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Abstract. We present a pairwise learning to rank approach based on a
neural net, called DirectRanker, that generalizes the RankNet architecture.
We show mathematically that our model is reflexive, antisymmetric, and
transitive allowing for simplified training and improved performance.
Experimental results on the LETOR MSLR-WEB10K, MQ2007 and
MQ2008 datasets show that our model outperforms numerous state-of-
the-art methods, while being inherently simpler in structure and using a
pairwise approach only.
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1 Introduction

Information retrieval has become one of the most important applications of
machine learning techniques in the last years. The vast amount of data in every
day life, research and economy makes it necessary to retrieve only relevant data.
One of the main problems in information retrieval is the learning to rank problem
[6, 17]. Given a query q and a set of documents d1, . . . , dn one wants to find a
ranking that gives a (partial) order of the documents according to their relevance
relative to q. Documents can in fact be instances from arbitrary sets and do not
necessarily need to correspond to queries.

Web search is one of the most obvious applications, however, product recom-
mendation or question answering can be dealt with in a similar fashion. Most
common machine learning methods have been used in the past to tackle the
learning to rank problem [2, 7, 10, 14]. In this paper we use an artificial neural
net which, in a pair of documents, finds the more relevant one. This is known
as the pairwise ranking approach, which can then be used to sort lists of docu-
ments. The chosen architecture of the neural net gives rise to certain properties
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which significantly enhance the performance compared to other approaches. We
note that the structure of our neural net is essentially the same as the one of
RankNet [2]. However, we relax some constraints which are used there and use
a more modern optimization algorithm. This leads to a significantly enhanced
performance and puts our approach head-to-head with state-of-the-art methods.
This is especially remarkable given the relatively simple structure of the model
and the consequently small training and testing times. Furthermore, we use a
different formulation to describe the properties of our model and find that it is
inherently reflexive, antisymmetric and transitive. In summary, the contributions
of this paper are:

1. We propose a simple and effective scheme for neural network structures for
pairwise ranking, called DirectRanker, which is a generalization of RankNet.

2. Theoretical analysis shows which of the components of such network structures
give rise to their properties and what the requirements on the training data
are to make them work.

3. Keeping the essence of RankNet and optimizing it with modern methods,
experiments show that, contrary to general belief, pairwise methods can
still be competitive with the more recent and much more complex listwise
methods.

The paper is organized as follows: We discuss different models related to
our approach in sec. 2. The model itself and certain theoretical properties are
discussed in sec. 3 before describing the setup for experimental tests in sec. 4
and their results in sec. 5. Finally, we conclude our findings in sec. 6.

2 Related Work

There are a few fundamentally different approaches to the learning to rank
problem that have been applied in the past. They mainly differ in the underlying
machine learning model and in the number of documents that are combined in
the cost during training. Common examples for machine learning models used
in ranking are: decision trees [8], support vector machines [4], artificial neural
nets [5], boosting [22], and evolutionary methods [12]. During training, a model
must rank a list of n documents which can then be used to compute a suitable
cost function by comparing it to the ideally sorted list. If n = 1 the approach
is called pointwise. A machine learning model assigns a numerical value to a
single document and compares it to the desired relevance label to compute a
cost function. This is analogous to a classification of each document. If n = 2 the
approach is called pairwise. A model takes two documents and determines the
more relevant one. We implement this concept in our model, the DirectRanker.
If n > 2 the approach is called listwise and the cost is computed on a whole list
of sorted documents. Examples for these different approaches are [6, 9, 16] for
pointwise, [2, 4, 8] for pairwise and [5, 12, 23] for listwise models.

Beside our own model the focus of this paper lies mainly on the pairwise
approach RankNet [2] and the listwise approach LambdaMART [22]. RankNet
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is a neural net defining a single output for a pair of documents. For training
purposes, a cross entropy cost function is defined on this output.

LambdaMART on the other hand is a boosted tree version of LambdaRank
[3] which itself is based on RankNet. Here, listwise evaluation metrics M are
optimized by avoiding cost functions and directly defining λ-gradients

λi =
∑
j

Sij

∣∣∣∣∆M ∂Cij
∂oij

∣∣∣∣
where ∆M is the difference in the listwise metric when exchanging documents
i and j in a query, C is a pairwise cost function, and oij is a pairwise output
of the ranking model. Sij = ±1 depending on whether document i or j is more
relevant.

