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Abstract. Label ranking considers the problem of learning a mapping
from instances to strict total orders over a predefined set of labels. In this
paper, we present a framework for label ranking using a decomposition
into a set of multiclass problems. Conceptually, our approach can be seen
as a generalization of pairwise preference learning. In contrast to the lat-
ter, it allows for controlling the granularity of the decomposition, varying
between binary preferences and complete rankings as extreme cases. It is
specifically motivated by limitations of pairwise learning with regard to
the minimization of certain loss functions. We discuss theoretical prop-
erties of the proposed method in terms of accuracy, error correction, and
computational complexity. Experimental results are promising and in-
dicate that improvements upon the special case of pairwise preference
decomposition are indeed possible.
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1 Introduction

In the recent past, various types of ranking problems emerged in the field of
preference learning [12]. A well-known example is “learning to rank” or object
ranking [19], where the task is to rank any subset of objects (typically described
as feature vectors) from a given domain (e.g. documents). In this paper, our focus
is on a related but conceptually different problem called label ranking (LR). The
task in LR is to learn a mapping from an input space X to strict total orders
over a predefined set L = {λ1, . . . , λm} of labels (e.g. political parties, music
genres, or social emotions). Like in multiclass classification, these labels are only
distinguished by their name but not described in terms of any properties.

Previous approaches to label ranking can be grouped into four main cate-
gories with respect to model representation [23]: Algorithms learning real-valued
scoring functions for each label [15, 8, 21], instance-based methods [2, 6], tree-
based methods [5], and binary decomposition methods [18]. In terms of predictive
accuracy, especially the latter turned out to be highly competitive.
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This paper introduces a generalization of binary decomposition in the sense
that LR problems are transformed into multiple multiclass classification prob-
lems. Thus, the atomic elements of our framework are partial rankings of a
fixed length k, including pairwise preferences (k = 2) and complete rankings
(k = m) as special cases. Encoding rankings over fixed subsets of k labels as
(meta-)classes, each such subset gives rise to a multiclass classification problem.
At prediction time, the corresponding multiclass classifiers (either all of them
or a suitable subset) are queried with a new instance, and their predictions are
combined into a ranking on the entire label set L.

Intuitively, a decomposition into partial rankings instead of label pairs in-
creases the degree of overlap between the various subproblems, and thereby the
ability to correct individual prediction errors. Formally, it can indeed be shown
that, to minimize specific loss functions on rankings, knowledge about binary re-
lationships between labels is principally insufficient; an extreme example is the
0/1-loss, which simply checks whether the entire ranking is correct or not.

Our framework for LR is analyzed from a theoretical perspective with re-
spect to both accuracy, error correcting properties, and computational com-
plexity. More precisely, for the aforementioned 0/1-loss and Kendall’s tau rank
correlation, we present bounds in terms of the average classification error of the
underlying multiclass models on the training data, hence, providing a justifi-
cation for the general consistency of our approach in the sense that accurate
multiclass models imply accurate overall LR predictions on the training data.
With respect to error correction, we present a theoretical result on the number
of multiclass errors which our framework can compensate while still recovering
the correct overall ranking.

Empirically, we also analyze the influence of the decomposition granularity k.
Our results are promising and suggest that improvements upon the special case
of binary decomposition are indeed possible. In the experiments, we observed a
consistent relationship between a suitable choice of k and the overall number of
labels m.

Section 2 recalls the problem setting of LR, along with notational conven-
tions. Our novel LR framework is presented in Section 3. Sections 4 and 5 analyze
theoretical properties in terms of accuracy, error correction, and computational
complexity, respectively. Section 6 is devoted to an experimental evaluation of
our approach. We conclude with a few remarks and open research directions in
Section 7.

2 Label Ranking

In label ranking, the goal is to learn a predictive model in the form of a mapping
f : X → L∗, where X is an instance space and L∗ the set of all rankings
(strict total orders) over a set of labels L = {λ1, . . . , λm}. Formally, we represent
rankings in terms of permutations π of [m] = {1, . . . ,m}, such that π(i) is the
(index of the) label at position i. Thus, LR assumes instances x ∈ X to be
associated with rankings π ∈ L∗. More specifically, we assume this dependency
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to be probabilistic: Given x as input, there is a certain probability P(π |x) to
observe the ranking π ∈ L∗ as output.

We suppose training data to be given in the form of a set of observations
D = {(xi, πi)}ni=1 ⊂ X × L∗. Thus, for convenience, we assume the observed
rankings to be complete. In practice, this assumption is of course not always
fulfilled. Instead, rankings are often incomplete, with some of the labels λi ∈ L
being missing. Predictive performance is evaluated in terms of a loss function
` : L∗ × L∗ → R, which compares observed rankings π with predictions π̂.
Common choices include rank correlation measures such as Kendall’s tau and
Spearman’s rho (which are actually similarity measures).

