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Abstract. We propose a novel ranking model that combines the Bradley-
Terry-Luce probability model with a nonnegative matrix factorization
framework to model and uncover the presence of latent variables that
influence the performance of top tennis players. We derive an efficient,
provably convergent, and numerically stable majorization-minimization-
based algorithm to maximize the likelihood of datasets under the pro-
posed statistical model. The model is tested on datasets involving the
outcomes of matches between 20 top male and female tennis players over
14 major tournaments for men (including the Grand Slams and the ATP
Masters 1000) and 16 major tournaments for women over the past 10
years. Our model automatically infers that the surface of the court (e.g.,
clay or hard court) is a key determinant of the performances of male
players, but less so for females. Top players on various surfaces over this
longitudinal period are also identified in an objective manner.

Keywords: BTL ranking model, Nonnegative matrix factorization, Low-
rank approximation, Majorization-minimization, Sports analytics

1 Introduction

The international rankings for both male and female tennis players are based
on a rolling 52-week, cumulative system, where ranking points are earned from
players’ performances at tournaments. However, due to the limited observation
window, such a ranking system is not sufficient if one would like to compare
dominant players over a long period (say 10 years) as players peak at different
times. The ranking points that players accrue depend only on the stage of the
tournaments reached by him or her. Unlike the well-studied Elo rating system
for chess [1], one opponent’s ranking is not taken into account, i.e., one will
not be awarded with bonus points by defeating a top player. Furthermore, the
current ranking system does not take into account the players’ performances
under different conditions (e.g., surface type of courts). We propose a statistical
model to ameliorate the above-mentioned shortcomings by (i) understanding
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Fig. 1. The BTL-NMF Model

the relative ranking of players over a longitudinal period and (ii) discovering the
existence of any latent variables that influence players’ performances.

The statistical model we propose is an amalgamation of two well-studied
models in the ranking and dictionary learning literatures, namely, the Bradley-
Terry-Luce (BTL) model [2, 3] for ranking a population of items (in this case,
tennis players) based on pairwise comparisons and nonnegative matrix factoriza-
tion (NMF) [4,5]. The BTL model posits that given a pair of players (i, j) from
a population of players {1, . . . , N}, the probability that the pairwise comparison
“i beats j” is true is given by Pr(i beats j) = λi

λi+λj
. Thus, λi∈R+ :=[0,∞) can

be interpreted as the skill level of player i and the row vector λ = (λ1, . . . , λN )
parametrizes the BTL model. Other more general ranking models are discussed
in [6] but the BTL model suffices as the outcomes of tennis matches are binary.

NMF consists in the following problem. Given a nonnegative matrix Λ ∈
RM×N+ , one would like to find two matrices W ∈ RM×K+ and H ∈ RK×N+ such
that their product WH serves as a good low-rank approximation to Λ. NMF is
a linear dimensionality reduction technique that has seen a surge in popularity
since the seminal papers by Lee and Seung [4, 7]. Due to the non-subtractive
nature of the decomposition, constituent parts of objects can be extracted from
complicated datasets. The matrix W, known as the dictionary matrix, contains
in its columns the parts, and the matrix H, known as the coefficient matrix,
contains in its rows activation coefficients that encode how much of each part is
present in the columns of the data matrix Λ. NMF has also been used successfully
to uncover latent variables with specific interpretations in various applications,
including audio signal processing [8], text mining analysis [9], and even analyzing
soccer players’ playing style [10]. We combine this framework with the BTL
model to perform a sports analytics task on top tennis players.

1.1 Main Contributions

Model: In this paper, we amalgamate the aforementioned models to rank tennis
players and uncover latent factors that influence their performances. We propose
a hybrid BTL-NMF model (see Fig. 1) in which there are M different skill vectors
λm,m ∈ {1, . . . ,M}, each representing players’ relative skill levels in various
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tournaments indexed by m. These row vectors are stacked into an M×N matrix
Λ which is the given input matrix in an NMF model.
Algorithms and Theory: We develop computationally efficient and numeri-
cally stable majorization-minimization (MM)-based algorithms [11] to obtain a
decomposition of Λ into W and H that maximizes the likelihood of the data.
Furthermore, by using ideas from [12,13], we prove that not only is the objective
function monotonically non-decreasing along iterations, additionally, every limit
point of the sequence of iterates of the dictionary and coefficient matrices is a
stationary point of the objective function.
Experiments: We collected rich datasets of pairwise outcomes of N = 20 top
male and female players and M = 14 (or M = 16) top tournaments over 10
years. Our algorithm yielded matrices W and H that allowed us to draw inter-
esting conclusions about the existence of latent variable(s) and relative rankings
of dominant players over the past 10 years. In particular, we conclude that male
players’ performances are influenced, to a large extent, by the surface of the
court. In other words, the surface turns out to be the pertinent latent variable
for male players. This effect is, however, less pronounced for female players. In-
terestingly, we are also able to validate via our model, datasets, and algorithm
that Nadal is undoubtedly the “King of Clay”; Federer, a precise and accurate
server, is dominant on grass (a non-clay surface other than hard court) as evi-
denced by his winning of Wimbledon on multiple occasions; and Djokovic is a
more “balanced” top player regardless of surface. Conditioned on playing on a
clay court, the probability that Nadal beats Djokovic is larger than 1/2. Even
though the results for the women are less pronounced, our model and longitudi-
nal dataset confirms objectively that S. Williams, Sharapova, and Azarenka (in
this order) are consistently the top three players over the past 10 years. Such
results (e.g., that Sharapova is so consistent that she is second best) are not
directly deducible from official rankings because these rankings are essentially
instantaneous as they are based on a 52-week cumulative system.