The main advantages of RankNet and LambdaMART are training time
and performance: While RankNet performs well on learning to rank tasks it is
usually outperformed by LambdaMART considering listwise metrics which is
usually the goal of learning to rank. On the other hand, since for the training
of LambdaMART it is necessary to compute a contribution to λi for every
combination of two documents of a query for all queries of a training set, it is
computationally more demanding to train this model compared to the pairwise
optimization of RankNet (cf Table 2).

In general, multiple publications (most prominently [5]) suggest that listwise
approaches are fundamentally superior to pairwise ones. As the results of the
experiments discussed in sec. 5.1 show, this is not necessarily the case.

Important properties of rankers are their reflexivity, antisymmetry and transi-
tivity. To implement a reasonable order on the documents these properties must
be fulfilled. In [20] the need for antisymmetry and a simple method to achieve
it in neural nets are discussed. Also [2] touches on the aspect of transitivity.
However, to the best of our knowledge, a rigorous proof of these characteristics
for a ranking model has not been presented so far. A theoretical analysis along
those lines is presented in sec. 3 of the paper.

3 DirectRanker Approach

Our approach to ranking is of the pairwise kind, i.e. it takes two documents and
decides which one is more relevant than the other. This approach comes with
some difficulties, as, to achieve a consistent and unique ranking, the model has
to define an order. In our approach, we implement a quasiorder � on the feature
space F such that the ranking is unique except for equivalent documents, i.e.
documents with the same relevance label. This quasiorder satisfies the following
conditions for all x, y, z ∈ F :

(A) Reflexivity: x � x
(B) Antisymmetry: x � y ⇒ y � x
(C) Transitivity: (x � y ∧ y � z)⇒ x � z
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We implement such an order using a ranking function r : F ×F → R by defining

x � y :⇔ r(x, y) ≥ 0 . (1)

The conditions (A)-(C) for � can be imposed in form of the following conditions
for r:

(I) Reflexivity: r(x, x) = 0
(II) Antisymmetry: r(x, y) = −r(y, x)

(III) Transitivity: (r(x, y) ≥ 0 ∧ r(y, z) ≥ 0)⇒ r(x, z) ≥ 0

In our case, r is the output of a neural network with specific structure to fulfill
the above requirements. As shown by [20], the antisymmetry can easily be
guaranteed in neural network approaches by removing the biases of the neurons
and choosing antisymmetric activation functions. Of course, the result will only be
antisymmetric, if the features fed into the network are antisymmetric functions of
the documents themselves, i.e., if two documents A and B are to be compared by
the network, the extracted features of the document pair have to be antisymmetric
under exchange of A and B.

This leads to the first difficulty since it is not at all trivial to extract such
features containing enough information about the documents. Our model avoids
this issue by taking features extracted from each of the documents and optimizing
suitable antisymmetric features as a part of the net itself during the training
process. This is done by using the structure depicted in Fig. 1.

The corresponding features of two documents are fed into the two subnets
nn1 and nn2, respectively. These networks can be of arbitrary structure, yet they
have to be identical, i.e. share the same structure and parameters like weights,
biases, activation, etc. The difference of the subnets’ outputs is fed into a third
subnet, which further consists only of one ouptut neuron with antisymmetric
activation and without a bias, representing the above defined function r. With
the following theorem we show that this network satisfies conditions (I) through
(III):

Theorem 1. Let f be the output of an arbitrary neural network taking as input
feature vectors x ∈ F and returning values f(x) ∈ Rn. Let o1 be a single neuron
with antisymmetric and sign conserving activation function and without bias
taking Rn-valued inputs. The network returning o1(f(x)− f(y)) for x, y ∈ F then
satisfies (I) through (III).

Proof. Let the activation function of the output neuron be τ : R → R with
τ(−x) = −τ(x) and sign(τ(x)) = sign(x) as required.

(I) If (II) is fulfilled, then (I) is trivially so because

r(x, x) = −r(x, x)∀x ∈ F ⇒ r(x, x) ≡ 0 .

(II) The two networks nn1 and nn2 are identical (as they share the same
parameters). Hence, they implement the same function f : F → Rn. The
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Fig. 1. Schema of the DirectRanker. nn1 and nn2 can be arbitrary networks (or other
function approximators) as long as they give the same output for the same inputs ij .
The bias of the output neuron o1 has to be zero and the activation antisymmetric and
sign conserving.

output of the complete network for the two input vectors x, y ∈ F is then
given by:

r(x, y) =τ [w(f(x)− f(y))] = τ [wf(x)− wf(y)] =: τ [g(x)− g(y)] , (2)

where w is a weight vector for the output neuron and g : F → R. This is
antisymmetric for x and y, thus satisfying the second condition (II).

