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Abstract. In this paper, we investigate how to learn a suitable repre-
sentation of satellite image time series in an unsupervised manner by
leveraging large amounts of unlabeled data. Additionally, we aim to dis-
entangle the representation of time series into two representations: a
shared representation that captures the common information between
the images of a time series and an exclusive representation that con-
tains the specific information of each image of the time series. To address
these issues, we propose a model that combines a novel component called
cross-domain autoencoders with the variational autoencoder (VAE) and
generative adversarial network (GAN) methods. In order to learn disen-
tangled representations of time series, our model learns the multimodal
image-to-image translation task. We train our model using satellite im-
age time series provided by the Sentinel-2 mission. Several experiments
are carried out to evaluate the obtained representations. We show that
these disentangled representations can be very useful to perform multiple
tasks such as image classification, image retrieval, image segmentation
and change detection.

Keywords: Unsupervised learning · Image-to-image translation · VAE
· GAN · Disentangled representation · Satellite image time series.

1 Introduction

Deep learning has demonstrated impressive performance on a variety of tasks
such as image classification, object detection, semantic segmentation, among
others. Typically, these models create internal abstract representations from raw
data in a supervised manner. Nevertheless, supervised learning is a limited ap-
proach since it requires large amounts of labeled data. It is not always possible to
obtain labeled data since it requires time, effort and resources. As a consequence,
semi-supervised or unsupervised algorithms have been developed to reduce the
required number of labels. Unsupervised learning is intended to learn useful
representations of data easily transferable for further usage. As using smart
data representations is important, another desirable property of unsupervised
methods is to perform dimensionality reduction while keeping the most impor-
tant characteristics of data. Classical methods are principal component analysis
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(PCA) or matrix factorization. For the same purpose, autoencoders learn to
compress data into a low-dimensional representation and then, to uncompress
that representation into the original data. An autoencoder variant is the vari-
ational autoencoder (VAE) introduced by Kingma and Welling [13] where the
low-dimensional representation is constrained to follow a prior distribution. The
VAE provides a way to extract a low-dimensional representation while learning
the probability distribution of data. Other unsupervised methods of learning the
probability data distribution have been recently proposed using generative mod-
els. A generative model of particular interest is generative adversarial networks
(GANs) introduced by Goodfellow et al. [6, 7].

In this work, we present a model that combines the VAE and GAN meth-
ods in order to create a useful representation of satellite image time series in
an unsupervised manner. To create these representations we propose to learn
the image-to-image translation task introduced by Isola et al. [11] and Zhu et al.
[21]. Given two images from a time series, we aim to translate one image into the
other one. Since both images are acquired at different times, the model should
learn the common information between these images as well as their differences
to perform translation. We also aim to create a disentangled representation into
a shared representation that captures the common information between the im-
ages of a time series and an exclusive representation that contains the specific
information of each image. For instance, the common information accross time
series could be useful to perform image classification while the knowledge about
the specific information of each image could be useful for change detection.

Since we aim to generate any image of the time series from any of its images,
we address the problem of multimodal generation, i.e. multiple output images
can be generated from a single input image. For instance, an image containing
harvested fields could be translated into an image containing growing crop fields,
harvested fields or a combination of both.

Our approach is inspired by the BicycleGAN model introduced by Zhu et
al. [22] to address multimodal generation and the model presented by Gonzalez-
Garcia et al. [5] to address representation disentanglement.