1.2 Related Work

Most of the works that incorporate latent factors in statistical ranking models
(e.g., the BTL model) make use of mixture models. See, for example, [14–16].
While such models are able to take into account the fact that subpopulations
within a large population possess different skill sets, it is difficult to make sense of
what the underlying latent variable is. In contrast, by merging the BTL model
with the NMF framework—the latter encouraging the extraction of parts of
complex objects—we are able to observe latent features in the learned dictionary
matrix W (see Table 1) and hence to extract the semantic meaning of latent
variables. In our particular application, it is the surface type of the court for
male tennis players. See Sec. 4.5 where we also show that our solution is more
stable and robust (to be made precise) than that of the mixture-BTL model.

The paper most closely related to the present one is [17] in which a topic
modelling approach was used for ranking. However, unlike our work in which
continuous-valued skill levels in Λ are inferred, permutations (i.e., discrete ob-
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jects) and their corresponding mixture weights were learned. We opine that our
model and results provide a more nuanced and quantitative view of the relative
skill levels between players under different latent conditions.

2 Problem Setup, Statistical Model, Likelihood

2.1 Problem Definition and Model

Given N players and M tournaments over a fixed number of years (in our case,

this is 10), we consider a dataset D :=
{
b
(m)
ij ∈ {0, 1, 2, . . .} : (i, j) ∈ Pm

}M
m=1

,
where Pm denotes the set of games between pairs of players that have played at

least once in tournament m, and b
(m)
ij is the number of times that player i has

beaten player j in tournament m over the fixed number of years.
To model skill levels of each player, we consider a nonnegative matrix Λ of

dimensions M×N . The (m, i)th element [Λ]mi represents the skill level of player
i in tournament m. We design an algorithm to find a factorization of Λ into two
nonnegative matrices W ∈ RM×K+ and H ∈ RK×N+ such that the likelihood of
D is maximized. Here K ≤ min{M,N} is a small integer so the factorization
is low-rank. In Sec. 3.3, we discuss different strategies to normalize W and H
so that they are easily interpretable, e.g., as probabilities. Each column of W
encodes the “likelihood” that a certain tournament m belongs to a certain latent
class (e.g., type of surface). Each row of H encodes the player’s skill level in a
tournament of a certain latent class.

2.2 Likelihood of the BTL-NMF Model

According to the BTL model and the notations above, the probability that
player i beats player j in tournament m is Pr(i beats j in tournament m) =
[Λ]mi/([Λ]mi + [Λ]mj). We expect that Λ is close to a low-rank matrix as the
number of latent factors governing players’ skill levels is small. We would like
to exploit the “mutual information” or “correlation” between tournaments of
similar characteristics to find a factorization of Λ. If Λ were unstructured, we
could solve M independent, tournament-specific problems to learn (λ1, . . . ,λM ).
We replace Λ by WH and the likelihood over all games in all tournaments (i.e.,
of D), assuming conditional independence across tournaments and games, is

p(D|W,H) =

M∏
m=1

∏
(i,j)∈Pm

(
[WH]mi

[WH]mi + [WH]mj

)b(m)
ij

.

It is often more tractable to minimize the negative log-likelihood. In the sequel,
we regard this as our objective function which can be expressed as

f(W,H) := − log p(D|W,H)

=

M∑
m=1

∑
(i,j)∈Pm

b
(m)
ij

[
− log

(
[WH]mi

)
+ log

(
[WH]mi + [WH]mj

)]
. (1)
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3 Algorithms and Theoretical Guarantees

In this section, we describe the algorithm to optimize (1), together with accom-
panying theoretical guarantees. We also discuss how we ameliorate numerical
problems while maintaining the desirable guarantees of the algorithm.

3.1 Majorization-Minimization (MM) Algorithm

The MM framework [11] iteratively solves the problem of minimizing a function
f(x) and its utility is most evident when the direct of optimization of f(x) is dif-
ficult. One proposes an auxiliary function or majorizer u(x, x′) that satisfies the
following two properties: (i) f(x) = u(x, x),∀x and (ii) f(x) ≤ u(x, x′),∀x, x′.
In addition for a fixed value of x′, the minimization of u(·, x′) is assumed to be
tractable (e.g., there exists a closed-form solution for x∗ = arg minx u(x, x′)).
Then we would like to use an iterative approach to find {x(l)}∞l=1. It is easy to
show that if x(l+1) = arg minx u(x, x(l)) then f(x(l+1)) ≤ f(x(l)) so the sequence
of iterates results in a sequence of non-increasing objective values.

