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Abstract. We derive a tightened empirical Bernstein bound (EBB) on
the variation of the sample mean from the population mean, and show
that it improves the performance of upper confidence bound (UCB) meth-
ods in multi-armed bandit problems. Like other EBBs, our EBB is a
concentration inequality for the variation of the sample mean in terms
of the sample variance. Its derivation uses a combination of probability
unions and Chernoff bounds for the mean of samples and mean of sample
squares. Analysis reveals that our approach can tighten the best exist-
ing EBBs by about a third, and thereby halves the distance to a bound
constructed with perfect variance information. We illustrate the practi-
cal usefulness of our novel EBB by applying it to a multi-armed bandit
problem as a component of a UCB method. Our method outperforms
existing approaches by producing lower expected regret than variants of
UCB employing several other bounds, including state-of-the-art EBBs.

Keywords: Concentration inequality · Chernoff bounds · Hoeffding’s
inequality · Empirical Bernstein bound

1 Introduction

Data-driven processes and decision-making applications typically rely on sam-
ple statistics to infer parameters of a population or evaluate decision options.
Depending on the domain, different assumptions can be made about the distribu-
tion of the data, which in turn determine which computational routines are used
to compute the required population statistics. These assumptions may be based
on prior information, expert opinion, or determined from the characteristics of
the system under observation.

Within this context, finite-sample concentration inequalities are used to place
bounds on the variation of sample statistics around their population values. Such
bounds are applied in a range of data science contexts for a variety of prediction,
machine learning and hypothesis testing tasks, including: change detection [19,
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11] and classification [25] in data streams; outlier analysis in large databases [2];
online optimisation [17, 1]; and, of most relevance to this paper, online prediction
and learning problems [15, 23, 30, 22], particularly in settings with bandit feed-
back [5, 3, 31]. In particular, the recently developed empirical Bernstein bounds
(EBB) are of significant interest [22, 4]. These are probability bounds describ-
ing the likely difference of a sample mean from the population mean in terms of
the sample variance, under the assumption that the population data is bounded
within an interval of known width. EBBs have been used as a method of gen-
erating confidence bounds for the mean, and an outstanding task is to see how
much these techniques can be improved.

Given this challenge, in this work, we take inspiration and extend the work
of Maurer and Pontil ([22], M&P in the remainder) to develop a new EBB.
Our EBB tightens existing bounds by incorporating a combination of bounds on
the variation of the sample variance. Specifically, we use two Chernoff bounds,
for the sample mean and the mean of sample squares, which are fused using
a probability union and variance decomposition, to create a novel probability
bound for the sample variance, which is then used to derive our novel EBB.

Evaluations show that our EBB significantly tightens the current state-of-the-
art bounds. Specifically, our EBB can shrink the best existing EBBs by about a
third. This represents half of the distance between the best existing EBBs and
an unattainable Bernstein bound constructed with perfect variance information.
Moreover, we demonstrate the use of our novel EBB in an upper-confidence bound
(UCB) multi-armed bandit (MAB) algorithm. Results from a set of MABs show
that using our bound in a UCB algorithm outperforms existing approaches, by
producing comparable or lower expected regret than employing other existing
bounds, including state-of-the-art EBBs.

The paper is organised as follows. Related work and preliminary concepts
are reviewed in Sections 2 and 3, respectively. Our main results are in Section 4,
where we derive a novel EBB. In Section 5 we evaluate our EBB and show its
improvements over existing bounds. In Section 6 we apply it to a multi-armed
bandit problem as part of a UCB algorithm, which demonstrates how our tighter
EBB improves the algorithm’s learning performance. Section 7 concludes.