In the pairwise approach to LR [18], called ranking by pairwise comparison
(RPC), one binary model fi,j is trained for each pair of labels (λi, λj). The task
of fi,j is to predict, for a given instance x, whether λi precedes or succeeds λj
in the ranking associated with x. A prediction π̂ is produced by aggregating the
(possibly conflicting) m(m− 1)/2 pairwise predictions, using techniques such as
(weighted) voting.

An important question for any reduction technique is the following: Is it
possible to combine the solutions of the individual subproblems into an opti-
mal solution for the original problem? In the case of RPC, this question can
be asked more concretely as follows: Is it possible to train and combine the bi-
nary predictors fi,j so as to obtain an optimal predictor f for the original LR
problem, i.e., a predictor that minimizes the loss ` in expectation? Interestingly,
this question can be answered affirmatively for several performance measures,
including Kendall’s tau and Spearman’s rho. However, there are also measures
for which this is provably impossible. These include the 0/1-loss, the Hamming,
the Cayley, and the Ulam distance on rankings, as well as Spearman’s footrule
[16]. Roughly speaking, for these measures, the loss of information due to pro-
jecting the distribution P(· |x) on L∗ to its pairwise marginals Pi,j(· |x) is too
high. That is, even knowledge about all pairwise marginals does not allow for
reconstructing the risk-minimizing prediction π̂.

Indeed, pairwise relations may easily lead to ambiguities, such as preferential
cycles. Knowledge about the distribution of rankings on larger label subsets, such
as triplets or quadruples, may then help to disambiguate. This is a key motivation
of the approach put forward in this paper, very much in line with the so-called
listwise approaches to learning-to-rank problems [3]. In this regard, LR is also
quite comparable to multi-label classification (MLC): There are loss functions
(such as Hamming) that allow for reducing the original MLC problem to binary
classification, but also others (such as the subset 0/1-loss) for which reduction
techniques cannot produce optimal results, and which require information about
the distribution on larger subsets of labels [9].
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3 Reduction to Multiclass Classification

In this section, we present a novel framework for solving LR problems using a
decomposition into multiple multiclass classification problems. We refer to this
approach as LR2MC (Label Ranking to Multiclass Classification).

3.1 Decomposition

For a given k ∈ {2, . . . ,m}, consider all label subsets L ⊂ L of cardinality k.
Each such L gives rise to a label ranking problem on the reduced set of labels.
For the special case k = 2, the same decomposition into

(
m
2

)
binary classification

problems is produced as for RPC.

To illustrate the decomposition process, consider a setting with m = 4 labels
L = {λ1, λ2, λ3, λ4} and subsets of cardinality k = 3. Each of the

(
4
3

)
subsets

{λ1, λ2, λ3}, {λ1, λ2, λ4}, {λ1, λ3, λ4}, and {λ2, λ3, λ4} gives rise to a separate
LR problem. In the following, we denote by π(L) the restriction of a ranking
π ∈ L∗ to the label subset L ⊂ L, i.e., π(L) = (λ3, λ4, λ2) for π = (λ3, λ4, λ1, λ2)
and L = {λ2, λ3, λ4}. For each ranking problem on a label subset L of size
3, there are 3! = 6 elements in the output space L∗, for example (λ1, λ2, λ3),
(λ1, λ3, λ2), (λ2, λ1, λ3), (λ2, λ3, λ1), (λ3, λ1, λ2), (λ3, λ2, λ1) in the case of the
label subset L = {λ1, λ2, λ3}.

In general, for a label ranking problem with |L| = m labels, we construct
a set of

(
m
k

)
ranking problems on label subsets of size |L| = k. Each of these

problems is then converted into a multiclass problem. To this end, each of the k!
rankings π(L) ∈ L∗ is associated with a class c ∈ C = {c1, . . . , ck!}. We denote
by fL the multiclass classifier on subset L. For the sake of simplicity, we assume
the decoding of class labels to the associated rankings to be done directly, i.e.,
fL is viewed as a mapping X → L∗ (instead of a mapping X → C), and fL(x)
is the ranking of labels in L predicted for x.

3.2 Aggregation

We will now discuss our approach to combining partial ranking predictions on
label subsets into a prediction on the complete label set L. The idea is to find a
consensus ranking that disagrees with the minimum number of subset ranking
predictions. In Section 4, we further elaborate on theoretical properties of this
aggregation method.