Applying MM to our model is more involved as we are trying to find two
nonnegative matrices W and H. Borrowing ideas from using MM in NMFs
problems (see [18,19]), the procedure first updates W by keeping H fixed, then
updates H by keeping W fixed to its previously updated value. We will describe,
in the following, how to optimize the original objective in (1) with respect to
W with fixed H as the other optimization proceeds in an almost4 symmetric
fashion since ΛT = HTWT . As mentioned above, the MM algorithm requires us
to construct an auxiliary function u1(W,W̃|H) that majorizes − log p(D|W,H).

The difficulty in optimizing (1) is twofold. The first concerns the coupling
of the two terms [WH]mi and [WH]mj inside the logarithm. We resolve this
using a technique introduced by Hunter in [20]. It is known that for any concave
function f , f(y) ≤ f(x)+∇f(x)T (y−x). Since the logarithm function is concave,
we log y ≤ log x+ 1

x (y−x) with equality when x = y. These two properties mean
that the following is a majorizer of the term log([WH]mi + [WH]mj) in (1):

log
(
[W(l)H]mi + [W(l)H]mj

)
+

[WH]mi + [WH]mj
[W(l)H]mi + [W(l)H]mj

− 1.

The second difficulty in optimizing (1) concerns log([WH]mi) = log(
∑
k wmkhki).

By introducing the terms γ
(l)
mki := w

(l)
mkhki/[W

(l)H]mi for k ∈ {1, ...,K} (which

have the property that
∑
k γ

(l)
mki = 1) to the sum in log(

∑
k wmkhki) as was

done by Févotte and Idier in [18], and using the convexity of−log x and Jensen’s
inequality, we obtain the following majorizer of the term − log([WH]mi) in (1):

−
∑
k

w
(l)
mkhki

[W(l)H]mi
log

(
wmk

w
(l)
mk

[W(l)H]mi

)
.

4 The updates for W and H are not symmetric because the data is in the form of a
3-way tensor {b(m)

ij }; this is also apparent in (1) and the updates in (2).
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The same procedure can be applied to find an auxiliary function u2(H, H̃|W)
for the optimization for H. Minimization of the two auxiliary functions with
respect to W and H leads to the following MM updates:

w̃
(l+1)
mk ←

∑
(i,j)∈Pm

b
(m)
ij

w
(l)
mkh

(l)
ki

[W(l)H(l)]mi∑
(i,j)∈Pm

b
(m)
ij

h
(l)
ki + h

(l)
kj

[W(l)H(l)]mi + [W(l)H(l)]mj

, (2a)

h̃
(l+1)
ki ←

∑
m

∑
j 6=i:(i,j)∈Pm

b
(m)
ij

w
(l+1)
mk h

(l)
ki

[W(l+1)H(l)]mi∑
m

∑
j 6=i:(i,j)∈Pm

(
b
(m)
ij + b

(m)
ji

) w
(l+1)
mk

[W(l+1)H(l)]mi + [W(l+1)H(l)]mj

. (2b)

3.2 Resolution of Numerical Problems

While the updates in (2) guarantee that the objective function does not decrease,
numerical problems may arise in the implementation. Indeed, it is possible that
[WH]mi becomes extremely close to zero for some (m, i). To ameliorate this,
our strategy is to add a small number ε > 0 to every element of H in (1). The
intuitive explanation that justifies this is that we believe that each player has
some default skill level in every type of tournament. By modifying H to H + ε1,
where 1 is the K ×N all-ones matrix, we obtain the objective function:

fε(W,H) :=

M∑
m=1

∑
(i,j)∈Pm

b
(m)
ij

[
− log

(
[W(H + ε1)]mi

)
+ log

(
[W(H + ε1)]mi + [W(H + ε1)]mj

)]
. (3)

Note that f0(W,H) = f(W,H), defined in (1). Using the same ideas involving
MM to optimize f(W,H) as in Sec. 3.1, we can find new auxiliary functions,
denoted similarly as u1(W,W̃|H) and u2(H, H̃|W), leading to following updates

w̃
(l+1)
mk ←

∑
(i,j)∈Pm

b
(m)
ij

w
(l)
mk(h

(l)
ki + ε)

[W(l)(H(l) + ε1)]mi∑
(i,j)∈Pm

b
(m)
ij

h
(l)
ki + h

(l)
kj + 2ε

[W(l)(H(l) + ε1)]mi + [W(l)(H(l) + ε1)]mj

, (4a)
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h̃
(l+1)
ki ←

∑
m

∑
j 6=i:(i,j)∈Pm

b
(m)
ij

w
(l+1)
mk (h

(l)
ki + ε)

[W(l+1)(H(l) + ε1)]mi∑
m

∑
j 6=i:(i,j)∈Pm

(b
(m)
ij + b

(m)
ji )w

(l+1)
mk

[W(l+1)(H(l) + ε1)]mi + [W(l+1)(H(l) + ε1)]mj

− ε.

(4b)

Notice that although this solution successfully prevents division by zero during

the iterative process, for the new update of H, it is possible h
(l+1)
ki becomes

negative because of the subtraction by ε in (4b). To ensure hki is nonnegative as

required by the nonnegativity of NMF, we set h̃
(l+1)
ki ←max

{
h̃
(l+1)
ki , 0

}
. After this

truncation operation, it is, however, unclear whether the likelihood function is
non-decreasing, as we have altered the vanilla MM procedure.