2 Related Work

Concentration inequalities are probabilistic bounds describing how far a random
variable is expected to deviate from (or otherwise be concentrated around) a par-
ticular value. Most classic concentration inequalities describe the expected devi-
ation of sample statistics, including Chebyshev’s inequality [12], the Bernstein’s
inequalities [10], Hoeffding’s inequalities [18] and Bennett’s inequalities [7]. Build-
ing on these, new analysis has yielded a wide range concentration inequalities
and methods of generating them [9, 13]. In particular, recent innovations con-
cern the concentration of more-general functions of random variables, such as
the Efron-Stein [16] and entropy methods [14], and applications of Talagrand’s
concentration inequality [28]. Inequalities such as these are used to describe the
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expected variability of sample statistics, such as the distance of a sample mean
from the population mean.

Furthermore, additional sample statistics can be used to tighten such bounds,
because these statistics provide extra distributional information that are incor-
porated as a factor into classical inequalities. EBBs [22, 4] are one example of
this, where sample variance information is used to tighten a classical Bernstein
bound. However, it remains to be seen how far bounds derived by this approach
can be tightened.

3 Preliminaries

To begin, we state three lemmas which form the basis for our derivation (proofs
in Appendix A.1). The first is an often used result related to union bounds:

Lemma 1 (Probability Union). For any random variables a, b and c:

P(a > c) ≤ P(a > b) + P(b > c)

This result is used to bound the probability relationship between two vari-
ables via knowledge of the probability relationship between them and a third
variable. The second definition relates the value of the sample mean and the
value of sample squares to the sample variance. It is expanded here because we
will later use these relationships to create bounds for the sample variance from
bounds on the sample squares and sample mean.

Lemma 2 (Variance Decomposition). For n samples xi, sample mean µ̂ =
1
n

∑
i xi, sample variance σ̂2 = 1

n−1
∑
i(xi − µ̂)2, and average of sample squares

σ̂2
0 = 1

n

∑
i x

2
i , the following relationship holds:

σ̂2
0 = µ̂2 +

n− 1

n
σ̂2

In order to derive our novel bound, we use the next lemma, which encap-
sulates a range of inequalities called Chernoff bounds that give bounds on the
mean of random variables:

Lemma 3 (Chernoff Bound). If µ̂ is sample mean of n independent and
identically distributed samples of random variable X then for any s > 0 and t:

P(µ̂ ≥ t) ≤ E [exp(sX)]
n

exp(−snt)

The proof of this statement is straightforward and uses Markov’s inequality
and the i.i.d of the samples. In the next section, we use these components to
derive the bounds on the sample mean and the mean of sample squares, which
we then use to create a new EBB.
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4 Derivation and numerical implementation

In this section, we derive two Chernoff bounds, for the sample mean and the
mean of sample squares, (Lemmas 5 and 6, respectively). These are fused using a
probability union and variance decomposition, defined above, to derive a bound
for the sample variance. This bound is then used to derive our new EBB, as
presented in Theorem 7. However, due to its analytic intractability, we complete
the derivation by discussing how to numerically implement the bound.

4.1 Derivation

Our first probability bound is a Chernoff bound on the sample mean called
Bennett’s inequality. This bound is not new and was derived by [18] and [7] and
has subsequently been a subject of discussion and many further developments
[8, 24, 29]; we provide a proof in Appendix A.2.

Theorem 4 (Bennett’s inequality). Let X be a real-valued random variable
with a mean of zero and variance σ2, that is bounded a ≤ X ≤ b. Then for t > 0,
the mean µ̂ of n samples of X is probability bounded by:

P(µ̂ ≥ t) ≤ Hn
1

(
σ2

b2
,
t

b

)
, (1)

where:

Hn
1

(
σ2

b2
,
t

b

)
=

( σ2

b2

σ2

b2 + t
b

)σ2

b2
+ t
b (

1− t

b

) t
b−1


n
σ2

b2
+1

We will also use a double-sided version of this bound:

P(µ̂2 ≥ r2) ≤ Hn
1

(
σ2

b2
,
r

b

)
+Hn

1

(
σ2

a2
,
−r
a

)
(2)

The assumption that the mean is zero can be used without a loss of generality.
In this way, Bennett’s inequality gives us a probability bound for the difference
of the sample mean from the true mean given the variance.