(III) Let x, y, z ∈ F , r(x, y) ≥ 0, r(y, z) ≥ 0, and let g be defined as in 2. Since τ
is required to retain the sign of the input, i.e. τ(x) ≥ 0⇔ x ≥ 0, g(x) ≥ g(y)
and g(y) ≥ g(z), one finds

r(x, z) =τ [g(x)− g(z)] = τ
[
g(x)− g(y)︸ ︷︷ ︸

≥0

+ g(y)− g(z)︸ ︷︷ ︸
≥0

]
≥ 0 .

Thus, r is transitive and (III) is fulfilled. ut

These properties offer some advantages during the training phase of the networks
for the distinction of different relevance classes:

(i) Due to antisymmetry, it is sufficient to train the network by always feeding
instances with higher relevance in one and instances with lower relevance in
the other input, i.e. higher relevance always in i1 and lower relevance always
in i2 or vice versa.
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(ii) Due to transitivity, it is not necessary to compare very relevant and very
irrelevant documents directly during training. Provided that every document
is trained at least with documents from the corresponding neighbouring
relevance classes, the model can implicitly be trained for all combinations,
given that all classes are represented in the training data.

(iii) Although it might seem to be sensible to train the model such that it is able
to predict the equality of two different documents of the same relevance
class, the model is actually restricted when doing so: If the ranker is used
to sort a list of documents according to their relevance, there is no natural
order of documents within the same class. Hence, the result of the ranker is
not relevant for equivalent documents. Furthermore, when only documents
of different classes are paired in training, the optimizer employed in the
training phase has more freedom to find an optimal solution for ranking
relevant cases, potentially boosting the overall performance.

Note that the DirectRanker is a generalization of the RankNet model [2], which
is equivalent to the DirectRanker if the activation of o1 is τ(x) = tanh

(
x
2

)
, and

if a cross entropy cost, and a gradient descent optimizer are chosen, which are
free parameters in our model.

For simplicity, we will from now on choose the activation function to be τ ≡ id.
This can be done without loss of generality, since the activation function does
not change the order, if τ is sign conserving.

In the following, we try to put the DirectRanker on a more sound basis by
analyzing some cases in which the DirectRanker is able to approximate an order
(given enough complexity and training samples). More precisely, we present some
cases in which the following conditions are guaranteed to be met:

(i) There exists an order � satisfying (A)-(C) on the feature space F .
(ii) A given order � on F can be represented by the DirectRanker, i.e. there is

a continuous function r : F × F → R implementing the axioms (I)-(III) and
which can be written as r(x, y) = g(x)− g(y) on the whole feature space.

By the universal approximation theorem [11], the second condition implies that r
can be approximated to arbitrary precision by the DirectRanker. In the following,
we will discuss interesting cases, in which these assumptions are valid:

Theorem 2. For every countable feature space F there exists an order � that
is reflexive, antisymmetric, and transitive.

Proof. By definition, for a countable set F , there exists an injective function
g : F → N. Therefore, choose x � y :⇔ g(x) ≥ g(y) for x, y ∈ F . ut

In fact, every sorting of the elements of countable sets satisfies (A)-(C), and as
we show in the next theorem, it can be approximated by the direct ranker, if the
set is uniformly dense:

Theorem 3. Let � implement (A)-(C) on an uniformly discrete feature space
F . Then, the DirectRanker can approximate a function that represents �.
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Proof. First, consider F to be an infinite set. We will use the same notation as
above to describe the ranking function r in terms of a continuous function g
such that r(x, y) = g(x)− g(y). Since we use neural networks to approximate g,
referring to the universal approximation theorem [11], it is sufficient to show that
a continuous function g : Rn → R exists such that r has the required properties.
We will show that such a function exists by explicit construction. We can iterate
through F , since it is discrete and, therefore, countable. Now assign each element
x ∈ F a value g(x) ∈ R. Map the first value x0 to 0, and then iteratively do the
following with the i-th element of F :

p1.1 If ∃j : j < i ∧ xi � xj ∧ xj � xi, set g(xi) := g(xj) and continue with the
next element.