We now prove that fε in (3) is non-increasing as the iteration count increases.
Suppose for the (l + 1)st iteration for H̃(l+1), truncation to zero only occurs
for the (k, i)th element and and all other elements stay unchanged, meaning

h̃
(l+1)
ki = 0 and h̃

(l+1)
k′,i′ = h̃

(l)
k′,i′ for all (k′, i′) 6= (k, i). We would like to show

that fε(W, H̃(l+1)) ≤ fε(W, H̃(l)). It suffices to show u2(H̃(l+1), H̃(l)|W) ≤
fε(W, H̃(l)), because if this is true, we have the following inequality

fε(W, H̃(l+1)) ≤ u2(H̃(l+1), H̃(l)|W) ≤ fε(W, H̃(l)), (5)

where the first inequality holds as u2 is an auxiliary function for H. The trun-
cation is invoked only when the update in (4b) becomes negative, i.e., when∑

m

∑
j 6=i:(i,j)∈Pm

b
(m)
ij

w
(l+1)
mk (h

(l)
ki+ε)

[W(l+1)(H(l)+ε1)]mi∑
m

∑
j 6=i:(i,j)∈Pm

(b
(m)
ij +b

(m)
ji )w

(l+1)
mk

[W(l+1)(H(l)+ε1)]mi+[W(l+1)(H(l)+ε1)]mj

≤ ε.

Using this inequality and performing some algebra as shown in Sec. S-1 in the
supplementary material [21], we can justify the second inequality in (5) as follows

fε(W, H̃(l))− u2(H̃(l+1), H̃(l)|W)

≥
∑
m

∑
j 6=i:(i,j)∈Pm

(b
(m)
ij + b

(m)
ji )wmk

[W(H(l)+ε1)]mi+[W(H(l)+ε1)]mj

[
h
(l)
ki −ε log

(h(l)ki +ε

ε

)]
≥0.

The last inequality follows because b
(m)
ij , W and H(l) are nonnegative, and h

(l)
ki −

ε log(
h
(l)
ki+ε

ε ) ≥ 0 since x ≥ log(x+ 1) for all x ≥ 0 with equality at x = 0. Hence,
the likelihood is non-decreasing during the MM update even though we included

an additional operation that truncates h̃
(l+1)
ki < 0 to zero.

3.3 Normalization

It is well-known that NMF is not unique in the general case, and it is character-
ized by a scale and permutation indeterminacies [5]. For the problem at hand,
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for the learned W and H matrices to be interpretable as “skill levels” with re-
spect to different latent variables, it is imperative we consider normalizing them
appropriately after every MM iteration in (4). However, there are different ways
to normalize the entries in the matrices and one has to ensure that after nor-
malization, the likelihood of the model stays unchanged. This is tantamount to

keeping the ratio [W(H+ε1)]mi
[W(H+ε1)]mi+[W(H+ε1)]mj

unchanged for all (m, i, j). The key

observations here are twofold: First, concerning H, since terms indexed by (m, i)
and (m, j) appear in the denominator but only (m, i) appears in the numerator,
we can normalize over all elements of H to keep this fraction unchanged. Second,
concerning W, since only terms indexed by m appear both in numerator and
denominator, we can normalize either rows or columns.

Row Normalization of W and Global Normalization of H

Define the row sums of W as rm :=
∑
k w̃mk and let α :=

∑
k,i h̃ki+KNε

1+KNε . Now

consider the following operations: wmk ← w̃mk
rm

, and hki ← h̃ki+(1−α)ε
α . The above

update to obtain hki may result in it being negative; however, the truncation
operation ensures that hki is eventually nonnegative.5 See also the update to ob-

tain h̃
(l+1)
ki in Algorithm 1. The operations above keep the likelihood unchanged

and achieve the desired row normalization of W since∑
k w̃mk(h̃ki + ε)∑

k w̃mk(h̃ki + ε) +
∑
k w̃mk(h̃kj + ε)

=

∑
k
w̃mk
rm

(h̃ki + ε)∑
k
w̃mk
rm

(h̃ki + ε) +
∑
k
w̃mk
rm

(h̃kj + ε)

=

∑
k wmk

(h̃ki+ε)
α∑

k wmk
(h̃ki+ε)

α +
∑
k wmk

(h̃ki+ε)
α

=

∑
k wmk(hki + ε)∑

k wmk(hki + ε) +
∑
k wmk(hkj + ε)

.

Column Normalization of W and Global Normalization of H

Define the column sums of W as ck :=
∑
m w̃mk and let β :=

∑
k,i ĥki+KNε

1+KNε .

Now consider the following operations: wmk← w̃mk
ck

, ĥki← h̃kick + ε(ck − 1), and

hki ← ĥki+(1−β)ε
β . This would keep the likelihood unchanged and achieve the

desired column normalization of W since∑
k w̃mk(h̃ki + ε)∑

k w̃mk(h̃ki + ε) +
∑
k w̃mk(h̃kj + ε)

=

∑
k
w̃mk
ck

(h̃ki + ε)ck∑
k
w̃mk
ck

(h̃ki + ε)ck +
∑
k
w̃mk
ck

(h̃kj + ε)ck

=

∑
k wmk

(ĥki+ε)
β∑

k wmk
(ĥki+ε)

β +
∑
k wmk

(ĥki+ε)
β

=

∑
k wmk(hki + ε)∑

k wmk(hki + ε) +
∑
k wmk(hkj + ε)

.

