calls were
assumed to be known. Wang et al. [27] use CNNs to classify spectrograms contain-
ing vocalizations of killer whales (Orcinus orca) and pilot whales (Globicephala
melas/macrorhynchus) but similarly do not include non-biological or ambient
noise sources. Liu et al. [16] also use CNNs but focus on the classification of
call types as opposed to the species that produced them. Finally, Luo et al. [17]
train a CNN to detect the high-frequency echolocation clicks of toothed whales
(odontocetes) using a combination of real audio recordings and synthetic data,
however, we are interested in classifying baleen whale vocalizations that occur
at a much lower frequency and can be masked by low tonal sounds created by
shipping activity.

3 Visual Representations of Acoustic Data

Human analysis of acoustic recordings is performed aurally by listening to an
acoustic recording as well as visually using spectrograms. A popular approach
for generating spectrograms is through a Short-time Fourier Transform (STFT).
The STFT procedure calculates the sinusoidal frequency and phase content of
an acoustic signal over time and is most commonly visualized in two dimensions
with time on the x-axis, frequency on the y-axis, and intensity expressed by
varying colour.

The equation of the discrete-time STFT of a signal x[n] can be expressed as:

X(n, ω) =

∞∑
m=−∞

x[m]w[m− n]e−jωm , (1)

where w is a windowing function with a pre-specified length centred at time n.
In the equation expressed above, time is discrete and frequency (ω) is continuous,
however, in practice both units are discretized and each successive STFT is
computed using an implementation of the Fast Fourier Transform (FFT) algo-
rithm (e.g., the Cooley-Tukey algorithm [6]). Equation 1 describes a complex
function, therefore, we take the square of the absolute value of X(n, ω) yielding
a spectrogram of the power spectral density. Finally, we convert the intensity
from power to a logarithmic scale (i.e., decibels (dB)), as is commonly the case
in underwater acoustics.

3.1 Mel-scaled Spectrograms

A spectrogram computed using the approach formulated above is linear in
frequency. Unfortunately, because CNNs are spatially invariant, they are incapable
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of understanding human perceptions of pitch when frequency is expressed on a
linear scale. For example, while the difference between two signals occurring at
1000Hz and 1500Hz and two other signals occurring at 10kHz and 10.5kHz are
numerically equivalent (i.e., equal to 500Hz), the difference of the lower frequency
signals is perceptually much larger to a human listener.

The bandwidth of the data we are attempting to classify is relatively low (i.e.,
≤ 1000Hz), therefore the CNNs imperception to pitch is not a major concern.
However, in order to test this hypothesis, we additionally generate mel-scaled
spectrograms whereby frequency is transformed from hertz to mels (from the
word melody) using the formula outlined in Equation 2.

ωmel = 2595 log10

(
1 +

ωHz

700

)
. (2)

Following this transformation, the resulting frequency scale more closely aligns
with the log-like human perception of pitch.

3.2 Novel Representation: Stacked & Interpolated Spectrograms

The majority of the DCS detailed in Section 2 were trained using large collections
of single channel inputs in the form of spectrograms. During the creation process
of said data sets, a decision must be made on the appropriate combination of
parameters to pass to the STFT. In practice, when marine biologists analyze
acoustic recordings, they will often generate multiple spectrograms using different
STFT parameters, for example: changing the length of the FFT window and/or
the window overlap. By changing the parameters of the STFT, the time and
frequency resolutions of the spectrogram are altered. Using multiple spectrograms
with varying resolutions is particularly helpful when annotating underwater
acoustic recordings containing marine mammal vocalizations because some species
tend to make prolonged low-frequency vocalizations with a small bandwidth (e.g.:
blue whale moans), while other species make shorter vocalizations with a larger
bandwidth (e.g.: humpback songs). Depending on the set of parameters used to
generate the spectrogram, one can easily misclassify a vocalization as a different
species or miss the vocalization entirely.

(1) STFT (3) Interpolation

Fig. 1. Simple illustration demonstrating the process of transforming a waveform of an
acoustic signal into a multi-channel input via interpolation and stacking.
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We propose a novel representation of an acoustic signal that attempts to
exploit the strategy used by human experts during the annotation process. First,
following Equation 1, several spectrograms are generated using multiple sets of
STFT parameters. Because each of the spectrograms vary in resolution across
time and frequency, they are interpolated using a simple linear interpolation
spline over a grid proportionate to the smallest time and frequency resolutions.
The equation of a linear interpolation spline for some point (n, ω) between (ni, ωi)
and (ni+1, ωi+1), where n is known, can be expressed as:

ω = ωi +
ωi+1 − ωi

ni+1 − ni
(n− ni) . (3)

After interpolation, the dimensions of the matrices corresponding to each
spectrogram are the same. The interpolated spectrograms are then stacked to
form a multi-channel tensor; imitating the concept of RGB channels in a digital
colour image, as depicted in Figure 1. The details of the algorithm used to
produce a single instance of the novel representation described above are outlined
in Algorithm 1.