For a new instance x ∈ X , we first compute the predicted rankings {fL(x) :
L ⊂ L, |L| = k} on the

(
m
k

)
label subsets. These predictions are combined into a

complete ranking f(x) ∈ L∗ by minimizing the sum of (partial) 0/1-loss values:

f(x)
def
= argmin

π∈L∗

∑
L⊂L
|L|=k

`01

(
π(L), fL(x)

)
, (1)
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where

`01(ρ, ρ′) =

{
0 for ρ = ρ′

1 for ρ 6= ρ′
(2)

for ρ, ρ′ ∈ L∗ denotes the 0/1-loss for two label rankings. Ties are broken arbi-
trarily.

This loss-based aggregation is similar to Hamming decoding for computing a
multiclass label from binary classifications [1]. Moreover, for k = 2, it is identical
to the Slater-optimal aggregation in pairwise LR [17]. For k = m, there is only
one label subset L = L. In this case, the risk-minimizing ranking is obviously
the multiclass prediction for this set, mapped to the associated label ranking.

3.3 Discussion

What is an optimal choice of k? This question is not easy to answer, and different
arguments support different choices:

– Loss of information: The decomposition of a ranking necessarily comes with
a loss of information, and the smaller the components, the larger the loss.
This argument suggests large values k (close or equal to m).

– Redundancy: The more redundant the predictions, the better mistakes of
individual predictors fL can be corrected. This argument suggests midsize
values k ≈ m/2, for which the number

(
m
k

)
of predictions combined in the

aggregation step is largest.
– Simplicity: The difficulty of a multiclass problem increases with the number

of classes. This argument suggests small values k, specifically k = 2. Prac-
tically, it will indeed be difficult to go beyond k = 4, since the number of
classes k! will otherwise be prohibitive—issues such as class-imbalance and
empty classes will then additionally complicate the problem.

As for the last point, also note that for k > 2, our reduction to classification
comes with a loss of structural information: By mapping partial rankings π(L) to
class labels c, i.e., replacing the space L∗ by the set of classes C, any information
about the structure of the former is lost (since C is not equipped with any
structure except the discrete metric). This information is only reconsidered in the
aggregation step later on. Interestingly, exactly the opposite direction, namely
exploiting structure on the label space by turning a multiclass classification into
a ranking problem, has recently been considered in [14].

LR2MC is conceptually related to the Rakel method for multilabel classifi-
cation [22]. Rakel decomposes an MLC problem with m labels into (randomly
chosen) MLC problems for subsets of size k, and tackles each of these problems as
a multiclass problem with 2k classes (corresponding to the label subsets). Both
approaches share the underlying motivation of taking dependencies between la-
bels and partial rankings, respectively, into account. Moreover, both approaches
also resemble error correcting output encodings [10], which aim at improving the
overall multiclass classification accuracy by combining multiple binary classifiers
and provide a means to distribute the output representation.
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4 Theoretical Analysis

In this section, we upper bound the average training 0/1-loss and Kendall’s tau
rank correlation of LR2MC (as defined in (2)) in terms of the average classifica-
tion error of the multiclass classifiers {fL}L⊂L,|L|=k and analyze error correcting
properties. Our analysis is similar to [1], where multiclass classification is reduced
to learning multiple binary classifiers. In that paper, the authors provide a bound
on the empirical multiclass loss in terms of the loss of the binary classifiers and
properties and the decomposition scheme.

Theorem 1 (Training loss bound). Let {fL}L⊂L,|L|=k with 2 ≤ k ≤ m de-
note a set of multiclass models and let ε denote their average classification error
on the training sets decomposed from the LR training data D = {(xi, πi)}ni=1.
Then, we can upper bound the average ranking 0/1-loss on the training data as
follows:

1

n

n∑
i=1

`01(πi, f(xi)) ≤
2m(m− 1)

k(k − 1)
· ε

Proof. Let f(x) = π̂ denote the predicted ranking for the training example
(x, π) ∈ D. Assume that the predicted and the ground truth rankings disagree,
π 6= π̂, hence `01(π, π̂) = 1. Moreover, as π̂ is a minimizer of (1), it holds that∑

L⊂L
|L|=k

`01(π(L), fL(x)) ≥
∑
L⊂L
|L|=k

`01(π̂(L), fL(x)).

Let S∆
def
= {L ⊂ L∗ : |L| = k ∧ π̂(L) 6= π(L)} denote the label sets of cardinality

k, where π and π̂ disagree. Then,∑
L∈S∆

`01(π(L), fL(x)) ≥
∑
L∈S∆

`01(π̂(L), fL(x)).

