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Abstract. Social recommendation systems typically combine extra in-
formation like a social network with the user-item interaction network in
order to alleviate data sparsity issues. This also helps in making more ac-
curate and personalized recommendations. However, most of the existing
systems work under the assumption that all socially connected users have
equal influence on each other in a social network, which is not true in
practice. Further, estimating the quantum of influence that exists among
entities in a user-item interaction network is essential when only implicit
ratings are available. This has been ignored even in many recent state-
of-the-art models such as SAMN (Social Attentional Memory Network)
and DeepSoR (Deep neural network model on Social Relations). Many a
time, capturing a complex relationship between the entities (users/items)
is essential to boost the performance of a recommendation system. We
address these limitations by proposing a novel neural network model,
SoRecGAT, which employs multi-head and multi-layer graph attention
mechanism. The attention mechanism helps the model learn the influ-
ence of entities on each other more accurately. The proposed model also
takes care of heterogeneity among the entities seamlessly. SoRecGAT is a
general approach and we also validate its suitability when information
in the form of a network of co-purchased items is available. Empirical
results on eight real-world datasets demonstrate that the proposed model
outperforms state-of-the-art models.

Keywords: Social recommendation · Graph attention mechanism.

1 Introduction

In the last few years, collaborative filtering (CF) has been successful in building
powerful recommendation systems. Given a partially filled implicit rating matrix
(for example, a matrix representing likes or clicks), the idea of a top-N recom-
mendation system is to come up with the highly probable list of items that a
user may like in future. A common and popular approach is to use a latent factor
model to learn low dimensional latent representations for entities (users and
items) and use the similarity between the entities to predict the unknown ratings.
Matrix factorization (MF) [17, 11, 22] remains one of the successful baselines in
such tasks. In practice, however, a user typically interacts with a very small set
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of available items. This results in data sparsity issues which is a big challenging
factor in designing better recommendation systems.

The recent explosive growth in online services and mobile technologies have
provided tons of useful information. For example, Yelp1 has friendship connections
amongst users, Amazon2 has co-purchased network associated with products or
Epinion3 has trust relationships associated with users. Crucially, social networks 4

associated with users and items play a pivotal role in recommending products
and services to the end users. That is, users are typically influenced by social
neighbours in a social network. Therefore, one expects social neighbours to have
similar opinions regarding products. By the same argument, co-purchased items
are expected to have a strong influence on each other. Thus, social connections
associated with users and/or items can be effectively leveraged to alleviate data
sparsity issues that exist in traditional recommendation systems to boost their
performance.

There have been some works that leverage matrix factorization techniques for
social recommendation [8, 10, 15, 31]. While [8] models both implicit and explicit
influence of trust, [15] introduces the concept of a social regularizer to represent
the social constraints on recommendation systems. These approaches either
treat all social relations equally [8, 10, 31] or make use of a predefined similarity
function [15]. Either case may result in the performance degradation of the
recommendation system as users with strong ties are more likely to have similar
preferences than those with weak ties [25]. Some recently proposed neural network
based models which utilize external social networks [5, 21] also have the same
drawback. Further, in the applications where only implicit ratings are available,
it is important to learn the quantum of influence that the different entities have
on each other. This would help in getting better latent representations of the
entities and better performance of the recommendation system.

A few attempts have been made [3, 32] to learn the influence of entities
in a network by employing an attention mechanism for recommendations. In
particular, Chen et al. [3] presented a social attentional memory network which
utilizes an attention-based memory module to learn the relation vectors for
user-friend pairs. This is combined with the friend level attention mechanism
to measure the influence strength among users’ friends. Further, [32] proposed
ATRank which models heterogeneous user behaviour using an attention model
and captures the interaction between users using self-attention. However, the
key challenges here are to design a unified model that exploits the influence of
entities from both user-item interaction network and social network together, and
to capture the complex relationships that exist among entities across networks.

Contributions. Motivated by the success of Graph Attention Networks (GAT) [26],
we propose SoRecGAT – a Graph ATtention based framework for top-N Social
Recommendation problem. The proposed framework is illustrated in Fig. 1. We
represent the user-item interaction network as a graph with nodes representing

1 www.yelp.com 2 www.amazon.com 3 www.epinion.com 4 Throughout this paper,
we refer to a user-user network (or connection) or a co-purchased item network (or
connection) as a social network (or connection).
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Fig. 1. The illustration of SoRecGAT recommendation setting. The transformations
from a user-item rating matrix and a social network (a) to a graph with learned node
representations (d) are illustrated via steps (b) and (c). The graph in (d) serves as
an input to SoRecGAT (e) which employs a multi-layer and multi-head attention
mechanism, and gives final user(u) and item(j) representations p′u and q′j and user-item
pair representation φuj for (u, j). This φuj is used for predicting rating ŷuj . (Best
viewed in colour.)

users and items, and edges representing interactions among them. We assume
that no attribute information is available for the nodes, and initial representations
(or embeddings) are learned using random walk and skip-gram techniques. We
propose a simple approach by which a social network associated with the users or
items can seamlessly be incorporated into this graph. The novelty of our approach
lies in handling heterogeneous networks (for example, a social network with a
user-item interaction network) for a personalised recommendation. Specifically,
we propose to obtain the heterogeneous graph node representations in a unified
space, which is essential in assigning weights to neighbouring nodes. These node
representations are learned using multi-head and multi-layer attention mechanism.
The attention mechanism helps in capturing complex relationships among entities
in both user-item interaction network and social networks, collectively. Further,
the final node representations are used for predicting the ratings. We conduct
extensive experiments on eight real-world datasets – four from Amazon and four
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from Yelp. Experimental results demonstrate the effectiveness of SoRecGAT over
state-of-the-art models.