Algorithm 1: Generating an instance of the novel representation
Input: The waveform x, function w, and parameters Θ = [θ1, θ2, . . . , θk]
Output: A tensor Z with k channels

1 Initialize the interpolation resolutions ω0 and n0 to ∞
2 for i = 1 to k do
3 Generate a spectrogram Di = STFT(x;w, θi) (Eqn 1)
4 Maintain a running minimum of ω0 and n0

5 if ∆ωi < ω0 then
6 ω0 = ∆ωi

7 end
8 if ∆ni < n0 then
9 n0 = ∆ni

10 end
11 end
12 for i = 1 to k do
13 Interpolate each spectrogram Si = INTERPOLATE(Di;ω0, n0) (Eqn 3)
14 end
15 Stack the interpolated spectrograms Z = [S1,S2, . . . ,Sk]
16 Return Z

4 Data Processing and Experiment Setup

4.1 Recordings of Marine Mammal Vocalizations

The acoustic recordings used to train the classifier were collected by JASCO
Applied Sciences using Autonomous Multichannel Acoustic Recorders (AMARs)
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during the summer and fall months of 2015 and 2016 in the areas surrounding
the Scotian Shelf; along the coast of the Atlantic Canadian provinces (Figure 2).

Fig. 2. Map depicting the locations of the recording devices deployed by JASCO Applied
Sciences along the Scotian Shelf located off the coast of Atlantic Canada.

The recordings were sampled at both 8kHz and 250kHz in order to capture
the low frequency vocalizations of baleen whales and high frequency vocalizations
of toothed whales, respectively. In this work we focus on the detection and
classification of baleen whales. In particular, we are interested in three species:
blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus), and sei
whales (Balaenoptera borealis). These species can be particularly challenging to
classify as they are each capable of making a similar vocalization known as a down
sweep during the summer months. A large collection of baleen whale vocalizations
fall below 1000Hz, therefore, we restrict our set of acoustic recordings to those
collected using the 8kHz sampling rate.

The acoustic recordings were analyzed by marine biology experts producing
over 30,000 annotations in the form of bounding boxes around signals pertaining to
the three species of whales and other acoustic sources labelled as “non-biological”.
Other species of whales present in the recording area were also annotated, however,
they were not included in this paper. The distribution of annotations is heavily
unbalanced in favour of the more vocal fin whales at a 6:1 ratio.

The data sets used for training, validating, and testing each classifier were
created in the following fashion. First, the human annotations were centred within
an excerpt 30 seconds long. Four spectrograms depicting typical examples of
the 30 second excerpts are provided in Figure 3; one for each of the possible
acoustic sources. Example annotations are drawn using dashed vertical lines. As
we can see, not every vocalization that appeared in a spectrogram was labelled.
In Figure 3a for example, there appears to be three blue whale vocalizations
occurring consecutively, however, only the second has been annotated.
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Fig. 3. Example spectrograms displaying frequency in hertz on a log-scale. Examples
are provided for each of the three whale species: a) blue whales, b) fin whales, c) sei
whales, and d) non-biological noise. Dashed vertical lines depict the upper and lower
bounds of the expert annotations.

For each 30 second excerpt, a smaller ten second long sample (here on referred
to as simply a “sample”) containing the annotation was randomly selected from
the larger excerpt. Due to the partial labelling of the recordings, it is possible
that a sample may include more than one vocalization. For example, a sample
from time 10 to 20 seconds in the file used to produce Figure 3c, would in fact
contain three sei whale vocalizations. The set of data containing only ambient
noise was produced in a similar fashion, however, they were produced from a
large set of files that were known to not contain baleen whale vocalizations. As
such, the sampling routine simply selected a ten second sample randomly from
the entire file.

A spectrogram of each sample was produced corresponding to the CNN
that was being trained and the matrices corresponding to the values of the
spectrograms were used as training instances. In total there were five categories
of classifiers: three trained on single-channel spectrograms using increasing FFT
window lengths (i.e., 256, 2048, and 16,384 samples); one trained on single-channel
mel-scaled spectrograms using a window length of 2048 samples and 128 mels;
and one trained on a three-channel version of the novel representation described
in Section 3.2. The three spectrograms used in creating the novel representation
used window lengths of 256, 2048, and 16,384 samples respectively and were
interpolated to fit within a grid of height 256 and width 128 units. All of the
above spectrograms were produced using the Hann window function and used an
FFT window overlap of 1/4 the window length. The choice of window lengths
were chosen in order to capture short sweeping vocalizations such as whistles
(i.e., 256 ≈ 1/32 the sampling rate), a more inclusive group of vocalizations (i.e.,
2048 ≈ 1/4 the sampling rate), and long vocalizations that are fairly persistent
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in frequency (i.e., 16384 ≈ 2× the sampling rate). The computed spectrograms
were truncated using an upper frequency bound of 1000Hz and a lower bound
of 10Hz. Apart from the linear interpolant applied in the case of the novel
representation, no additional filtering, smoothing, or noise removal was applied
to the spectrograms.