Using this normalization strategy, it is easy to verify that all entries of Λ=WH
sum to one. This allows us to interpret the entries as “conditional probabilities”.

5 One might be tempted to normalize H+ε1 ∈ RK×N
+ . This, however, does not resolve

numerical issues as some entries of H + ε1 may be zero.
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Algorithm 1 MM Alg. for BTL-NMF model with column normalization of W

Input: M tournaments; N players; number of times player i beats player j in tour-
nament m in dataset D =

{
b
(m)
ij : i, j ∈ {1, ..., N},m ∈ {1, ...,M}

}
Init: Fix K ∈ N, ε > 0, τ > 0 and initialize W(0) ∈ RM×K

++ ,H(0) ∈ RK×N
++ .

while diff ≥ τ > 0 do
(1) Update ∀m ∈ {1, ...,M}, ∀k ∈ {1, ...,K}, ∀i ∈ {1, ..., N}

w̃
(l+1)
mk =

∑
i,j
b
(m)
ij

w
(l)
mk

(h
(l)
ki

+ε)

[W(l)(H(l)+ε1)]mi∑
i,j
b
(m)
ij

h
(l)
ki

+h
(l)
kj

+2ε

[W(l)(H(l)+ε1)]mi+[W(l)(H(l)+ε1)]mj

h̃
(l+1)
ki = max

{ ∑
m

∑
j 6=i

b
(m)
ij

w
(l+1)
mk

(h
(l)
ki

+ε)

[W(l+1)(H(l)+ε1)]mi∑
m

∑
j 6=i

(b
(m)
ij

+b
(m)
ji

)w
(l+1)
mk

[W(l+1)(H(l)+ε1)]mi+[W(l+1)(H(l)+ε1)]mj

− ε, 0

}
(2) Normalize ∀m ∈ {1, ...,M}, ∀ k ∈ {1, ...,K}, ∀ i ∈ {1, ..., N}

w
(l+1)
mk ← w̃

(l+1)
mk∑

m
w̃

(l+1)
mk

; ĥ
(l+1)
ki ← h̃

(l+1)
ki

∑
m

w̃
(l+1)
mk + ε

(∑
m

w̃
(l+1)
mk − 1

)
Calculate β =

∑
k,i ĥ

(l+1)
ki

+KNε

1+KNε
, h

(l+1)
ki ← ĥ

(l+1)
ki

+(1−β)ε
β

(3) diff ← max
{

max
m,k

∣∣w(l+1)
mk − w(l)

mk

∣∣,max
k,i

∣∣h(l+1)
ki − h(l)

ki

∣∣}
end while
return (W,H) that forms a local maximizer of the likelihood p(D|W,H)

Algorithm 1 presents pseudo-code for optimizing (3) with columns of W
normalized. The algorithm when the rows of W are normalized is similar; we
replace the normalization step with the procedure outlined above.

3.4 Convergence {(W(l),H(l))}∞l=1 to Stationary Points

While we have proved that the sequence of objectives {fε(W(l),H(l))}∞l=1 is non-
increasing (and hence it converges because it is bounded), it is not clear as to
whether the sequence of iterates generated by the algorithm {(W(l),H(l))}∞l=1

converges and if so to what. We define the marginal functions f1,ε(W|H) :=
fε(W,H) and f2,ε(H|W) := fε(W,H). For any function g : D → R, we let
g′(x; d) := lim infλ↓0(g(x + λd) − g(x))/λ be the directional derivative of g at
point x in direction d. We say that (W,H) is a stationary point of the problem

min
W∈RM×K+ ,H∈RK×N+

fε(W,H) (6)

if the following two conditions hold: (i) f ′1,ε (W; W−W|H) ≥ 0, ∀W ∈ RM×K+ ,

(ii) f ′2,ε(H; H −H|W) ≥ 0,∀H ∈ RK×N+ . This definition generalizes the usual
notion of a stationary point when the function is differentiable and the domain
is unconstrained. However, in our NMF setting, the matrices are constrained to
be nonnegative, hence the need for this generalized definition.
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Theorem 1. If W and H are initialized to have positive entries (i.e., W(0) ∈
RM×K++ = (0,∞)M×K and H(0) ∈ RK×N++ ) and ε > 0, then every limit point of

{(W(l),H(l))}∞l=1 generated by Algorithm 1 is a stationary point of (6).

The proof of this theorem, provided in Sec. S-2 of [21], follows along the
lines of the main result in Zhao and Tan [12], which itself hinges on the con-
vergence analysis of block successive minimization methods provided by Raza-
viyayn, Hong, and Luo [13]. We need to verify that f1,ε and f2,ε together with u1
and u2 satisfy the five regularity conditions in Definition 3 of [12]. However, there
are some important differences vis-à-vis [12] (e.g., analysis of the normalization
step in Algorithm 1) which we describe in detail in Remark 1 of [21].