p1.2 If ∀j with j < i : xi � xj , set g(xi) := max
j<i

g(xj) + 1 and continue with the

next element.
p1.3 If ∀j with j < i : xj � xi, set g(xi) := min

j<i
g(xj) − 1 and continue with

the next element. If there are j, k < i with xk � xi � xj , choose an
arbitrary “largest element smaller than xi”, i.e. an element xl ∈ F , l < i
satisfying xi � xl � x∀x ∈ {xj ∈ F|j < i, xj � xi}, and an arbitrary
“smallest element larger than xi”, i.e. an element xg ∈ F , g < i such that

x � xg � xi∀x ∈ {xk ∈ F|k < i, xi � xk}. Then set g(xi) :=
g(xl)+g(xg)

2
and continue with the next element. This is well-defined since steps 1
through 3 guarantee that every xl that can be chosen this way is mapped
to the same value by g. Analogously for xg.

One easily sees that this yields a function g for which g(x) ≥ g(y)⇔ x � y ∀x, y ∈
F and thus r(x, y) = g(x)− g(y) ≥ 0⇔ x � y.

Next, we expand g to a continuous function in Rn. Since F is uniformly
discrete, ∃δ > 0∀i ∈ N : Bδ(xi)∩F = {xi}, where Bδ(xi) := {x ∈ Rn|‖x− xi‖ <
δ}. For every i ∈ N define B̃i : Bδ/42(xi)→ R, x 7→ 1− 42‖x−xi‖

δ . B̃i is obviously

continuous on Bδ/42(xi). Expanding this definition to

Bi(x) :=

{
B̃i(x) if x ∈ Bδ/42(xi)

0 else

allows us to define a function gc : Rn → R, x 7→
∑∞
i=1 g(xi)Bi(x) which results

in the same value as g for all relevant points xi. This can easily be checked, since
Bn(xm) = δmn (using the Kronecker-delta). Thus, it still represents � on F .
Bi is continuous since Bi|Bδ/42 = B̃i and Bi|Rn\Bδ/42 ≡ 0 are continuous and,

therefore, Bi is continuous on the union of these closed sets. We now show that
gc is continuous using the ε-δ-definition:

Let ε > 0 and x ∈ Rn. If there is no n ∈ N such that x ∈ Bδ/42(xi), we

can choose δ̃ > 0 such that Bδ̃(x) ∩Bδ/42(xi) = ∅ ∀n ∈ N since F is uniformly
discrete. Therefore, gc|Bδ̃ ≡ 0 and |gc(x̃)− gc(x)| = 0 < ε∀x̃ ∈ Bδ̃(x).

If there is such an n, then Bδ/4(x) ∩ Bδ/42(xi) is non-empty, if and only if

n = i. Hence, we can choose δ
4 > δ̃ > 0, such that |gc(x̃)− gc(x)| < ε∀x̃ ∈ Bδ̃(x)
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since gc|Bδ/4(xi) = g(xi) · Bi|Bδ/4(xi) is clearly continuous. Therefore, for every

ε > 0 and x ∈ Rn we can find δ̃ > 0 such that |gc(x̃)− gc(x)| < ε∀x̃ ∈ Bδ̃(x), i.e.,
gc is continuous.

If F is finite with N elements, set g(xk) = 0 for k > N . Then the proof works
analogously as the above. ut

Therefore, it theoretically feasible to successfully train the DirectRanker on any
finite dataset, and consequently on any real-world dataset. However, the function
g might be arbitrarily complex depending on the explicit order. In real-world
applications, the desired order is usually not discrete and the task at hand is
to predict the order of elements not represented in the training data. In the
following, we give a reasonably weak condition for which an order � can be
approximated by the DirectRanker on more general feature spaces:

Theorem 4. Let � implement (A)-(C) and F ⊂ Rn be convex and open. For
every x ∈ F define

Px := {y ∈ F|x � y}, Nx := {y ∈ F|y � x}, ∂x := {y ∈ F|x � y ∧ y � x} .

Furthermore, let (F/ ∼, d) be a metric space, where x ∼ y ⇔ y ∈ ∂x and
d(∂x, ∂y) = inf

x′∈∂x,y′∈∂y
‖x′ − y′‖. Then, the DirectRanker can approximate � if

Px and Nx are open for all x ∈ F .