However, often in practice the variance is unknown, but can only estimate
it via a sample variance statistic. Thus, we derive a bound the difference of the
sample variance from the variance as follows (proof in Appendix A.3):

Lemma 5 (Sample square bound). Let X be a real-valued random vari-
able with a mean of zero and variance σ2, that is bounded a ≤ X ≤ b, if
d = max(b,−a) then for y > 0, the mean of sample squares σ̂2

0 = 1
n

∑
i x

2
i

is probability bounded:

P(σ2 − σ̂2
0 > y) ≤ Hn

2

(
σ2

d2
,
y

d2

)
, (3)
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where:

Hn
2

(
σ2

d2
,
y

d2

)
=

( 1− σ2

d2

1 + y
d2 −

σ2

d2

)1+ y

d2
−σ2
d2
(

σ2

d2

σ2

d2 −
y
d2

)σ2

d2
− y

d2


n

It is worth noting that we choose to restrict the use of function Hn
2 to cases

which are sensible for it to be applied: (i) it is defined for a < 0 < b, because
otherwise the mean could not be zero), and (ii) σ2 ≤ −ab ≤ (b − a)2/4 by
Popoviciu’s inequality [27], as it is not possible for the variance to be larger given
the width of the data bounds. It is important that these domain restrictions are
conserved with the analysis.

At this point, we have a probability bound on the mean squared (Equation
2) and a probability bound on the sample squares (Lemma 5). With these in
hand, we use lemma 2 to create a bound on the sample variance, as follows.

Lemma 6 (Sample Variance Bound). For a random variable that is bounded
a ≤ X ≤ b with variance σ2 and a mean of zero, if d = max(b,−a) then for
w > 0, the sample variance σ̂2 of n samples is probability bounded by:

P(σ2 − σ̂2 > w) ≤ Hn
3 (a, b, w, σ2), (4)

where:

Hn
3 (a, b, w, σ2) = min

φ∈[0,1]


Hn

1

(
σ2

b2 ,

√
φ(n−1

n w+ 1
nσ

2)

b

)
+Hn

1

(
σ2

a2 ,
−
√
φ(n−1

n w+ 1
nσ

2)

a

)
+Hn

2

(
σ2

d2 ,
(1−φ)(n−1

n w+ 1
nσ

2)

d2

)


A proof is provided in Appendix A.3. The use of the function Hn

3 is subject
to the same restrictions on its domain as Hn

2 . Thus, in Lemma 4 we have a bound
for the sample mean given the variance, and in Lemma 6 we have a probability
bound for the difference of the sample variance from the population variance.
Next, we outline a method of combining these two to create a bound for the
sample mean given the sample variance — and thereby derive a new empirical
Bernstein bound. To do this, we now expound a theorem that embodies a process
followed by M&P [22].

Before beginning, we introduce some notation. For a function f with ordered
inputs, we denote the inverse of f with respect to its ith input (counting from
one) as f−(i), assuming it exists. Denote probability bounds on the differences
of the sample mean from the mean, and the sample variance from the variance,
by P(µ̂ − µ > t) ≤ h(σ2, t) and P(σ2 − σ̂2 > w) ≤ f(σ2, w), respectively. Note
that functions h and f have arguments σ2 and t, and σ2 and w, respectively.
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Theorem 7 (Essential EBB). Assume f−(2) and h−(2) both exist, and also if
h−(2) is monotonically increasing in its first argument, so that we can define:

z(σ2, w) = σ2 − f−(2)
(
σ2, w

)
If z−(1) exists and is monotonic increasing in its first argument, then for any
x ∈ [0, y], the following relationship holds:

P
(
µ̂− µ > h−(2)

(
z−(1)

(
σ̂2, y − x

)
, x
))
≤ y

Proof. Substituting w for f−2(σ2, w) gives:

w ≥ P
(
σ2 − σ̂2 > f−(2)

(
σ2, w

))
≥ P

(
z
(
σ2, w

)
> σ̂2

)
≥ P

(
σ2 > z−(1)

(
σ̂2, w

))
≥ P

(
h−2

(
σ2, t

)
> h−(2)

(
z−(1)

(
σ̂2, w

)
, t
))

Substituting t for h−(2)(σ2, t) gives:

P
(
µ̂− µ > h−(2)

(
σ2, t

))
≤ t.