In practice, the ten second sampling routine and all subsequent steps including
spectrogram generation were executed in parallel on the CPU while the CNN
was trained on the GPU. In this way, the sampling routine acted as a quasi-
data-augmentation strategy for each training batch. Further details with respect
to the CPU, GPU, batch sizes, and other parameters used during training are
provided in Section 4.2.

Separate training, validation, and test data sets were produced using a random
split ratio of 70/15/15, respectively. Table 1 contains the number of files and the
corresponding species distributions of each data set.

Table 1. Number of files and the distribution of each acoustic source for the training,
validation, and test sets.

Source Label Training Validation Test
Blue Whale BW 2692 (6.23%) 601 (6.49%) 574 (6.20%)
Sei Whale SW 1701 (3.94%) 332 (3.59%) 383 (4.14%)
Fin Whale FW 15,118 (35.01%) 3244 (35.06%) 3272 (35.36%)
Non-biological NN 2078 (4.81%) 449 (4.85%) 398 (4.30%)
Ambient AB 21,589 (50.00%) 4626 (50.00%) 4627 (50.00%)

4.2 Neural Architectures and Training Parameters

We evaluate the performance of two commonly used CNN architectures, namely:
ResNet-50 [13] and VGG-19 with batch normalization [24]. The CNNs were
implemented in Python using the PyTorch open source deep learning platform
[20]. Training was distributed over four NVIDIA P100 Pascal GPUs each equipped
with 16GB of memory. The sampling routine and subsequent data processing
was performed in parallel on two 12-core Intel E5-2650 CPUs.

Each CNN–regardless of the FFT window length or number of channels–
was trained using the same hyper-parameters apart from the initial learning
rate, which was set to 0.001 for the ResNet architecture and 0.01 for the VGG
architecture. In both cases, the learning rate decayed exponentially by a factor
of 10 using a step schedule of 30 epochs. The batch size of each training step was
set to 128 instances. Stochastic Gradient Descent (SGD) with momentum equal
to 0.9 and weight decay equal to 1e−4 was used to optimize a cross-entropy loss
function.
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The CNNs were each trained for a total of 100 epochs. After each epoch, the
validation set was evaluated and the model with the best performance in terms
of F-1 Score was saved. An early stopping criteria was not used, however, if the
model began to overfit to the training data and the F-1 Score of the validation
set did not improve, the best model with respect to the validation set was still
maintained. Finally, the training process of each classifier was repeated ten times
using different random number generator seeds.

5 Experimental Results

Table 2 contains the mean evaluation metrics and 95% confidence intervals over
ten training runs for the ResNet and VGG CNNs.

Table 2. Mean performance and 95% confidence intervals of ten training/testing runs
using random number generator seeds for each combination of CNN architecture and
STFT parameter set.

ResNet-50 Performance
NFFT Accuracy Precision Recall F-1 Score

3-channels (Hz) - 0.953 (±0.016) 0.887 (±0.045) 0.871 (±0.036) 0.878 (±0.031)

1-channel (Hz)
256 0.883 (±0.022) 0.714 (±0.060) 0.641 (±0.037) 0.675 (±0.046)
2048 0.944 (±0.009) 0.863 (±0.036) 0.838 (±0.039) 0.850 (±0.023)
16384 0.943 (±0.013) 0.860 (±0.032) 0.847 (±0.058) 0.853 (±0.031)

1-channel (mels) 2048 0.895 (±0.031) 0.762 (±0.067) 0.723 (±0.048) 0.742 (±0.044)

VGG-19 Performance
NFFT Accuracy Precision Recall F-1 Score

3-channels (Hz) - 0.961 (±0.017) 0.906 (±0.044) 0.892 (±0.049) 0.899 (±0.041)

1-channel (Hz)
256 0.914 (±0.024) 0.790 (±0.048) 0.771 (±0.070) 0.780 (±0.053)
2048 0.959 (±0.019) 0.899 (±0.041) 0.889 (±0.048) 0.894 (±0.039)
16384 0.951 (±0.017) 0.871 (±0.037) 0.878 (±0.038) 0.875 (±0.028)

1-channel (mels) 2048 0.918 (±0.022) 0.818 (±0.043) 0.784 (±0.036) 0.801 (±0.034)

The classifier trained on the novel representation outperforms the remaining
classifiers trained on single-channel inputs. Paired two-sample t -tests indicate
that the improvement in performance between the classifier trained on the novel
representation is statistically significant in all cases with one exception: the
VGG-19 CNN trained on single-channel inputs using a window length of 2048
samples.