Therefore, ∑
L⊂L
|L|=k

`01(π(L), fL(x)) ≥
∑
L∈S∆

`01(π(L), fL(x))

=
1

2

( ∑
L∈S∆

(`01(π(L), fL(x)) + `01(π(L), fL(x)))

)

≥ 1

2

 ∑
L∈S∆

(`01(π(L), fL(x)) + `01(π̂(L), fL(x))︸ ︷︷ ︸
≥1

)


≥ 1

2
|S∆| ≥

1

2

(
m− 2

k − 2

)
.
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The last step follows from the fact that for the non-equal rankings π and π̂ at
least two labels are in reverse order. Hence, all

(
m−2
k−2

)
restrictions to subsets of k

labels which contain the inversed label pair are not equal as well, and therefore
elements of S∆. In summary, a prediction error, i.e., `01(π, f(x)) = 1 implies
that

2(
m−2
k−2

) ∑
L⊂L
|L|=k

`01(π(L), fL(x)) ≥ 1 .

Moreover, as
2(

m−2
k−2

) ∑
L⊂L
|L|=k

`01(π(L), fL(x)) ≥ 0

for `01(π, f(x)) = 0, it holds for all (x, π) that

`01(π, f(x)) ≤ 2(
m−2
k−2

) ∑
L⊂L
|L|=k

`01(π(L), fL(x)) .

Therefore, for the average 0/1-loss, it holds that

1

n

n∑
i=1

`01(πi, f(xi)) ≤
1

n

n∑
i=1

2(
m−2
k−2

) ∑
L⊂L
|L|=k

`01(π
(L)
i , fL(xi))

=
2(

m−2
k−2

) 1

n

n∑
i=1

∑
L⊂L
|L|=k

`01(π
(L)
i , fL(xi))

=
2
(
m
k

)(
m−2
k−2

) · 1

n
(
m
k

) n∑
i=1

∑
L⊂L
|L|=k

`01(π
(L)
i , fL(xi))

︸ ︷︷ ︸
=ε

=
2m(m− 1)

k(k − 1)
· ε

For the special case of perfect multiclass models on the training data (ε = 0),
the 0/1-loss for LR2MC is zero. Moreover, when entirely ignoring the structure
of the output space (m = k) and approaching label ranking as a multiclass
problem with m! classes, the 0/1-loss for label ranking is bounded by twice the
average multiclass error.

Corollary 1 (Error correction). Let {fL}L⊂L,|L|=k with 2 ≤ k ≤ m denote
a set of multiclass models. For any observation (x, π) ∈ X × L∗ with∑

L⊂L
|L|=k

`01

(
π(L), fL(x)

)
<

1

2

(
m− 2

k − 2

)

it holds that f(x) = π.
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Proof. As shown in the proof of Theorem 1,
∑

L⊂L
|L|=k

`01(π(L), fL(x)) ≥ 1
2

(
m−2
k−2

)
for f(x) 6= π.

Corollary 1 provides some interesting insights into the error correction prop-
erties of our framework:

– For k = 2, the right-hand side is 1
2 , and hence the inequality is satisfied

only if all pairwise predictions are correct. Indeed, it is obvious that a single
pairwise error may result in an incorrect overall prediction.

– For k = m, there exists only a single multiclass model which is mapped to
an LR prediction. In this case, a correct overall prediction is guaranteed if
this multiclass prediction is correct.

– For k = bm2 + 1c and k = dm2 + 1e, the right-hand side evaluates to the
maximum possible value(s) and Corollary 1 indicates that our framework is
capable of correcting a substantial number of multiclass errors.

The last point suggests that values k ≈ m
2 + 1 should lead to optimal perfor-

mance, because the ability to correct errors of individual classifiers is highest for
these values. One should keep in mind, however, that the error probability itself,
which corresponds to the performance of a (k!)-class classifier3, will (strongly)
increase with k. Depending on how quickly this error increases, and whether or
not it can be over-compensated through more redundancy, the optimal value
of k is supposed to lie somewhere between 2 and m

2 + 1. This is confirmed by
experimental results for a simplified synthetic setting that we present in the
supplementary material (Section A.8).

Corollary 2 (Training bound for Kendall’s tau). Rescaling Kendall’s τ
rank correlation into a loss function by 1−τ

2 ∈ [0, 1], it holds under the assump-
tions of Theorem 1 that

1

n

n∑
i=1

1− τ(πi, f(xi))

2
≤ 2m(m− 1)

k(k − 1)
· ε

Proof. Direct consequence of Theorem 1 and the fact that for all rankings π and
π′ it holds that

1− τ(π, π′)

2
≤ `01(π, π′).

Corollary 2 shows that the average multiclass error on the training data not
only bounds the 0/1-loss but also guarantees a certain level of overall ranking
accuracy as measured by Kendall’s tau.