Applying probability union (lemma 1) gives:

P
(
µ̂− µ > h−(2)

(
z−(1)

(
σ̂2, w

)
, t
))
≤ t+ w.

Letting y = t+ w and x = y − w completes the proof. �

The result of this Theorem is an EBB, and our novel EBB is completed
by substituting h(σ2, t) = Hn

1

(
σ2/b2, t/b

)
and f(σ2, w) = Hn

3

(
a, b, w, σ2

)
into

Theorem 7. Care must be taken in applying this theorem that all the assumptions
hold, the inverses exist, and the domains of the functions are propagated through
the analysis.

4.2 Numerical Implementation

Analytically solving this new EBB is challenging, however it is possible to eval-
uate it to arbitrary accuracy using numerical techniques. This section provides
a high-level description of a process for calculating our EBB.1

This calculation is composed of three primary parts: (i) the computation
of function f(σ2, w) = Hn

3 (a, b, y, σ2); (ii) verifying that the assumptions of
Theorem 7 hold for h(σ2, t) = H1 and f(σ2, w) = H3, and; (iii) calculating the
subsequent result of Theorem 7.

1 sourcecode available at:
https://github.com/Markopolo141/Engineered-Empirical-Bernstein-Bound
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First, the function f(σ2, w) = Hn
3 (a, b, w, σ2) is the solution to an optimiza-

tion problem that solves for the minima of an objective function subject to
constraint φ ∈ [0, 1]. Despite its complexity, a solution can be found quickly
using a single variable parameter sweep.

Second, it is necessary to verify the assumptions that h−(2), f−(2) and z−(1)

exist and that z−(1) and f−(2) are monotonically increasing in their first argu-
ment. It is easy to note that h(σ2, t) = Hn

1

(
σ2/b2, t/b

)
is a closed-form function

that is monotonically decreasing from 1 to 0 on the second argument, so h−(2)

exists and is monotonically increasing in its first argument. However the re-
maining assumptions are more difficult to verify. For any function, the values
that the function takes can be plotted as an array of points and the values that
the inverse of that function takes can be determined by conducting coordinate
swaps on those points. The values of f(σ2, w) = Hn

3 (a, b, w, σ2) were computed
and were seen to be monotonically decreasing in its second argument confirming
that f−(2) exists. The function z(σ2, w) = σ2 − f−(2)

(
σ2, w

)
is then seen to be

a manipulation on the coordinate swapped points of f(σ2, w) = Hn
3 (a, b, w, σ2).

By coordinate swapping again, z−(1) was seen to be a regular function mono-
tonically increasing on its first argument, hence satisfying assumptions.

Third, to numerically calculate the result of Theorem 7 the functions h−(2)

and z−(1) were numerically evaluated by direct parameter searches and then
composed as: h−(2)(z−(1)(σ̂2, y−x), x) - which is the inner part of the expression
of the new EBB parameterised by x explicitly and also a, b implicitly. However
we typically don’t know the values of a and b, but instead know the mean is
somewhere within a finite interval of width D = b− a. Given this, we then take
the worst case values of a and b consistent with a given D, and then take the
best x ∈ [0, y] subject to all other bounds.

5 Comparison to existing bounds

In this section, we make three comparisons of our results to existing concentra-
tion bounds, namely (i) Lemma 6 is compared to M&P’s entropic bound, then
our EBB is compared to (ii) M&P’s EBB and (iii) Bennett’s inequality with
perfect variance information.