In this work, the following contributions are made. First, we propose a model
that combines the cross-domain autoencoder principle proposed by Gonzalez-
Garcia et al. [5] under the GAN and VAE constraints to address representation
disentanglement and multimodal generation. Differences with respect to models
[5, 22] can be seen in Section 2. Our model is adapted to satellite image time
series analysis using a simpler architecture (see Section 3). Second, we show that
our model is capable to process a huge volume of high-dimensional data such as
Sentinel-2 image time series in order to create feature representations (see Sec-
tion 4). Third, our model generates a disentangled representation that isolates
the common information of the entire time series and the exclusive information
of each image. Our experiments suggest that these representations are useful to
perform several tasks such as image classification, image retrieval, image segmen-
tation and change detection by outperforming other state-of-the-art methods in
some cases (see Sections 4.2, 4.3, 4.4, 4.5 and 4.6).
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2 Related work

Variational autoencoder (VAE). In order to estimate the data distribution
of a dataset, a common approach is to maximize the log-likelihood function given
the samples of the dataset. A lower bound of the log-likelihood is introduced by
Kingma and Welling [13]. To learn the data distribution, the authors propose to
maximize the lower bound instead of the log-likelihood function which in some
cases is intractable. The model is implemented using an autoencoder architecture
and trained via a stochastic gradient descent method. It is capable to create a
low-dimensional representation where relevant attributes of data are captured.
Generative adversarial networks (GANs). Due to its great success in many
different domains, GANs [6, 7] have become one of the most important research
topics. The GAN model can be thought of as a game between two players: the
generator and the discriminator. In this setting, the generator aims to produce
samples that look like drawn from the same distribution as the training samples.
On the other hand, the discriminator receives samples to determine whether they
are real (dataset samples) or fake (generated samples). The generator is trained
to fool the discriminator by learning a mapping function from a latent space
which follows a prior distribution to the data space. However, traditional GANs
(DCGAN [18], LSGAN [16], WGAN [1], WGAN-GP [8], EBGAN [20], among
others) does not provide a means to learn the inverse mapping from the data
space to the latent space. To solve this problem, several models were proposed
such us BiGAN [4] or VAE-GAN [14] which include an encoder from the data
space to the latent space in the model. The data representation obtained in the
latent space via the encoder can be used for other tasks as shown by Donahue
et al. [4].
Image-to-image translation. It is one of the most popular applications using
conditional GANs [17]. The image-to-image translation task consists of learning a
mapping function between an input image domain and an output image domain.
Impressive results have been achieved by the pix2pix [11] and cycleGAN [21]
models. Nevertheless, most of these models are monomodal. That is, there is a
unique output image for a given input image.
Multimodal image-to-image translation. One of the limitations of previous
models is the lack of diversity of generated images. Certain models address this
problem by combining the GAN and VAE methods. On the one hand, GANs are
used to generate realistic images while VAE is used to provide diversity in the
output domain. Recent work that deals with multimodal output is presented by
Gonzalez-Garcia et al. [5], Zhu et al. [22], Huang et al. [10] and Ma et al. [15]. In
particular, to be able to generate an entire time series from a single image, we
adopt the principle of the BicycleGAN model proposed by Zhu et al. [22] where
a low-dimensional latent vector represents the diversity of the output domain.
Since the BicycleGAN model is mainly focused on image generation, the model
architecture is not suitable for feature extraction. Instead, we propose a model
capable to split the shared information across the time series and the exclusive
information of each image that generates the diversity of the output domain.
Disentangled feature representation. Recent work is focused on learning dis-
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entangled representations by isolating the factors of variation of high-dimensional
data in an unsupervised manner. A disentangled representation can be very use-
ful for several tasks that require knowledge of these factors of variation. Chen et
al. [3] propose an objective function based on the maximization of the mutual
information. Gonzalez-Garcia et al. [5] propose a model based on VAE-GAN
image translators and a novel network component called cross-domain autoen-
coders. This model separates the representation of two image domains into three
parts: the shared part which contains common information from both domains
and the exclusive parts which only contain factors of variation that are specific
to each domain.