3 The effective number of classes a classifier is trained on corresponds to the distinct
number of permutations of the k labels in the training data, which is normally < k!.
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5 Computational Complexity

The set of multiclass models is at the core of LR2MC. The training data for each
multiclass model consists of the original instances xi and the appropriate class
labels which represent rankings on label subsets. Hence, we need to train and
evaluate

(
m
k

)
multiclass models using n training examples with up to k! different

class labels.

Depending on the influence of the number of classes on the complexity of the
classification learning algorithm and the choice of k, the computational complex-
ity can increase substantially compared to the pairwise ranking approach, where(
m
2

)
= m(m−1)

2 binary models are required. More precisely, the maximum num-
ber of multiclass models for a given m is required for k = bm2 c as a consequence
of basic properties of binomial coefficients. For this case, it holds that(

m

bm2 c

)
≥
(

m

bm2 c

)bm2 c
≥ 2b

m
2 c ≥ 2

m−1
2 = (

√
2)m−1.

Hence, the maximum number of multiclass problems is lower bounded by a term
which grows exponentially in the number of labels m.

For testing, we need to evaluate all
(
m
k

)
multiclass models and solve the

optimization problem (1). Even when ignoring the multiclass model evaluation
complexity, the computational complexity for this combinatorial optimization
problem increases substantially in m as there are m! possible rankings to be
considered. Moreover, as stated above, for k = 2, this aggregation method is
identical to computing the Slater-optimal label ranking which is known to be
NP-complete [17].

Overall, even considering that the number of labels m in LR is normally small
(mostly < 10, comparable to multiclass classification), computational complexity
is clearly an issue for LR2MC. Of course, there are various directions one could
think of to improve efficiency. For example, instead of decomposing into all label
subsets of size k, one may (randomly) chose only some of them, like in Rakel.
Besides, aggregation techniques less expensive than Hamming decoding could be
used, such as (generalized) Borda count. While these are interesting directions for
future work, the main goal of this paper is to elaborate on the usefulness of the
approach in principle, i.e., to answer the question whether or not a generalization
from pairwise to multiclass decomposition is worthwhile at all.

6 Experimental Evaluation

6.1 Setup

This section presents an experimental evaluation of the accuracy of LR2MC,
which essentially consists of two studies. For the first study, we replicated a set-
ting previously proposed in [4], where a suite of benchmark datasets for label



10 K. Brinker and E. Hüllermeier

Table 1. Dataset characteristics

Dataset Instances Attributes Labels

authorship 841 70 4
bodyfat 252 7 7
calhousing 20640 4 4
cpu-small 8192 6 5
fried 40769 9 5
glass 214 9 6
housing 506 6 6
iris 150 4 3
segment 2310 18 7
stock 950 5 5
vehicle 846 18 4
wine 178 13 3

ranking was used4; see Table 1 for an overview of the dataset properties. The
second study is based on an artificial setting from [13], where the underlying
problem is to learn the ranking function induced by an expected utility maxi-
mizing agent. This setting allows for varying dataset properties, i.e., the number
of instances, features, and labels, to study specific aspects of our novel approach
in a more controlled setting.

We consider the following evaluation measures: Kendall’s tau and Spear-
man’s rho rank correlation coefficients, 0/1 loss, and Hamming distance (number
of items for which the predicted rank deviates from the true rank). For coher-
ence, we turn the last two into [0, 1]-valued similarity scores: Match is defined
as 1 minus 0/1 loss, and Hamming similarity is 1 minus normalized Hamming
distance.

For the first study, the empirical results are computed as in [4] using five rep-
etitions of ten-fold cross-validation. In the second study, we averaged the results
over 100 repetitions of the synthetic data generation process for each dataset
property configuration with separate test sets consisting of 1000 examples.

As base learners, we use the decision tree (J48) and random forest (Ran-
domForest) implementations from the Weka machine learning suite with default
parameters [11]. Both methods combine fast training and testing with a natural
means of handling multiclass problems without using any further decomposition
techniques. This is in contrast to learning methods that make use of reduction
techniques themselves (multiclass SVM, for example, uses a decomposition into

4 These are classification and regression datasets from the UCI and Statlog repository,
which were turned into label ranking problems. The datasets are publicly available
at https://cs.uni-paderborn.de/is/research/research-projects/software/. Due to the
computational demands of LR2MC, we restricted our evaluation to datasets with
m ≤ 7 labels.
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Table 2. Experimental results of the label ranking techniques with decision trees (J48)
as base learner in terms of Kendall’s tau (in brackets the ranks; best average rank in
boldface).