First, M&P’s entropic bound [22] (originally presented in [21]) is given by:

P(σ2 − σ̂2 > w) ≤ exp

(
−(n− 1)w2

2σ2D2

)
(5)

The improvement our variance bound (Lemma 6) offers over theirs is given by:

Y

(
σ2

D2
,
w

D2
, n

)
= exp

(
−(n− 1)w2

2σ2D2

)
−max

b
Hn

3

(
D(1− b), Db, w, σ2

)
(6)

where b has a viable range between 0.5 and 0.5−
√

0.25− σ2/D2 (via Popoviciu’s
inequality). Figure 1 plots this improvement against σ2 and w for n = 200, which
shows large regions of advantage. However, it is possible to use the minima
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0.05

0.1
0.15

0.2
0.25

0.050.10.150.2

0

0.5

1

σ2

D2

w
D2

Advantage over Entropic bound for n=200

0

0.5

1

Fig. 1. The strength of our variance bound over Maurer’s Entropic bound. The graph

of Y
(
σ2

D2 ,
w
D2 , n

)
from Equation 6

of several different variance bounds, so in constructing our EBB, we take the
minima of our variance bound and the entropic bound.

Second, we compare our EBB directly with M&P’s EBB [22], given by:

P

(
µ− µ̂ >

√
2σ̂2 log(2/y)

n
+

7D log(2/y)

3(n− 1)

)
< y. (7)

In order to fairly compare our EBB to M&P’s we apply Popoviciu’s inequality
as a domain restriction, and carry it through their derivation, as we did to our
own EBB. Specifically, this is the domain where:

1

2
>

√
σ̂2

D
+

√
2 log(2/y)

n− 1

We plot the improvement our EBB offers in this domain, as shown in Figure
2. In this plot, a probability 0.5 bound is shown to shrink by approximately
one third. More generally, we observe that our refinement of M&P’s EBB is be
uniformly tighter across a large range of values.

Third, a comparison is made of the further improvement in confidence over
our EBB that can be achieved with perfect information about the variance;
specifically, Bennett’s inequality is used assuming σ̂2 = σ2. This improvement
is plotted in Figure 3, which shows that when the variance is small, uncertainty
about the variance is the most detrimental to an EBB, such as ours. However, in
general, going from our EBB to perfect variance information shrinks the bounds
by about another third.
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0 0.05 0.1 0.15 0.2 0.25

30%

35%

40%

n=50
n=75 n=100

n=150

n=200

n=300

n=500

n=1000

σ̂2/D2

Bound reduction of our EBB over Maurer and Pontil’s

Fig. 2. The percent reduction of the 0.5 probability bound, that going from Maurer
and Pontil’s EBB to our EBB would achieve, for various n, in the domain valid for
their EBB.

0 0.05 0.1 0.15 0.2 0.25
0%

20%

40%

60%

80%

100%

n=50

n=1000

σ̂2/D2

Potential bound reduction with σ̂2 = σ2 over our EBB

Fig. 3. The percent reduction in the 0.5 probability bound that going from our EBB
to using Bennett’s inequality (perfect variance information, σ̂2 = σ2) achieves, for
n = 50, 75, 100, 150, 200, 300, 500, 1000.
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6 Application: Multi-Armed Bandits

One example use of concentration inequalities is in the context of the upper-
confidence bound (UCB) method in multi-armed bandit (MAB) problems. In this
section we consider the performance of UCB employing different concentration
inequalities in an example MAB, in order to show the benefit of using our EBB.

6.1 MAB Problem Description

There are several variations of MAB problems, however the classic MAB [26]
problem comprises a single bandit machine with K arms, each of which returns
rewards that are independently drawn from an unknown distribution when it is
pulled. In general, the MAB problem is to design an algorithm for sequentially
choosing between the K arms in order to maximise the sum of the (initially un-
known) stochastic rewards that each arm yields. Initially, a player must choose
exploratory actions to learn about the rewards that each arm returns, before
exploiting this information to choose the higher-valued arms. In this way, MABs
illustrate finite horizon reinforcement learning dynamics, and is one of the clear-
est examples of the exploration-exploitation trade-off in machine learning.