In this paper, we propose a model that combines the cross-domain autoen-
coder component under the VAE and GAN constraints in order to analyze satel-
lite image time series by creating a shared representation that captures the
spatial information and an exclusive representation that captures the temporal
information. While our method is inspired by the model proposed by Gonzalez-
Garcia et al. [5], we would like to highlight some differences: a) The model [5]
considers two image domains whose representation space can be split into two
exclusive parts and a shared part. For instance, the authors use a colored MNIST
dataset which can be split into: background color (exclusive part), digit color
(exclusive part) and digit (shared part). In our case, we consider only a shared
part which corresponds to spatial information at a given location on the Earth’s
surface and an exclusive part which is related to the acquisition time of the im-
ages; b) The model [5] performance is analyzed using simple datasets (colored
MNIST, 3D cars and 3D chairs) while running the code provided by the authors
to learn their model on Sentinel-2 data fails to converge generating unsatisfactory
results as shown in the additional material (see Section 1); c) We use a simpler
model architecture composed of 4 networks that implements the exclusive and
shared representation encoder, the decoder and the discriminator functions while
the model [5] uses 10 networks (2 encoders, 2 decoders, 4 discriminators and 2
GRL decoders) to achieve representation disentanglement which can be difficult
to train simultaneously.

3 Method

Let X,Y be two images randomly sampled from a given time series T in a
region C. Let X be the image domain where these images belong to and let
R be the representation domain of these images. The representation domain R
is divided into two subdomains S and E , then R = [S, E ]. The subdomain S
contains the common information between images X and Y and the subdomain
E contains the particular information of each image. Since images X and Y
belong to the same time series, their shared representations must be identical,
i.e. SX = SY . On the other hand, as images are acquired at different times, their
exclusive representations EX and EY correspond to the specific information of
each image.
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Fig. 1. Model overview. The model goal is to learn both image transitions: X → Y
and Y → X. Both images are passed through the network Esh in order to extract their
shared representations. Similarly, the network Eex extracts the exclusive representa-
tions corresponding to images X and Y . In order to generate the image Y , the decoder
network G takes the shared representation of image X and the exclusive representation
of image Y . A similar procedure is performed to generate the image X. Finally, the
discriminator D is used to evaluate the generated images.

We propose a model that learns the transition from X to Y as well as the
inverse transition from Y to X. In order to accomplish this, an autoencoder-like
architecture is used. In Figure 1, an overview of the model can be observed.
Let Esh : X → S be the shared representation encoder and Eex : X → E
be the exclusive representation encoder. To generate the image Y , the shared
representation of X, i.e. Esh(X), and the exclusive representation of Y , i.e.
Eex(Y ) are computed. Then both representations are passed through the decoder
function G : R → X which generates a reconstructed image G(Esh(X), Eex(Y )).
A similar process is followed to reconstruct the image X. Then, these images are
passed through a discriminator function D : X → [0, 1] in order to evaluate the
generated images.

The model functions Eex, Esh, G and D are represented by neural networks
with parameters θEex

, θEsh
and θG and θD, respectively. The training procedure

to learn these parameters is explained below.

3.1 Objective function

Similarly to Zhu et al. [22] and Gonzalez-Garcia et al. [5], our objective function
is composed of several terms to obtain a disentangled representation.

Concerning the shared representation, images X and Y must have identical
shared representations, i.e. Esh(X) = Esh(Y ). A simple solution is to minimize
the L1 distance between their shared representations as shown in Equation 1.

Lsh
1 = EX,Y∼X [|Esh(X)− Esh(Y )|] (1)
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The exclusive representation must only contain the particular information
that corresponds to each image. To enforce the disentanglement between shared
and exclusive representations, we include a reconstruction loss in the objective
function where the shared representations of X and Y are switched. The loss
term corresponding to the reconstruction of image X is represented in Equation
2. Moreover, this loss term can be thought of as the reconstruction loss in the
VAE model [13] which maximizes a lower bound of the log-likelihood function.
As we enforce representation disentanglement, we minimize the Kullback-Leibler
divergence between the data distribution and the generated distribution.