Dataset RPC LR2MC-2 LR2MC-3 LR2MC-4 LR2MC-5 LR2MC-6 LR2MC-7

authorship 0.787 (2) 0.789 (1) 0.782 (3) 0.771 (4)
bodyfat 0.153 (1) 0.143 (2) 0.106 (3) 0.097 (4) 0.073 (5) 0.046 (7) 0.051 (6)
calhousing 0.299 (1) 0.297 (2) 0.206 (3) 0.191 (4)
cpu-small 0.311 (2) 0.311 (1) 0.265 (3) 0.242 (4) 0.224 (5)
fried 0.808 (4) 0.814 (3) 0.862 (1) 0.836 (2) 0.749 (5)
glass 0.801 (5) 0.818 (3) 0.830 (1) 0.826 (2) 0.812 (4) 0.790 (6)
housing 0.310 (6) 0.333 (4) 0.402 (1) 0.375 (2) 0.341 (3) 0.313 (5)
iris 0.780 (1) 0.765 (3) 0.777 (2)
segment 0.830 (7) 0.839 (5) 0.887 (2) 0.888 (1) 0.869 (3) 0.854 (4) 0.832 (6)
stock 0.729 (4) 0.727 (5) 0.781 (1) 0.768 (2) 0.755 (3)
vehicle 0.815 (2) 0.819 (1) 0.815 (3) 0.795 (4)
wine 0.862 (2) 0.863 (1) 0.838 (3)

average rank 3.08 2.58 2.17 2.90 4.00 5.50 6.00

one-vs-rest or all pairs). By excluding such methods, we try to avoid blending
multiclass to binary and label ranking to multiclass decomposition together,
which may yield empirical results that are difficult to interpret.

6.2 First Study (Real Data)

Results for the first study are shown in Table 2 for Kendall’s tau as performance
metric and decision trees as base learner—corresponding results for other metrics
and learners can be found in the supplementary material. Note that the rank
statistic shown in that table (ranking of methods per dataset, and average ranks
per method) is arguably biased, because not all decompositions are applicable
to all datasets (for example, LR2MC-5 cannot be used for the 4-label authorship
dataset).

Therefore, Table 3 shows average normalized ranks, where normalization
means that, for each dataset, the ranks are linearly rescaled to have unit sum.
As can be seen, none of the approaches consistently outperforms the others.
However, a more fine-grained, bipartite analysis of the results demonstrates the
dependence of the optimal choice of k on the overall number of labels m (see
Corollary 1 and the subsequent theoretical discussion): The pairwise approach
outperforms all other methods for datasets with up to 4 labels (middle entry in
each triplet), while the LR2MC-3 approach outperforms all other methods for
datasets with more than 4 labels (right entry).

The results for RPC [18] and LR2MC-2 are similar, as expected, since both
methods use the same decomposition and only differ in the aggregation step.
RPC uses a voting approach that is specifically tailored for Spearman’s rho,
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which in turn bounds Kendall’s tau [7]. For these metrics, RPC is indeed very
strong.

In agreement with our theoretical arguments, the situation looks different
when measuring performance in terms of Match and Hamming. Here, the pair-
wise approach performs worse, and best results are obtained for LR2MC with
k = 4 or k = 5. As already explained, pairwise information is not enough to op-
timize these measures. Theoretically, one may even expect larger values for the
optimal k, but practically, classifiers are of course difficult to train on problems
with too many classes (and limited data).

6.3 Second Study (Synthetic Data)

In a second study, we carried out a set of experiments using the synthetic set-
ting of [13], which allows for controlling dataset properties. More precisely, in a
first scenario, we considered the following setup: 250, 500, 1000, . . . , 16000 train-
ing instances with 10 features and 7 labels, Match and Hamming as evaluation
measures.

Table 3. Experimental results in terms of average normalized ranks (best result for
each metric/learner combination in boldface) for different combinations of measure
(Kendall, Spearman, Match, Hamming) and base learner (J48 and Random Forest):
all datasets / datasets with m ≤ 4 / datasets with m > 4.

RPC LR2MC-2 LR2MC-3 LR2MC-4 LR2MC-5 LR2MC-6 LR2MC-7

K J48 .21/.20/.21 .19/.21/.17 .20/.35/.09 .21/.40/.13 .21/—/.21 .23/—/.23 .21/—/.21
K RF .20/.20/.19 .22/.31/.15 .17/.27/.09 .20/.37/.13 .23/—/.23 .23/—/.23 .25/—/.25
S J48 .15/.15/.16 .22/.27/.18 .19/.35/.08 .22/.40/.15 .22/—/.22 .25/—/.25 .23/—/.23
S RF .15/.18/.13 .22/.29/.18 .17/.29/.07 .22/.40/.15 .26/—/.26 .24/—/.24 .25/—/.25