Formally, at each time-step, n, a player has to choose which of the arms to
pull. However, the player initially has no knowledge of the rewards of each arm,
k ∈ K, so it must learn these values in order to deduce a policy that maximises
its sum of rewards. As argued above, in real-world applications, reward values
are typically bounded, so we assume that each arm’s reward distribution has
bounded supports. Denote the mean of this distribution and the width of its
support µk and Dk, respectively.

Let A = {a(1), a(2), . . .} be a finite sequence of arm pulls, where a(n) is the
arm pulled at time-step t, a(n) ∈ K. Let R(A) be the total return to the player
from following the sequence A. The expectation of A is:

E [R(A)] =
∑
a(t)∈A

µk

An optimal sequence of arm pulls, A∗ is one that maximises the expression above,
that is:

A∗ = arg max
A

E [R(A)] = arg max
A

∑
a(n)∈A

µk

However, in order to determine A∗, we have to know the value of µk in advance,
which we do not. Thus, A∗ is a theoretical optimum value, which is not achievable
in general. Instead, a typical approach to MABs is to define a loss or regret
function, L(A) for an arbitrary algorithm A:

L(A) = E [R(A∗)]− E [R(A)] (8)

Using this regret function, the MAB problem is transformed to one of finding a
sequence, A, that minimises L(A).
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6.2 Upper-Confidence Bound Methods

One well-known and effective strategy for the MAB is UCB [20]. Under UCB,
at each iteration, n, the arm with the greatest upper confidence bound on the
estimated mean of its reward as inferred from past rewards (at some confidence
level) is selected. Specifically, the general form of UCB methods is to define a
confidence interval, CI on the estimate of the mean:

P (µ− µ̂ ≥ CI) ≤ y

where y is a confidence level, and then at each iteration, to select the arm with
the greatest upper confidence bound given this confidence interval:

a(n) = arg max
k∈K

[µ̂k(n) + CIk(n)]

where µ̂k(n) and CIk(n) are the mean estimate and confidence interval at time-
step n, respectively. In this way, the initial selection of arms is driven by the
degree of uncertainty about their rewards, as captured by using the confidence
bounds, while over time, the best performing arms are selected more often.

UCB methods can be categorised by the specific type of bandit problem they
apply to, and also the method used to infer the confidence interval. One typical
UCB method uses Hoeffding’s inequality to set the confidence interval [6], where
Hoeffding’s inequality is given by:

P

(
µ− µ̂ ≥

√
D2 log(1/y)

2n

)
≤ y. (9)

Additionally we consider the EBB type UCB method developed by [4] per their
inequality:

P

(
µ− µ̂ ≥

√
σ̂2 log(3/t)

2n
+

3D log(3/t)

2n

)
≤ t. (10)

We also consider a UCB method with the EBB developed by M&P [22], particu-
larly utilizing the bound of inequality (7) (in Section 5). All three are compared
to UCB employing our EBB to define the upper confidence bound. Additionally,
we also compare to randomly choosing actions, for a näıve baseline. In all cases
we selected UCB to minimise a probability 0.5 bound.

We used a confidence level of 0.5 in all cases simply as a representative of a
mid-range bound, but note that potentially some different dynamics could occur
with the selection of more extreme bounds (i.e. close to 0 or 1).

For the application of our EBB we hand-tuned a function approximating our
EBB’s numerical probability 0.5 bound:

P

µ− µ̂ ≥ D√
n

min

√2 log 2,

 3
5

√
min

[
1, σ̂

2

D2 + 25
n

]
+ ln

(
max

[
1, n

(
1− σ̂2

D2

)])−4
 / 0.5

(11)
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The process of creating the above expression involved plotting the numerical
data, and manually fitting an approximate symbolic expression. This expression
was used in situ to simplify the application of our EBB in the bandit context.
However the numeric data itself may have been calculated and used directly, at
the cost of longer compute times.