LX,Y
1 = EX,Y∼X [|X −G(Esh(Y ), Eex(X))|] (2)

On the other hand, the lower bound proposed in the VAE model constraints
the feature representation to follow a prior distribution. In our model, we only
force the exclusive representation to be distributed as a standard normal dis-
tribution N (0, I) in order to generate multiple outputs by sampling from this
space during inference while keeping the shared representation constant. In con-
trast to Gonzalez-Garcia et al. [5] where a GAN approach is used to constraint
the exclusive representation, a simpler and effective solution is to include a
Kullback-Leibler divergence term between the distribution of the exclusive rep-
resentation and the prior N (0, I). Assuming that the exclusive representation
encoder Eex(X) is distributed as a normal distribution N (µEex(X), σEex(X)), the
Kullback-Leibler divergence can be written as follows,

LX
KL = −1

2
EX∼X

[
1 + log(σ2

Eex(X))− µ
2
Eex(X) − σ

2
Eex(X)

]
(3)

We include a LSGAN loss [16] in the objective function to encourage the
model to generate realistic and diverse images thus improving the learned repre-
sentations. The discriminator is trained to maximize the probability of assigning
the correct label to real images and generated images while the generator is
trained to fool the discriminator by classifying generated images as real, i.e.
D(G(Esh(Y ), Eex(X))) → 1. The corresponding loss term for image X and its
reconstructed version can be seen in Equation 4 where the discriminator maxi-
mizes this term while the generator minimizes it.

LX
GAN = EX∼X

[
(D(X))

2
]

+ EX,Y∼X

[
(1−D(G(Esh(Y ), Eex(X))))

2
]

(4)

To summarize, the training procedure can be seen as a minimax game (Equa-
tion 5) where the objective function L is minimized by the generator functions
of the model (Eex, Esh, G) while it is maximized by the discriminator D.

min
Eex,Esh,G

max
D
L = LX

GAN + LY
GAN + λL1

(
LX,Y
1 + LY,X

1

)
+ λLKL

(LX
KL + LY

KL) + λshL1
Lsh
1

(5)

Where λL1 , λshL1
and λLKL

are constant coefficients to weight the loss terms.



Learning Disentangled Representations of Satellite Image Time Series 7

3.2 Implementation details

Our model is architectured around four neural networks: the shared representa-
tion encoder, the exclusive representation encoder, the decoder and the discrim-
inator. The architecture details are provided in the additional material section.
To train our model, we use batches of 64 randomly selected image pairs of size
64× 64× 4 from our satellite image time series dataset (see Section 4.1). Every
network is trained from scratch by using randomly initialized weights as start-
ing point. The learning rate is implemented as a staircase function which starts
with an initial value of 0.0002 and decays every 50000 iterations. We use Adam
optimizer to update the network weights using a β = 0.5 during 150000 iter-
ations. Concerning the loss coefficients, we use the following values: λL1

= 10,
λshL1

= 0.5 and λLKL
= 0.01 during training. The training algorithm was exe-

cuted on a NVIDIA Tesla K80 GPU during 3 days to process 100GB of satellite
image time series. The training procedure is summarized in Algorithm 1.

Algorithm 1 Training algorithm.

1: Random initialization of model parameters (θ
(0)
D , θ

(0)
Esh

, θ
(0)
Eex

, θ
(0)
G )

2: for k = 1; k = k + 1; k < number of iterations do
3: Sample a batch of m time series {T (1)

s , ..., T
(m)
s }

4: Sample a batch of m image pairs {(X(1), Y (1)), ..., (X(m), Y (m))} from {T (i)
s }

5: Compute L(k)(X(i), Y (i), θ
(k)
D , θ

(k)
Esh

, θ
(k)
Eex

, θ
(k)
G )

L(k) =
1

m

m∑
i=1

[(
D(X(i))

)2
+
(

1−D(G(Esh(Y (i)), Eex(X(i))))
)2

+
(
D(Y (i))