Proof (Sketch of the proof). By using the relations (A)-(C), one can show that
the function g : F → R,

g(x) =


d(∂x0 , ∂x) if x ∈ Px0

−d(∂x0 , ∂x) if x ∈ Nx0

0 if x ∈ ∂x0

∀x ∈ F

with g(x0) = 0 for some x0 ∈ F satisfies the requirements that g is continuous
and implements (A)-(C). This can be done by regarding lines from x′0 ∈ ∂x0

to
x ∈ Px0

and elaborating on the fact that the line has to pass through some y′ ∈ ∂y
if x ∈ Py. For more detail, see the supplementary material to this article. ut

If there are no two documents with the same features but different relevances,
any finite dataset can be extended to Rn such that the conditions for 4 are met. In
real-world applications, i.e. applications with noisy data, it is in general possible
that Px, Nx, and ∂x blur out and overlap. In this case, it is of course impossible
to find any function that represents �. However, the DirectRanker still ought to
be able to find a “best fit” of a continuous function that maximizes the predictive
power on any new documents, even if some documents in the training set are
mislabeled. Experiments investigating this are discussed in sec. 5.2.

4 Experimental Setup

To evaluate the performance of our model and to compare it to other learning to
rank approaches, we employ common evaluation metrics and standard datasets
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(MSLR-WEB10K, MQ2007, MQ2008 [19]). Furthermore we use synthetic data
to investigate the dependence of the performance on certain characteristics of
the data. Reliable estimates for the performance are gained by averaging over
different splits of the dataset using cross-validation on the predefined folds from
the the original publications and are compared to other models. In all tests, we
use the tensorflow library [1] and its implementation of the Adam-Optimizer
[15]. In sec. 4.1 we briefly describe the structure of the LETOR datasets and in
sec. 4.2 how the models are evaluated. In sec. 4.3 we illustrate how the synthetic
datasets are generated and analyzed. For evaluating different models we apply
the commonly used metrics NDCG and MAP which are further discussed in the
supplemental material.

4.1 The LETOR Datasets

The Microsoft Learning to Rank Datasets (LETOR) and especially the MSLR–
WEB10K set are standard data sets that are most commonly used to benchmark
learning to rank models. The dataset consists of 10,000 queries and is a subset of
the larger MSLR–WEB30K dataset. Each instance in the dataset corresponds
to a query-document pair which is characterized by 136 numerical features.
Additionally, relevance labels from 0 (irrelevant) to 4 (perfectly relevant) indicate
the relevance of the given document with respect to the query. Ranking documents
according to their relevance is often simplified by binarizing the relevance labels
using an appropriate threshold, as is done by [12, 13]. In our case, we map
relevance labels ≥ 2 to 1 and relevance labels ≤ 1 to 0. We use this approach to
compare our model to others.

Additionally we evaluate the different algorithms on the much smaller MQ2007
and MQ2008 datasets. These are similar in structure to the MSLR–WEB10K set
with some minor differences: The relevance labels range from 0 to 2 and each
document consists of 46 features. In this case we binarize the relevance labels by
mapping labels ≥ 1 to 1 and relevance labels = 0 to 0.

4.2 Grid search and LETOR Evaluation

We perform grid searches for hyperparameter optimization of our model. The
grid searches were performed using the GridSearchCV class implemented in the
scitkit-learn library [18]. One grid search was done to optimize the NDCG@10 and
one optimizing the MAP. For each hyperparameter point a 5-fold cross validation
(internal) was performed on each training set on each of the 5 predefined folds of
the datasets. The models were then again trained using the best hyperparameters
using the entire training set before averaging the performance on independent
test sets over all 5 folds (external). Before training the model the data was
transformed in such a way that the features are following a normal distribution
with standard deviation of 1/3.

For benchmarking the results, the most common learning to rank algorithms
were also trained and tested with the same method as described above. The
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implementation of these algorithms are taken from the RankLib library imple-
mented in the Lemur Project [21]. The algorithms are: RankNet [2], AdaRank
[23], LambdaMART [22], and ListNet [5].

The used datasets contain queries with only non relevant documents for which
the evaluation metrics are not defined. Consequently we exclude those queries
from the data.

Furthermore, there are queries with less than 10 documents. For such queries
with k < 10 documents the NDCG@k is evaluated during the tests.

4.3 Synthetic Data Generation and Evaluation

To study how the DirectRanker performs for differently structured datasets,
synthetic data with different characteristics were created and evaluated.

To achieve comparability between the different sets, all datasets have the
following properties in common:

(i) The dataset consists of separate training and test sets which are generated
independently, but with the same parameters.