6.3 Problem instances and results

In the example bandit problems considered here, the number of arms is K = 8,
each of which yield rewards of between 0 and 1. For each arm k, there is a
unique αk and βk parameters of its beta distribution over rewards, and for each
realization of the problem, these αk and βk are drawn uniformly from between 0
and 3. For these problems, we used the different confidence bound approaches,
and measured their performance in terms of regret, defined in (8). As noted
above, regret is a measure of the performance of bandit algorithms identified by
the expected loss of selecting an arm against choosing only the ideal arm. The
regret of the different methods of choosing actions was estimated as the average
regret obtained across 100, 000 instances of this bandit problem. We computed
the average regret of these methods over finite arm-pulling budgets, N , in order
to assess the algorithm’s finite-time performance.

0 100 200 300 400
0

0.1

0.2

0.3

Maurer&Pontil

Random

Hoeffding

Audibert

Our method

N

Expected regret for bandit algorithms with budget N

Fig. 4. The expected regret of bandit algorithms and a baseline method in the example
bandit problem: UCB method using our bound (11), Hoeffding’s, Audibert et.al’s, and
Maurer & Pontil’s inequalities; and method of uniform randomly choosing an arm.
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The the performance of the four methods and the näıve baseline are shown
in Figure 4. From this figure, we see that minimizing an upper confidence bound
utilizing our inequality (11) results in best performance (lowest regret), except
marginally in the region of very small sample budgets.

It is somewhat surprising to see the more complicated EBB methods [22, 4]
perform worse than the much simpler Hoeffding’s inequality. As EBB inequalities
are specifically constructed in a way to incorporate the estimate of the variance,
then the potential advantage comes when there are sufficiently many samples for
reliable variance estimation. However a bound without this construction (such
as Hoeffding’s inequality) may be tighter and more effective for small/medium
sample budgets. As expected, the random method of choosing arms had a con-
stant expected average regret across action budgets, as it does not learn with
additional samples of the arms’ rewards.

7 Conclusion

In this paper, we have extended existing work on concentration inequalities to
derive a new and stronger EBB. Our EBB has many applications, in any setting
where a mean value must be estimated with confidence, such as bandit problems.
Our EBB was shown to tighten known EBB-based confidence intervals by about
a third, thereby improving the value of these types of concentration inequalities.
This value was demonstrated in a MAB problem, where using our EBB in a
UCB algorithm was shown to improve online learning performance.

A Proofs

A.1 Small Proofs

Proof (Proof of Probability Union - Lemma 1). For any events A and B
P(A ∪B) ≤ P(A) + P(B), hence for events a > b and b > c:
P((a > b) ∪ (b > c)) ≤ P(a > b) + P(b > c)
If a > c, then (a > b) ∪ (b > c) is true irrespective of b, so:
P(a > c) ≤ P((a > b) ∪ (b > c)) �

Proof (Proof of Variance Decomposition - Lemma 2). By expanding and σ̂2:

σ̂2 = 1
n−1

∑
i

(
xi − 1

n

∑
j xj

)2
= 1

n−1

(∑
i x

2
i − 1

n

∑
i,j xixj

)
= n

n−1
(
σ̂2
0 − µ̂2

)
�

Proof (Proof of Chernoff Bound - Lemma 3).
P(µ̂ ≥ t) = P (exp (s

∑n
i=1 xi) ≥ exp(snt))

≤ E [exp (s
∑n
i=1 xi)] exp(−snt) ≤ E [exp (sX)]

n
exp(−snt)

using Markov’s inequality and the i.i.d of the samples, respectively. �
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A.2 A Proof of Bennett’s inequality

Theorem 8 (Parabola Fitting). For b > 0, a < b and z > 0, there exists an
α, β, γ such that: αx2 + βx+ γ ≥ exp(x) for all a ≤ x ≤ b, and:
zα+ γ = (z exp(b) + b2 exp(−z/b))(z + b2)−1.