)2
+
(

1−D(G(Esh(X(i)), Eex(Y (i))))
)2

+ λsh
L1

(
|Esh(X(i))− Esh(Y (i))|

)
+ λL1

(
|X(i)−G(Esh(Y (i)), Eex(X(i)))|+ |Y (i)−G(Esh(X(i)), Eex(Y (i)))|

)
− 1

2
λLKL

(
2 + log(σ2

Eex(X(i)))− µ
2
Eex(X(i)) − σ

2
Eex(X(i)) + log(σ2

Eex(Y (i)))

−µ2
Eex(Y (i)) − σ

2
Eex(Y (i))

)]
6: Update the parameters θ

(k+1)
Esh

, θ
(k+1)
Eex

and θ
(k+1)
G by gradient descent of L(k).

7: Update the parameters θ
(k+1)
D by gradient ascent of L(k).

8: end for

4 Experiments

4.1 Sentinel-2

The Sentinel-2 mission is composed of a constellation of 2 satellites that orbit
around the Earth providing an entire Earth coverage every 5 days. Both satel-
lites acquire images at 13 spectral bands using different spatial resolutions. In
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Fig. 2. Training data selection. A batch of smaller time series is randomly sampled
from the dataset. At each iteration two images are randomly selected from each time
series to be used as input for our model.

this paper, we use the RGBI bands3 which correspond to bands at 10m spa-
tial resolution. Bands are acquired after L-1C processing. In order to organize
the data acquired by the mission, Earth surface is divided into square tiles of
approximately 100 km on each side. One tile acquired at a particular time is
referred to as a granule.

To create our training dataset, we selected 42 tiles containing several regions
of interest such as the Amazon rainforest, the Dead Sea, the city of Los Angeles,
the Great Sandy Desert, circular fields in Saudi Arabia, among others. The list
of tiles is provided in the additional material. As explained by Kempeneers and
Soille [12], many of the acquired granules might carry useless information. In
our case, the availability of granules for a given tile depends on two factors: the
cloud coverage and the image completeness. Therefore, we defined a threshold
in order to avoid these kind of problems that affect Earth observation by setting
a cloud coverage tolerance of 2% and completeness tolerance of 85%. For each
tile, we extracted 12 granules from March 2016 to April 2018 keeping a regular
time-step between granules. Then, we selected 25 non-overlapping patches of size
1024× 1024 from the center of the tiles to reduce the effect of the satellite orbit
view angle. Finally, our training dataset is composed of 42 × 25 = 1050 times
series each of which is composed of 12 images of size 1024×1024×4. The training
dataset size is around 100GB. Similarly, we create a test dataset by selecting 6
different tiles whose size is around 14GB.

3 Red (band 4), Green (band 3), Blue (band 2) and Near infrared (band 8) bands
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In order to analyze the entire time series using smaller patches the following
strategy is applied: a batch of time series composed of images of size 64× 64×
4 is randomly sampled from the time series of images of size 1024 × 1024 ×
4. Since our model takes two images as input, at each iteration two images
are randomly selected from the time series to be used as input for our model.
Thus, the whole time series is learned as the training procedure progresses. Data
sampling procedure is depicted in Figure 2.

To evaluate the model performance and the learned representations, we per-
form several supervised and unsupervised experiments on Sentinel-2 data as
suggested by Theis [19]. We evaluate our model on: a) image-to-image transla-
tion to validate the representation disentanglement; b) image retrieval, image
classification and image segmentation to validate the shared representation and
c) change detection to analyze the exclusive representation. We also provide
several examples of the experiment results in the additional material section.

As explained in Section 2, the model proposed by Gonzalez-Garcia et al. [5]
fails to converge using Sentinel-2 data. As a consequence, it was not possible
to evaluate the learned representations and compare the performance on the
proposed tasks with respect to our method. Nevertheless, we compare our model
with the BicycleGAN [22] and VAE [13] models and show that our model achieves
better results at image classification, image retrieval and change detection.