4 Numerical Experiments and Discussion

In this section, we describe how the datasets are collected and provide interesting
and insightful interpretations of the numerical results. All datasets and code can
be found at the following GitHub repository [21].

4.1 Details on the Datasets Collected

The Association of Tennis Professionals (ATP) is the main governing body for
male tennis players. The official ATP website contains records of all matches
played. The tournaments of the ATP tour belong to different categories; these
include the four Grand Slams, the ATP Masters 1000, etc. The points obtained
by the players that determine their ATP rankings and qualification for entry and
seeding in following tournaments depend on the categories of tournaments that
they participate or win in. We selected the most important M = 14 tournaments
for men’s dataset; these are listed in the first column of Table 1. After deter-
mining the tournaments, we selected N = 20 players. We wish to have as many

matches as possible between each pair of players, so that {b(m)
ij },m ∈ {1, . . . ,M}

would not be too sparse. We chose players who both have the highest amount
of participation in the M = 14 tournaments from 2008 to 2017 and also played
the most number of matches played in the same period. These players are listed
in the first column of Table 2. For each tournament m, we collected an N ×N
matrix {b(m)

ij }, where b
(m)
ij denotes the number of times player i beat player j in

tournament m. A submatrix consisting of the statistics of matches played at the
French Open is shown in Table S-1 in [21]. We see that over the 10 years, Nadal
beat Djokovic three times and Djokovic beat Nadal once at the French Open.

The governing body for women’s tennis is the Women’s Tennis Association
(WTA) instead of the ATP. As such, we collected data from WTA website.
The selection of tournaments and players is similar to that for the men. The
tournaments selected include the four Grand Slams, WTA Finals, four WTA
Premier Mandatory tournaments, and five Premier 5 tournaments. However, for
the first “Premier 5” tournament of the season, the event is either held in Dubai
or Doha, and the last tournament was held in Tokyo between 2009 and 2013;
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Table 1. Learned dictionary matrix W for the men’s dataset

Tournaments Row Normalization Column Normalization

Australian Open 5.77E-01 4.23E-01 1.15E-01 7.66E-02

Indian Wells Masters 6.52E-01 3.48E-01 1.34E-01 6.50E-02

Miami Open 5.27E-01 4.73E-01 4.95E-02 4.02E-02

Monte-Carlo Masters 1.68E-01 8.32E-01 2.24E-02 1.01E-01

Madrid Open 3.02E-01 6.98E-01 6.43E-02 1.34E-01

Italian Open 0.00E-00 1.00E-00 1.82E-104 1.36E-01

French Open 3.44E-01 6.56E-01 8.66E-02 1.50E-01

Wimbledon 6.43E-01 3.57E-01 6.73E-02 3.38E-02

Canadian Open 1.00E-00 0.00E-00 1.28E-01 1.78E-152

Cincinnati Masters 5.23E-01 4.77E-01 1.13E-01 9.36E-02

US Open 5.07E-01 4.93E-01 4.62E-02 4.06E-02

Shanghai Masters 7.16E-01 2.84E-01 1.13E-01 4.07E-02

Paris Masters 1.68E-01 8.32E-01 1.29E-02 5.76E-02

ATP World Tour Finals 5.72E-01 4.28E-01 4.59E-02 3.11E-02

this has since been replaced by Wuhan. We decide to treat these two events as
four distinct tournaments held in Dubai, Doha, Tokyo and Wuhan. Hence, the
number of tournaments chosen for the women is M = 16.

After collecting the data, we checked the sparsity level of the dataset D =

{b(m)
ij }. The zeros in D can be categorized into three different classes.

1. (Zeros on the diagonal) By convention, b
(m)
ii = 0 for all (i,m);

2. (Missing data) By convention, if player i and j have never played with each

other in tournament m, then b
(m)
ij = b

(m)
ij = 0;

3. (True zeros) If player i has played with player j in tournament m but lost

every such match, then b
(m)
ij = 0 and b

(m)
ji > 0.

The distributions of the three types of zeros and non-zero entries for male and
female players are presented in Table S-2 in [21]. We see that there is more miss-
ing data for the women. This is because there has been a small set of dominant
male players over the past 10 years but the same is not true for women players.
For the women, this means that the matches in the past ten years are played by
a more diverse set of players, resulting in the number of matches between the
top N = 20 players being smaller compared to the top N = 20 men.