M J48 .31/.33/.29 .28/.35/.23 .20/.24/.18 .11/.13/.10 .10/—/.10 .13/—/.13 .11/—/.11
M RF .33/.40/.29 .29/.35/.24 .16/.17/.16 .11/.13/.10 .09/—/.09 .13/—/.13 .17/—/.17
H J48 .29/.32/.27 .29/.37/.23 .19/.23/.16 .11/.13/.09 .10/—/.10 .16/—/.16 .16/—/.16
H RF .29/.32/.27 .32/.40/.27 .19/.22/.17 .09/.10/.09 .10/—/.10 .13/—/.13 .14/—/.14

The experimental results with decision tree base learners are given in Table 4
(detailed results for random forests are available as supplementary material).
Here, the ranks are computed without normalization in compliance with [4]. Since
only the overall number of training examples varies, all considered methods are
applicable, for which reason a normalization is not needed.

As expected, the absolute accuracy increases with the number of training
examples for all methods. Moreover, the relative performance (ranks) of the
methods is identical, regardless of the training set size, except for RPC and
LR2MC-2 which achieve very similar results. With decision trees as base learners,
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Table 4. Experimental results using decision trees (J48) as base learners in terms of
Match (top) and Hamming (bottom), in parentheses the ranks.

Examples RPC LR2MC-2 LR2MC-3 LR2MC-4 LR2MC-5 LR2MC-6 LR2MC-7

250 0.128 (4) 0.127 (5) 0.157 (2) 0.165 (1) 0.151 (3) 0.111 (6) 0.081 (7)
500 0.151 (4) 0.149 (5) 0.188 (2) 0.199 (1) 0.178 (3) 0.134 (6) 0.096 (7)

1000 0.176 (4) 0.174 (5) 0.216 (2) 0.231 (1) 0.209 (3) 0.155 (6) 0.111 (7)
2000 0.197 (5) 0.197 (4) 0.246 (2) 0.263 (1) 0.239 (3) 0.178 (6) 0.128 (7)
4000 0.219 (4) 0.216 (5) 0.277 (2) 0.294 (1) 0.269 (3) 0.203 (6) 0.147 (7)
8000 0.243 (5) 0.244 (4) 0.306 (2) 0.323 (1) 0.298 (3) 0.230 (6) 0.166 (7)

16000 0.264 (5) 0.264 (4) 0.337 (2) 0.353 (1) 0.328 (3) 0.256 (6) 0.186 (7)

average rank 4.43 4.57 2.00 1.00 3.00 6.00 7.00

250 0.567 (4) 0.566 (5) 0.595 (2) 0.599 (1) 0.573 (3) 0.514 (6) 0.468 (7)
500 0.591 (5) 0.592 (4) 0.627 (2) 0.629 (1) 0.604 (3) 0.541 (6) 0.492 (7)

1000 0.614 (4) 0.613 (5) 0.652 (2) 0.655 (1) 0.630 (3) 0.568 (6) 0.518 (7)
2000 0.634 (5) 0.635 (4) 0.674 (2) 0.679 (1) 0.653 (3) 0.592 (6) 0.538 (7)
4000 0.655 (5) 0.655 (4) 0.696 (2) 0.700 (1) 0.675 (3) 0.615 (6) 0.560 (7)
8000 0.672 (4) 0.672 (5) 0.715 (2) 0.721 (1) 0.697 (3) 0.635 (6) 0.580 (7)

16000 0.690 (4) 0.689 (5) 0.733 (2) 0.740 (1) 0.717 (3) 0.658 (6) 0.601 (7)

average rank 4.43 4.57 2.00 1.00 3.00 6.00 7.00

LR2MC-4 consistently outperforms all other approaches, including LR2MC-7.
This observation again supports the hypothesis that pure classification methods
that do not leverage the structure of the output space are more difficult to train.
For random forests as base learner, the experimental results are in line with these
observations, with the slight difference that LR2MC-3 is the overall winner and
a bit better than LR2MC-2 and LR2MC-4, which yield very similar absolute
results.

In a second scenario, we used the following setting: 2000 training instances
with 10 features and 3, 4, . . . , 7 labels, Kendall and Spearman as evaluation mea-
sures. The experimental results are given in Table 5. This set of experiments
completely supports the finding from the first study: For datasets with m ≤ 4
labels, the pairwise approaches RPC and LR2MC-2 outperform all other de-
compositions. However, for datasets with m > 4 labels, LR2MC-3 consistently
achieves the highest accuracy in terms of both Kendall’s tau and Spearman’s
rho.