4.2 Image-to-image translation

It seems natural to first test the model performance at image-to-image transla-
tion. We sample 9600 time series of size 12× 64× 64× 4 to evaluate our model.
It represents around 20k processed images of size 64× 64× 4.

An example of image-to-image translation using our model can be observed
in Figure 3. For instance, let us consider the image in the third row, fifth col-
umn. The shared representation is extracted from an image X which corresponds
to growing crop fields while the exclusive representation is extracted from an-
other image Y where fields have been harvested. Consequently, the generated
image contains harvested fields which is defined by the exclusive representation
of image Y . In general, generated images look realistic in both training and test
datasets except for small details which are most likely due to the absence of skip
connections between the encoders and generator.

We quantify the L1 distance between generated images G(Esh(X), Eex(Y ))
and images Y used to extract the exclusive representations. Results can be ob-
served in Table 1 (first column). Pixel values in generated images and real images
are in the range of [−1, 1], thus a mean difference of 0.0155 indicates that the
model performs well at image-to-image translation. The BicycleGAN model [22]
achieves a slightly better result of 0.0136 which is probably due to the use of skip
connections. However, our model is mainly focused on representation learning
to perform downstream tasks and not on image generation.

A special image-to-image translation case is image autoencoding where the
shared and exclusive representations are extracted from the same image. The
L1 distance between images X and autoencoded images G(Esh(X), Eex(X)) is
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(a) (b) (c)

Fig. 3. Image translation performed on images of Brawley, California. (a) Images used
to extract the shared representations; (b) Images used to extract the exclusive represen-
tations; (c) Generated images from the shared representation of (a) and the exclusive
representation of (b). More examples are available in the additional material section.

Fig. 4. Multimodal generation. The first row corresponds to a time series sampled
from the test dataset. The second row corresponds to a time series where each image
is generated by using the same shared representation and only modifying the exclusive
representation.

computed for comparison purpose in Table 1 (second column). Lower values in
terms of L1 distance are obtained with respect to those of image-to-image trans-
lation. We provide the result obtained from the VAE [13] model as a baseline.
Our model achieves a similar performance generating well-reconstructed images
even if this case is not considered during training.

Finally, we perform times series reconstruction in order to show that the
exclusive representation encodes the specific information of each image. An im-
age is randomly selected from a time series to extract its shared representation.
While keeping the shared representation constant and only modifying the ex-
clusive representation, we reconstruct all the images of the original time series.
Results in terms of L1 distance between the original time series and the recon-
structed one are shown in Table 1 (third column). As in the previous cases, the
BicycleGAN [22] achieves a slightly better result of 0.0140 with respect to our
model performance of 0.0184. An example of time series reconstruction using
our model can be seen in Figure 4. Since the shared representation which repre-
sents the spatial location is constant, the experiment suggests that the exclusive
representation controls the image information related to the acquisition time.
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Method Image translation Image autoencoding Time series reconstruction

VAE [13] - 0.0086± 0.0300 -

BicycleGAN [22] 0.0136± 0.0538 0.0045± 0.0138 0.0140± 0.0503

Ours 0.0155± 0.0595 0.0085± 0.0318 0.0184± 0.0664

Table 1. Mean and standard deviation values in terms of the L1 distance for image-to-
image translation (first column), image autoencoding (second column) and time series
reconstruction (third column).

4.3 Image retrieval

In this experiment, we want to evaluate whether the shared representation pro-
vides information about the geographical location of time series via image re-
trieval. Given an image patch from a granule acquired at time to, we would like
to locate it in a granule acquired at time tf . The procedure is the following: a
time series of size 12 × 1024 × 1024 × 4 is randomly sampled from the dataset.
Then, a batch of 64 image patches of size 64 × 64 × 4 is randomly selected as
shown in Figure 5a. The corresponding shared representations are extracted for
each image of the batch. The main idea is to use the information provided by
the shared representation to locate the image patches in every image of the time
series. For each image of the time series, a sliding window of size 64× 64× 4 is
applied in order to explore the entire image. As the window slides, the shared
representations are extracted and compared to those of the images to be re-
trieved. The nearest image in terms of L1 distance is selected as the retrieved
image at each image of the time series. In our experiment, 150 time series of
size 12× 1024× 1024× 4 are analyzed. It represents around 115k images of size
64× 64× 4 to be retrieved and 110M images of size 64× 64× 4 to be analyzed.