(ii) For each relevance class, the features follow a Gaussian distribution in
feature space with a constant, but random mean between 0 and 100, and a
constant, but random standard deviation between 50 and 100.

(iii) Except for a test in which the performance depending on the size of the
dataset is studied, all training sets consist of 105 and all test sets consist of
104 documents.

(iv) During training, r(di)(1− o1(di, dj))
2 is applied as the cost function as pairs

are constructed such that r(di)− r(dj) = 1. Here, r(d) is the relevance label
of document d.

For the different tests, one parameter describing the dataset is changed
and evaluated for different values, keeping all other parameters fixed. These
parameters include the size of the training set, the number of relevance classes,
the number of features, and noise on the labels. The noise for the labels is
generated by assuming a Gaussian for each label with variable standard deviation
and rounding to the next integer. This allows for testing larger greater degrees of
confusion between more distant relevance classes.

The general procedure for the experiments is the following:

(1) A dataset with the respective parameters is created.
(2) The DirectRanker is trained on the generated training set using our frame-

work.
(3) The trained ranker is tested on the generated test set, again using our

framework. For this, 50-150 random samples are drawn from the test set.
This subset is then sorted using the trained model and the NDCG@20 is
calculated. The whole test is repeated 50 times and the average value of
NDCG@20 over these 50 random subsets is calculated.

(4) These three steps are repeated at least four more times to determine a mean
value µ for the NDCG@20, averaged over different datasets with the same
characteristics. The standard error is calculated as an uncertainty ∆µ of µ.
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In the plots showing our test results (Fig. 2a, Fig. 2b, Fig. 2d, Fig. 2c), every
data point is the result of applying these four steps for one choice of the dataset
parameters. nn1 and nn2 consist of a hidden layer with 70 neurons and another
one with as many neurons as there are relevance classes. The results of these
tests are discussed in sec. 5.2.

5 Experimental Results

In this section we present the experimental results. First, we compare our model
with the commonly used ones (sec. 5.1). Additionally, we give an outline of the
sensitivity on different dataset properties (sec. 5.2).

5.1 Comparison to other Rankers

In Table 1 the results of different models on the datasets discussed in sec. 4.1
are shown. On the MQ2007 and MQ2008 datasets the differences between the
models are insignificant (0.54σ difference in the NDCG@10 between the best and
worst performing algorithms on the MQ2008 dataset) making the experiments on
these sets inconclusive. However, the results on the MSLR–WEB10K set differ
significantly. Here LambdaMart outperforms the DirectRanker by 7.2σ on the
NDCG@10. On the MAP however, the difference is only 0.2σ. It is important to
note that for LambdaMart the model was explicitly boosted on NDCG@10 and
MAP respectively for the two performance values while the DirectRanker uses a
cost function independent of the evaluation metric. On the MSLR–WEB10K set
the DirectRanker outperforms all other methods by at least 2.4σ (NDCG@10) or
3.2σ (MAP).

Table 1. Performance comparison for different rankers on multiple Letor datasets. The
values for ES-Rank, IESR-Rank and IESVM-Rank are taken from [13]. These values
are marked with italic. LambdaMart was boosted using the corresponding evaluation
metric during training.

MSLR-WEB10K MQ2008 MQ2007
Algorithm 〈NDCG〉 〈MAP〉 〈NDCG〉 〈MAP〉 〈NDCG〉 〈MAP〉
DirectRanker 0.440(4) 0.365(3) 0.720(12) 0.636(11) 0.540(10) 0.534(9)
RankNet 0.157(3) 0.195(2) 0.716(11) 0.642(10) 0.525(11) 0.525(7)
ListNet 0.157(3) 0.192(2) 0.719(10) 0.647(6) 0.526(10) 0.525(9)
LambdaMart 0.476(3) 0.366(3) 0.723(7) 0.624(6) 0.531(12) 0.510(11)
AdaRank 0.400(16) 0.322(10) 0.722(10) 0.653(9) 0.526(10) 0.527(10)
ES-Rank 0.382 0.570 0.507 0.483 0.451 0.470
IESR-Rank 0.415 0.603 0.517 0.494 0.455 0.473
IESVM-Rank 0.224 0.457 0.498 0.473 0.436 0.456

To demonstrate the simplicity of the DirectRanker, we present experiments
on the runtime for the model training in Table 2. All tests performed by us have
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Table 2. Comparing the average run times over the five folds of the MSLR–WEB10K
data set in seconds. The values with ∗ were trained on the machine mentioned in the
text. The values with † were trained using RankLib. The values with ‡ are taken from
[13]. For RankNet two implementations were used. One with Tensorflow and one from
RankLib.