Proof. A example parabola αx2 +βx+γ which that satisfies these requirements
tangentially touches the exponential curve at one point (at x = f < b) and
intersects it at another (at x = b), as illustrated in Figure 5. Thus the parabola’s
intersection at x = b and its tangential intersection at x = f can be written in
matrix algebra: αβ

γ

 =

b2 b 1
f2 f 1
2f 1 0

−1 exp(b)
exp(f)
exp(f)


This gives our parabola parameters α, β, γ, in terms of f and b, hence:
zα+ γ = (((z + fb− b)(f − b− 1)− b)ef + (f2 + z)eb)(b− f)−2

Minimizing with respect to f occurs at f = −z
b and gives the result. �

Proof (Proof of Bennett’s inequlity – Lemma 4). As random variable X is bounded
a ≤ X ≤ b, for any s > 0, by Theorem 8, there exist parameters α, β, γ such
that, αs2X2 + βsX + γ ≥ exp(sX) is always satisfied, hence for these we have:
E [exp(sX)] ≤ E[αs2X2 + βsX + γ] ≤ αs2 E[X2] + γ ≤ αs2σ2 + γ

≤ (σ2 exp(sb) + b2 exp(−sσ2/b))(σ2 + b2)−1

Hence by application of lemma 3:
P(µ̂ ≥ t) ≤ (σ2 exp(sb) + b2 exp(−sσ2/b))n((σ2 + b2) exp(st))−n

and finding the minimum with respect to s completes the proof. �

A.3 Remaining Proofs

Proof (Proof of Sample Square Bound - Lemma 5). There exist parameters α, γ
such for all a ≤ X ≤ b that αX2 + γ ≥ exp(−qX2) whence:
E[exp(−qX2)] ≤ E[αx2 + γ] ≤ ασ2 + γ

With d = max(b,−a), we choose (Fig 6) α = (exp(−qd2)− 1)d−2 and γ = 1
Then applying lemma 3 to the mean of the negated sample squares gives:

P(−σ̂2
0 ≥ t) ≤

(
σ2

d2 exp(−qd2) + 1− σ2

d2

)n
exp(−qnt)

Substituting t for y − σ2 and minimizing with q completes the proof. �

Proof (Proof of Sample Variance Bound - Lemma 6). By Lemmas 5 and 2:

P
(
σ2 − σ̂2 > n

n−1
(
µ̂2 + y − 1

nσ
2
))
≤ Hn

2

(
σ2

d2 ,
y
d2

)
Also, by manipulating the inner inequality of equation 2:

P
(

n
n−1

(
µ̂2 + y − 1

nσ
2
)
≥ n

n−1
(
r2 + y − 1

nσ
2
))
≤ Hn

1

(
σ2

b2 ,
r
b

)
+Hn

1

(
σ2

a2 ,
−r
a

)
Applying lemma 1 to the above two equations gives:

P
(
σ2 − σ̂2 > n

n−1
(
r2 + y − 1

nσ
2
))
≤ Hn

2

(
σ2

d2 ,
y
d2

)
+Hn

1

(
σ2

b2 ,
r
b

)
+Hn

1

(
σ2

a2 ,
−r
a

)
For w = n

n−1
(
r2 + y − 1

nσ
2
)

there is a range of possible r, y > 0 which we pa-
rameterise by value φ, such that 0 ≤ φ ≤ 1:
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y(φ) = (1− φ)
(
n−1
n w + 1

nσ
2
)

and r(φ)2 = φ
(
n−1
n w + 1

nσ
2
)

Thus:
P
(
σ2 − σ̂2 > w

)
≤ Hn

2

(
σ2

d2 ,
y(φ)
d2

)
+Hn

1

(
σ2

b2 ,
r(φ)
b

)
+Hn

1

(
σ2

a2 ,
−r(φ)
a

)
The result of this proof follows by taking the minimum over φ. �

x

ex

αx2 + βx+ γ

a f b

Fig. 5. A parabola parametarised
by touching and intercepting points
f, b above an exponential curve for
all a ≤ x ≤ b

x
e−qx

2

g(x)

a b

Fig. 6. g(x) = (e−qd
2

− 1)d−2x2 + 1

over function f(x) = e−qx
2

for all
a ≤ x ≤ b where d = max(b,−a); in
the case a = −1, b = 1.3, q = 1
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