To illustrate the retrieval algorithm, let us consider an image of agricultural
fields. We plot the image patches to be retrieved in Figure 5a and the retrieved
image patches by the algorithm in Figure 5b. As can be seen, even if some changes
have occurred, the algorithm is able to spatially locate most of the patches. In
spite of the seasonal changes in the agricultural fields, the algorithm performs
correctly since the image retrieval leverages the shared representation which
contains common information of the time series. Results in terms of Recall@1
are displayed in Table 2 (last row). We obtain a high value in terms of Recall@1
even if it is not so close to 1. This result can be explained since the dataset
contains several time series from the desert, forest and ocean tiles which could
be notoriously difficult to retrieve even for humans. For instance, image retrieval
performs better in urban scenarios since the city provides details that can be
easily identified in contrast to agricultural fields where distinguishing textures
can be confusing (see the additional material section).

As a baseline to compare to our method based on the shared representation,
we use the raw pixels as feature to find the image location. Our experiments show
that using raw pixels yields a poor performance to locate the image patches (see
Table 2, third row). We note that even if the retrieved images look similar to
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(a) (b)

Fig. 5. Image retrieval using shared representation comparison. (a) Selected image
from a time series where a batch of 64 image patches (colored boxes) are extracted
from; (b) Another image from the same time series is used to locate the selected image
patches. The algorithm plots colored boxes corresponding to the nearest image patches
in terms of shared representation distance.

the query images, they do not come from the same location. The recommended
images using raw pixels are mainly based on the image color. For instance,
whenever a harvest fields is used as query image the retrieved images correspond
to harvested fields as well. This is not the case when using shared representations
since seasonal changes are ignored in the shared representation. Additionally,
we perform the same experiment using the representations extracted from the
BicycleGAN [22] and VAE [13] models. As expected, since these models do not
disentangle the spatial and temporal information of time series, the performance
achieved is considerably poor (see Table 2, first and second rows).

Method Recall@1

VAE [13] 0.4536

BicycleGAN [22] 0.2666

Raw pixels 0.5083

Ours 0.7372

Table 2. Image retrieval results in
terms of Recall@1.

Model Accuracy Epochs

Fully-supervised 62.13% 50

VAE [13] 87.64% 10

BicycleGAN [22] 87.59% 10

Ours 92.38% 10

Table 3. Accuracy results in the test
dataset.

4.4 Image classification

A common method to evaluate the performance of unsupervised feature repre-
sentations is to apply them to perform image classification. We test the shared
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representation extracted by our model using a novel dataset called EuroSAT
[9]. It contains 27000 labeled images in 10 classes (residential area, sea, river,
highway, etc.). We divide the dataset into a training and test dataset using a
80:20 split keeping a proportional number of examples per class.

We recover the shared representation encoder Esh as feature extractor from
our model. We append two fully-connected layers of 64 and 10 units, respec-
tively on top of the feature extractor. We only train these fully-connected layers
while keeping frozen the weights of the feature extractor in a supervised manner
using the training split of EuroSAT. To provide a comparison, we train a fully-
supervised model using the same architecture but randomly initialized weights.
Additionally, we use the BicycleGAN [22] and VAE [13] models as feature ex-
tractors to train a classifier. Results can be observed in Table 3.