4.2 Running of the Algorithm

The number of latent variables is expected to be small. We only present results
for K = 2 in the main paper; the results for K = 3 are displayed in Tables S-3
to S-6 in [21]. We also set ε = 10−300 which is close to the smallest positive value
in Python. The algorithm terminates when the difference of every element of W
and H between successive iterations is less than τ = 10−6. We checked that the
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Table 2. Learned transpose HT of the coefficient matrix for the men’s dataset

Players matrix HT Total Matches

Novak Djokovic 1.20E-01 9.98E-02 283

Rafael Nadal 2.48E-02 1.55E-01 241

Roger Federer 1.15E-01 2.34E-02 229

Andy Murray 7.57E-02 8.43E-03 209

Tomas Berdych 0.00E-00 3.02E-02 154

David Ferrer 6.26E-40 3.27E-02 147

Stan Wawrinka 2.93E-55 4.08E-02 141

Jo-Wilfried Tsonga 3.36E-02 2.71E-03 121

Richard Gasquet 5.49E-03 1.41E-02 102

Juan Martin del Potro 2.90E-02 1.43E-02 101

Marin Cilic 2.12E-02 0.00E-00 100

Fernando Verdasco 1.36E-02 8.79E-03 96

Kei Nishikori 7.07E-03 2.54E-02 94

Gilles Simon 1.32E-02 4.59E-03 83

Milos Raonic 1.45E-02 7.25E-03 78

Philipp Kohlschreiber 2.18E-06 5.35E-03 76

John Isner 2.70E-03 1.43E-02 78

Feliciano Lopez 1.43E-02 3.31E-03 75

Gael Monfils 3.86E-21 1.33E-02 70

Nicolas Almagro 6.48E-03 6.33E-06 60

ε-modified algorithm in Sec. 3.2 results in non-decreasing likelihoods. See Fig. S-
1 in [21]. Since (3) is non-convex, the MM algorithm can be trapped in local
minima. Hence, we considered 150 different random initializations for W(0) and
H(0) and analyzed the result that gave the maximum likelihood among the 150
trials. Histograms of the negative log-likelihoods are shown in Fig. S-2 in [21].
We observe that the optimal value of the log-likelihood for K = 3 is higher than
that of K = 2 since the former model is richer. We also observe that the W’s
and H’s produced over the 150 runs are roughly the same up to permutation of
rows and columns, i.e., our solution is stable and robust (cf. Theorem 1).

4.3 Results for Men Players

The learned dictionary matrix W is shown in Table 1. In the “Tournaments”
column, those tournaments whose surface types are known to be clay are high-
lighted in gray. For ease of visualization, higher values are shaded darker. If the
rows of W are normalized, we observe that for clay tournaments, the value in
the second column is always larger than that in the first, and vice versa. The
only exception is the Paris Masters.6 Since the row sums are equal to 1, we can

6 This may be attributed to its position in the seasonal calendar. The Paris Masters
is the last tournament before ATP World Tour Finals. Top players often choose to
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interpret the values in the first and second columns of a fixed row as the proba-
bilities that a particular tournament is being played on non-clay or clay surface
respectively. If the columns of W are normalized, it is observed that the tourna-
ments with highest value of the second column are exactly the four tournaments
played on clay. From W, we learn that surface type—in particular, whether or
not a tournament is played on clay—is a germane latent variable that influences
the performances of men players.

Table 2 displays the transpose of H whose elements sum to one. Thus, if the
column k ∈ {1, 2} represents the surface type, we can treat hki as the skill of
player i conditioned on him playing on surface type k. We may regard the first
and second columns of HT as the skill levels of players on non-clay and clay
respectively. We observe that Nadal, nicknamed the “King of Clay”, is the best
player on clay among the N = 20 players, and as an individual, he is also much
more skilful on clay compared to non-clay. Djokovic, the first man in the “Open
era” to hold all four Grand Slams on three different surfaces (hard court, clay
and grass) at the same time (between Wimbledon 2015 to the French Open 2016,
also known as the Nole Slam), is more of a balanced top player as his skill levels
are high in both columns of HT . Federer won the most titles on tournaments
played on grass and, as expected, his skill level in the first column is indeed
much higher than the second. As for Murray, the HT matrix also reflects his
weakness on clay. Wawrinka, a player who is known to favor clay has skill level
in the second column being much higher than that in the first. The last column
of Table 2 lists the total number of matches that each player participated in
(within our dataset). We verified that the skill levels in HT for each player
are not strongly correlated to how many matches are being considered in the
dataset. Although Berdych has data of more matches compared to Ferrer, his
scores are not higher than that of Ferrer. Thus our algorithm and conclusions
are not skewed towards the availability of data.

The learned skill matrix Λ = WH with column normalization of W is pre-
sented in Tables S-7 and S-8 in the supplementary material [21]. As mentioned
in Sec. 2.1, [Λ]mi denotes the skill level of player i in tournament m. We observe
that Nadal’s skill levels are higher than Djokovic’s only for the French Open,
Madrid Open, Monte-Carlo Masters, Paris Masters and Italian Open, which are
tournaments played on clay except for the Paris Masters. As for Federer, his
skill level is highest for Wimbledon, which happens to be the only tournament
on grass; here, it is known that he is the player with the best record in the “Open
era”. Furthermore, if we consider Wawrinka, the five tournaments in which his
skill levels are the highest include the four clay tournaments. These observations
again show that our model has learned interesting latent variables from W. It
has also learned players’ skills on different types of surfaces and tournaments
from H and Λ respectively.

skip this tournament to prepare for the more prestigious ATP World Tour Finals.
This has led to some surprising results, e.g., Ferrer, a strong clay player, won the
Paris Masters in 2012 (even though the Paris Masters is a hard court tournament).
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Table 3. Learned transpose HT of coefficient matrix for the women’s dataset