Figure 4 contains four confusion matrices: two corresponding to the VGG-19
architecture and two corresponding to the ResNet-50 architecture. In both cases,
the best two performing classifiers were those trained on the novel representation
and the single-channel linearly scaled spectrogram produced using a window
length of 2048 samples.
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Fig. 4. Normalized confusion matrices of the two best performing classifiers in terms of
F-1 Score for the ResNet-50 and VGG-19 CNNs.

5.1 Generalization to Other Acoustic Sources

In order to the demonstrate the ability of the DCS that we have developed to
generalize to other acoustic sources below 1000Hz, we train a new classifier using a
transfer learning approach to include humpback whale (Megaptera novaeangliae)
vocalizations. Specifically, all sixteen convolutional layers in the VGG-19 network
trained on the novel representation are frozen. The last three layers of the network
are then re-learned on the data set described in Table 1 with an additional 2100
humpback vocalizations. The hyper-parameters and optimization routine used for
training the last layers of the network are equivalent to those detailed in Section
4.2.

The trained classifier achieves performance levels in terms of accuracy, pre-
cision, and recall of 0.948, 0.884, and 0.871, respectively, without the need of
re-training the convolutional feature extraction layers of the CNN.
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Fig. 5. Normalized confusion matrix of the transfer learning experiment evaluated on
the test set described in Table 1 with an additional 450 humpback annotations identified
using the label “HB”.

t-SNE Embeddings The transfer learning results exhibit that the CNN is
capable of learning complex features contained within a spectrogram. Further
proof of this statement can be found in Figure 6, which contains two-dimensional
t-SNE embeddings [18] generated using the output of the last frozen layer of the
VGG-19 CNN trained on the novel representation.

Fig. 6. t-SNE embeddings computed from the output of the last frozen layer of the
VGG-19 CNN architecture.

There is a distinct separation between the original five classes of acoustic
sources. More importantly, even before learning the last three classifying layers of
the VGG-19 CNN, a relatively distinct representation has already been learned
for the humpback whale class. This result is significant as it implies additional
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species with less annotated data can be included in our implementation of a DCS
through transfer learning.

6 Conclusion

This paper presents a scientific application focused on detecting and classifying
marine mammal vocalizations in acoustic recordings. In particular, we have
developed a DCS based on Convolutional Neural Networks that is capable of
classifying three species of baleen whales as well as non-biological sources against
a background of ambient noise. A novel representation of acoustic signals was
introduced and this representation increased the performance of the aforemen-
tioned classifier. The DCS was shown to be capable of learning generalizable
representations for the purpose of including additional species. The latter note is
substantial as it implies that species with very little annotated data–especially
those species that are endangered–can be included in the training process of
future classifiers through transfer learning.

A well performing and generalizable DCS such as the one that we have
developed is of great interest to researchers in the fields of marine biology,
bioacoustics, and oceanography as it allows for fast analysis of large acoustic
data sets. Such analysis may be used to inform governmental and environmental
policy pertaining to conservation efforts of marine mammal life.

6.1 Future Work

The work presented above is part of an ongoing research project focused on
developing a DCS to be used in real time on specially developed autonomous
hardware (e.g., moored recording devices and/or ocean gliders). With this goal
in mind, we must consider time/space complexities and additional research into
model compression is necessary. Further research and development is ongoing
using data collected from recording devices deployed in various locations around
the world. The supplementary data allows for the ability to include a variety
of additional species of baleen whales as well as other marine mammals (e.g.,
pinnipeds). The additional data will also allow for the interpretation of different
sources of ambient noise (i.e., soundscapes). Collectively, including additional
data from various locations around the world will lead to a more robust DCS of
marine mammal vocalizations.

Another option for including additional species of marine mammals for which
we have little available data is through data augmentation strategies. In particular,
research into using unsupervised or semi-supervised approaches (e.g., Variational
Auto-encoders, Generative Adversarial Networks) to increase the size of the
training data could be highly beneficial.

Recent work into neural network architectures that operate directly on the
waveform of an acoustic signal have shown great promise [26]. While the majority
of these results are specific to generative tasks, these architectures–or a suitable
alternative–may be used in training a classifier for acoustic recordings such as
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those described in this paper. In particular, through learning from the waveform
directly we avoid any information loss that takes place during a Fourier transform.

Finally, given the promising results of our early experiments reported in
Section 5.1, we also plan on investigating the use of various transfer learning and
meta-learning techniques for the task at hand.
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