Our classifier achieves an accuracy of 92.38% outperforming the classifiers
based on the BicycleGAN [22] and VAE [13] models. Nevertheless, it is important
to note that using pretrained weights reduces the training time and allows to
achieve better performance with respect to randomly initialized weights (62.13%
of accuracy after 50 epochs).

4.5 Image segmentation

Since the shared representation is related to the location and texture of the
image, we perform a qualitative experiment to illustrate its use for image seg-
mentation. An image of size 1024 × 1024 × 4 is randomly selected from a time
series. Then, a sliding window of size 64 × 64 × 4 and stride of size 32 × 32 is
used to extract image patches. The shared representations extracted from these
image patches are used to perform clustering via k-means. A new sliding win-
dow with a stride of 8 × 8 is used to extract the shared representations from
the image. The extracted shared representations are assigned to a cluster. Since
several clusters are assigned for each pixel, the cluster is decided by the major-
ity of voted clusters. In Figure 6, a segmentation map example in Shanghai is
displayed. Despite its simplicity, this unsupervised method achieves interesting
results. It is able to segment the river, the port area and the residential area,
among others. On the other hand, experiments using the raw pixels of the image
as feature produce segmentation maps of lower visual quality.

4.6 Change detection

We perform an experiment to illustrate the use of the exclusive representation for
seasonal change detection. Two images of size 1024× 1024× 4 are selected from
a time series. A sliding window of size 64×64×4 is used to explore both images
using a stride of size 32×32. As the window slides, the exclusive representations
are extracted and compared using the L1 distance. A threshold is defined to
determine whether a change has occurred or not. Figure 7 shows an example of
change detection maps using the shared and exclusive representations. As can
be seen, the exclusive representation is able to identify seasonal changes while
the shared representation is not as expected. Our experiments suggest that the
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(a) (b) (c)

Fig. 6. Image segmentation in Shanghai, China. A sliding window is used to extract the
shared representations of the image which in turn are used to perform clustering with 7
classes. (a) Image to be segmented; (b) Segmentation map using shared representations;
(c) Segmentation map using raw pixels.

low-dimensional exclusive representation captures the factors of variation in time
series generating visually coherent change detection maps.

(a) (b) (c) (d)

Fig. 7. Seasonal change detection in Brawley, USA. (a) Image X; (b) Image Y ; (c)
Change detection map using shared representations (d) Change detection map using
exclusive representations.

Additionally, we use our learned representations to perform urban change
detection on the OSCD dataset [2] which provides 14 training images and 10
test images. Keeping frozen the weights of the encoders, we learn a decoder to
create a change detection map of size 64×64. A sliding window is used to gener-
ate a complete change detection map. Figure 8 shows an urban change detection
example. As the ground truth is not available for test images, the authors [2]
provide a website to evaluate them. We obtain an average accuracy of 63.07%
outperforming the VAE [13] and BicycleGAN [22] models which achieve an aver-
age accuracy of 59.31% and 60.01% respectively. We also train a fully-supervised
model using the same architecture of our model but randomly initialized weights
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(a) (b) (c) (d)

Fig. 8. Urban change detection in Beirut, Lebanon. (a) Image X; (b) Image Y ; (c)
Ground truth; (d) Change detection map using our model.

which achieves an average accuracy of 60.67%. It suggests that the use of disen-
tangled representations improves the results at image change detection.

5 Conclusion

In this work, we investigate how to obtain a suitable data representation of
satellite image time series. We first present a model based on VAE and GAN
methods combined with the cross-domain autoencoder principle. This model is
able to learn a disentangled representation that consists of a common represen-
tation for the images of the same time series and an exclusive representation
for each image. We train our model using Sentinel-2 time series which indicates
that the model is able to deal with huge amounts of high-dimensional data. Fi-
nally, we show experimentally that the disentangled representation can be used
to achieved interesting results at multiple tasks such as image classification, im-
age retrieval, image segmentation and change detection. We think the learned
representations can be improved by taking into account the time order of images
in the model. We leave the development of such algorithm for future work.
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