6.4 Discussion

Our experimental results suggest that the number of labels is an essential prop-
erty for choosing a suitable decomposition approach in label ranking. More
precisely, while standard pairwise decomposition appears to be favorable for
datasets with m ≤ 4 labels, our novel multiclass decomposition with k = 3
(LR2MC-3) seems to provide a promising alternative for m > 4 labels and rank
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Table 5. Experimental results for the second controlled scenario in terms of normal-
ized ranks (best result for each metric/learner combination in boldface) for different
combinations of measure (Kendall, Spearman, Match, Hamming) and base learner (J48
and Random Forest): all datasets / datasets with m ≤ 4 / datasets with m > 4.

RPC LR2MC-2 LR2MC-3 LR2MC-4 LR2MC-5 LR2MC-6 LR2MC-7

K J48 .18/.18 .22/.15 .40/.05 .40/.14 —/.23 —/.25 —/.25
K RF .13/.12 .27/.14 .40/.05 .40/.19 —/.25 —/.25 —/.25
S J48 .13/.13 .27/.18 .40/.05 .40/.14 —/.25 —/.25 —/.25
S RF .22/.08 .18/.15 .40/.07 .40/.20 —/.25 —/.25 —/.25

correlation (Kendall’s tau or Spearman’s rho) as performance measure. If other
measures are used, such as 0/1 loss (Match) or Hamming, higher order decom-
positions are even more advantageous. Interestingly, in the context of multilabel
learning, the experimental conclusions for the conceptually related Rakel method
[22] are similar, since label set sizes around k = 3 often yield the best accuracy.

As our experimental evaluation suggests that multiclass decomposition with
k = 3 is a particularly promising alternative to the well-known pairwise label
ranking approach, we will add some remarks regarding its computational com-
plexity in terms of the number of classification problems: For a dataset with m
labels, pairwise label ranking considers an overall number of

(
m
2

)
binary clas-

sification problems, while LR2MC-3 makes use of a decomposition into
(
m
3

)
multiclass problems. Hence, ignoring special cases, there is an increase in the
number of classification problems by a factor of m−2

3 . For example, for m = 7
this amounts to roughly 67% more classification problems with the training set
size being identical for both approaches. Depending on the application field, the
increase in accuracy may justify these computational requirements.

One may hypothesize that the increase in accuracy may be attributed to the
increased number of underlying classifiers, and hence may be a straightforward
ensemble size consequence. We have conducted some preliminary experiments to
further investigate this hypothesis. In these experiments, a maximum number of(
m
2

)
classifiers was subsampled from the overall set of multiclass classifiers to re-

move any potential ensemble advantage over the pairwise setting. Interestingly,
the experimental results when using the limited number of underlying classi-
fiers are comparable to those of the overall set of classifiers (see supplementary
material for some more detailed results), suggesting that ensemble size cannot
explain the observed difference in accuracy.

7 Conclusion and Future Research

Accepting pairwise learning as a state-of-the-art approach to label ranking, the
major objective of this work was to address the question whether, in principle,
going beyond pairwise comparisons and decomposing preference information into
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partial rankings of length k > 2 could be useful. Technically, this question comes
down to comparing a reduction to binary classification with a reduction to mul-
ticlass classification.

The answer we can give is clearly affirmative: Our method, called LR2MC,
tends to be superior to pairwise learning as soon as the number of labels exceeds
four. In agreement with our theoretical arguments, this superiority is especially
pronounced for performance metrics that are difficult to optimize based on pair-
wise preference information. Practically, k = 3 or k = 4 seem to be reasonable
choices, which optimally balance various factors responsible for the success of
the learning process. Such factors include the inherent loss of information caused
by decomposition, the redundancy of the reduction, and the practical difficulty
of the individual classification problems created.

While this is an important insight into the nature of label ranking, which
paves the way for new methods beyond pairwise preference learning, the in-
creased computational complexity of LR2MC is clearly an issue. In future work,
we will therefore elaborate on various ways to reduce complexity and increase
efficiency, both in the decomposition and aggregation step. One may think, for
example, of incomplete decompositions that do not comprise projections to all
label subsets, or mixed decompositions including rankings of different length (in-
stead of using a fixed k). Moreover, the efficiency of the aggregation step could
be increased by computationally less complex aggregation techniques, such as
the well-known Borda-count. Preliminary experiments suggest that it is indeed
possible to substantially reduce the computational complexity for aggregation
while still benefit from superior ranking accuracy for datasets with m > 4 labels.

Currently, our approach is limited to complete label rankings as training
data. Therefore, another direction of future research is to develop a generaliza-
tion that allows for incorporating partial ranking data. For example, we may
generalize LR2MC by inserting a preprocessing step for training examples which
are associated with a partial ranking only, and consider all compatible ranking
extensions as (weighted) virtual training examples in the decomposition process.
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