Algorithm time in seconds

DirectRanker∗ 151.94(41)
RankNet∗ 142.27(69)

RankNet∗† 2215(351)

AdaRank∗† 1261(50)

LambdaMART∗† 2664(234)

ListNet∗† 3947(481)

ES-Rank‡ 1800

IESR-Rank‡ 1957

IESVM-Rank‡ 34 209

been conducted on an Intel R© CoreTM i7-6850K CPU @ 3.60GHz using the above
mentioned MSLR–WEB10K dataset averaging over the five given folds. Our model
was trained using Tensorflow [1], contrary to the other implementations. This
makes the comparison of the run times difficult, however, we also reimplemented
RankNet using Tensorflow in the same way as our model. Here it can be seen
that the runtime of the DirectRanker and RankNet are of the same order. Thus,
we do not boost the training time of the model but only the performance. On
the other hand the training time beats all the other models. 3

5.2 Sensitivity on Dataset Properties

With the following tests we discuss how the DirectRanker performs under different
circumstances. The tests were performed as described in sec. 4.3. The performance
of the DirectRanker was tested for different numbers of relevance classes (Fig. 2a),
features (Fig. 2b), for variations of noise on the class labels (Fig. 2c), and
differently sized training sets (Fig. 2d).

The tests show that, given enough data, our model is able to handle a diverse
range of datasets. It especially shows that the DirectRanker can handle many
relevance classes as shown in Fig. 2a. As one would expect, the performance
decreases with the number of relevance classes. However, this effect can be
counteracted by increasing the size of the training set (see Fig. 2d) or the
number of features (Fig. 2b). Additionally, Fig. 2c shows the robustness of the
DirectRanker against noise on the relevance classes. Up to some small noise
(approximately 5% mislabeling, i.e. σ = 0.25), the performance decreases only
marginally, but drops significantly for larger noise. Still, even with 50% of the
documents being mislabeled (i.e. σ = 0.75) the NDCG@20 does not drop below

3 For our implementation of the model and the tests see
https://github.com/kramerlab/direct-ranker.
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Fig. 2. Plots depicting the sensitivity of the DirectRanker performance on certain data
properties, evaluated on the synthetic data (sec. 4.3). (Fig. 2a) Dependence on the
number of relevance classes (105 documents in training set). (Fig. 2b) Dependence on
the number of features (105 documents in training set, five relevance classes). (Fig. 2c)
Performance of the DirectRanker with different noise levels on the class labels with
5 classes and 70 features. (Fig. 2d) Dependence on the size of the training set (five
relevance classes).

0.80. This suggests that the theoretical findings in sec. 3 for ideal data stay valid
for real-world data.

6 Discussion and Conclusions

The scheme for network structures proposed and analyzed in this paper is a
generalization of RankNet: We show which properties of components of RankNet
are essential to bring about its favorable behavior and doing so, pave the way
for performance improvements. As it turns out, only a few assumptions about
the network structures are necessary to be able to learn an order of instances.
The requirements on the data for training are also minimal: The method can
be applied to discrete and continuous data, and can be employed for simplified
training schedules with the comparison of neighboring classes (or other relevant
pairs of relevance classes) only. Theoretical results shed some light on the reasons
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why this is the case. Experiments confirm this and show that the scheme deliv-
ers excellent performance also on real-world data, where we may assume that
instances are mislabeled with a certain probability. In many recent comparisons,
RankNet is shown to exhibit inferior performance, leading to the conclusion that
listwise approaches are to be preferred over pairwise approaches. Looking at the
experimental results on the LETOR dataset in this paper, there may be reason
to reconsider that view. However, it might be interesting to adapt the ideas
LambdaRank and LambdaMART for listwise optimization to the DirectRanker
model.

Also, it is remarkable that such a simple, transparent approach can match or
outperform the performance of more recent and much more complex models, like
ES-Rank and the like. Experiments with synthetic data show how the performance
can degrade when given more relevance classes, fewer features or fewer training
instances. However, these results also indicate how the loss of performance can be
compensated by the other factors. Additionally to standard ranking, we suggest
that the DirectRanker can be used for classification as well. First tests showed
promising results. A more systematic investigation of this is the subject of future
work.
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