Players matrix HT Total Matches

Serena Williams 5.93E-02 1.44E-01 130

Agnieszka Radwanska 2.39E-02 2.15E-02 126

Victoria Azarenka 7.04E-02 1.47E-02 121

Caroline Wozniacki 3.03E-02 2.43E-02 115

Maria Sharapova 8.38E-03 8.05E-02 112

Simona Halep 1.50E-02 3.12E-02 107

Petra Kvitova 2.39E-02 3.42E-02 99

Angelique Kerber 6.81E-03 3.02E-02 96

Samantha Stosur 4.15E-04 3.76E-02 95

Ana Ivanovic 9.55E-03 2.60E-02 85

Jelena Jankovic 1.17E-03 2.14E-02 79

Anastasia Pavlyuchenkova 6.91E-03 1.33E-02 79

Carla Suarez Navarro 3.51E-02 5.19E-06 75

Dominika Cibulkova 2.97E-02 1.04E-02 74

Lucie Safarova 0.00E+00 3.16E-02 69

Elina Svitolina 5.03E-03 1.99E-02 59

Sara Errani 7.99E-04 2.69E-02 58

Karolina Pliskova 9.92E-03 2.36E-02 57

Roberta Vinci 4.14E-02 0.00E+00 53

Marion Bartoli 1.45E-02 1.68E-02 39

4.4 Results for Women Players

We performed the same experiment for the women players except that we now
consider M = 16 tournaments. The factor matrices W and H (in its transpose
form) are presented in Tables S-9 in [21] and Table 3 respectively.

It can be seen from W that, unlike for the men players, the surface type
is not a latent variable since there is no correlation between the values in the
columns and the surface type. We suspect that the skill levels of women players
are not as heavily influenced by the surface type compared to the men. However,
the tournaments in Table S-9 are ordered chronologically and we notice that
there is a slight correlation between the values in the column and the time of the
tournament (first or second half of the year). Any latent variable would naturally
be less pronounced, due to the sparser dataset for women players (cf. Table S-2).

By computing the sums of the skill levels for each female player (i.e., row
sums of HT ), we see that S. Williams is the most skilful among the 20 players
over the past 10 years. She is followed by Sharapova and Azarenka. As a matter
of fact, S. Williams and Azarenka have been year-end number one 4 times and
once, respectively, over the period 2008 to 2017. Even though Sharapova was
never at the top at the end of any season (she was, however, ranked number one
several times, most recently in 2012), she had been consistent over this period
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such that the model and the longitudinal dataset allow us to conclude that she
is ranked second. She is known for her unusual longevity being at the top of the
women’s game. She started her tennis career very young and won her first Grand
Slam at the age of 17. Finally, the model groups S. Williams, Sharapova, Stosur
together, while Azarenka, Navarro, and Vinci are in another group. There may
be some similarities between players who are clustered in the same group. The
Λ matrix for women players can be found in Tables S-10 and S-11 in [21].

4.5 Comparison to BTL and mixture-BTL

Finally, we compared our approach to the BTL and mixture-BTL [14, 15] ap-
proaches for the male players. To learn these models, we aggregated our dataset

{b(m)
ij } into a single matrix {bij =

∑
m b

(m)
ij }. For the BTL model, we maximized

the likelihood to find the optimal parameters. For the mixture-BTL model with
K = 2 components, we ran an Expectation-Maximization (EM) algorithm [22]
to find approximately-optimal values of the parameters and the mixture weights.
Note that the BTL model corresponds to a mixture-BTL model with K = 1.

The learned skill vectors are shown in Table S-12 in the supplementary mate-
rial [21]. Since EM is susceptible to being trapped in local optima and is sensitive
to initialization, we ran it 100 times and reported the solution with likelihood
that is close to the highest one.7 The solution for mixture-BTL is not stable;
other solutions with likelihoods that are close to the maximum one have signif-
icantly different parameter values. Two other solutions with similar likelihoods
are shown in Table S-13 in [21]. As can be seen, some of the solutions are far
from representative of the true skill levels of the players (e.g., in Trial 2 of Ta-
ble S-13, Tsonga has a very high score in the first column and the skills of
other players are all very small in comparison) and they are vastly different from
one another. This is in stark contrast to our BTL-NMF model and algorithm
in which Theorem 1 states that the limit of {(W(l),H(l))}∞l=1 is a stationary
point of (6). We numerically verified that the BTL-NMF solution is stable, i.e.,
different runs yield (W,H) pairs that are approximately equal up to permuta-
tion of rows and columns.8 As seen from Table S-12, for mixture-BTL, neither
tournament-specific information nor semantic meanings of latent variables can
be gleaned from the parameter vectors. The results of BTL are reasonable and
expected but also lack tournament-specific information.

5 Future Work

In the future, we plan to run our algorithm on a larger longitudinal dataset
consisting of pairwise comparison data from more years (e.g., the past 50 years)
to learn, for example, who is the “best-of-all-time” male or female player. In

7 The solution with the highest likelihood is shown in Trial 2 of Table S-13 but it
appears that the solution there is degenerate.

8 Stationary points are not necessarily equivalent up to permutation or rescaling.
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addition, it would be desirable to understand if there is a natural Bayesian
interpretation [19,23] of the ε-modified objective function in (3).
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