2 The Proposed Model

Problem formulation. We represent a user-item interaction network and a
social network combinedly as a graph G(V, E) where V represents the set of users,
items and social entities,5 and E represents the set of edges present in the graph.
We consider the implicit rating setting where the rating between user u and item
j is given as

yuj =

{
1, if (u, j) ∈ Ω
0, otherwise

where Ω = {(u, j) : user u interacts with item j}. Given G(V, E), our goal in this
work is to design a model which gives a top-N ranked list of items for each user.

2.1 SoRecGAT

In this section, we explain the proposed model – SoRecGAT, illustrated in Fig. 1.
As shown in the figure, a user-item rating matrix can be converted to a graph
whose node features (representations) (Fig. 1(c)) can be found (Section 6). A
social network (e.g. a friendship network) is first converted to a bi-partite graph
(Fig. 1(b)) by connecting users to “social entities”, where each social entity
corresponds to a user. Thus, if user u1 is connected to user u2, then, this would
correspond to two edges (u1, e2) and (u2, e1) in Fig. 1(b), where e1 and e2 are
the social entities associated with users u1 and u2, respectively. The introduction
of social entities helps fuse the user-item interaction network and social network
to get a combined graph (Fig. 1(d)) with node representations. This proposed
idea also helps in combining multiple networks which share entities. In addition,
network-specific features (side information) for the nodes can be seamlessly
incorporated. A multi-head attention mechanism is then applied layerwise on
this graph to predict the rating of a user-item pair. This is explained below.

Let pu ∈ Rdp , qj ∈ Rdq and sk ∈ Rds denote the features of user u, item j
and social entity k respectively. Note that the feature dimensions of different
entities in a given heterogeneous network can be different. Let Np, Nq and Ns

denote the number of users, items and social entities respectively. We denote the
user, item and social entity features compactly as p,q and s respectively, where
p = (p1, p2, ..., pNp), q = (q1, q2, ..., qNq), and s = (s1, s2, ..., sNs). The sets of
neighbours of user u in the user-item interaction network and the social network
are denoted by N I

u and N S
u respectively.

SoRecGAT contains multiple layers, and at every layer, a new set of hidden
representations for the nodes p′ = (p′1, p

′
2, ..., p

′
Np

), pu ∈ Rd′ , q′ = (q′1, q
′
2, ..., q

′
Nq

),

qj ∈ Rd′ , and s′ = (s′1, s
′
2, ..., s

′
Ns

), sk ∈ Rd′ are obtained from the output of
previous layers. It is essential to learn multiple levels of representations due to

5 users/items present in a social network.
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the complex nature of the relationship that exists among entities. Further, the
influence of different neighbours on a given node need not be equal. Accounting
for these, we explain how hidden representations are obtained in one layer. The
same procedure is repeated in the other layers.

If f(·, ·) denotes an attention function, then the importance of item j’s features
to user u can be calculated as

ᾱuj = f(Wppu,Wqqj), (1)

and that of social entity k’s (in a social network) features to the same user u is
given by

ᾱuk = f(Wppu,Wssk), (2)

where Wp ∈ Rd′×dp ,Wq ∈ Rd′×dq and Ws ∈ Rd′×ds are the weight matrices
respectively for users, items and social entities. Due to different types of entities
present in a network, it is important to have different weight matrices. These
matrices also act as projection matrices for entities with different types and they
project the representations of users, items and social entities into a unified space.
The function f(·, ·) can be a feedforward neural network. In this work, we use a
single layer feedforward neural network, parametrized by trainable parameter c.
That is,

f(Wppu,Wqqj) = a(cT [Wppu‖Wqqj ]),

f(Wppu,Wqsk) = a(cT [Wppu‖Wssk]),
(3)

where a(·) denotes an activation function and ‖ denotes concatenation operation.
Normalized positive attention weights of item j on user u can be calculated as

αuj = softmax (ᾱuj)

=
exp(ᾱuj)∑

j′∈N I
u

exp(ᾱuj′) +
∑

k′∈NS
u

exp(ᾱuk′) + exp(ᾱuu)

and ᾱuj = f(Wppu,Wqqj), ᾱuk = f(Wppu,Wssk), ᾱuu = f(Wppu,Wppu),

(4)

where ᾱuj and αuj represent unnormalized and normalized attention weights
of item j on user u. The normalized attention coefficients are then used to
compute a linear combination of the features of neighbouring nodes to get a new
representation of a given node. For example, a representation of user u at the
current layer is calculated as

p′u = a(
∑
j∈N I

u

αh
ujW

h
q qj +

∑
k∈NS

u

αh
ukW

h
s sk + αh

uuW
h
p pu). (5)

To exploit complex relationships that exist among entities, we employ multi-head
attention mechanism. In particular, using H independent attention heads, the
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representation for user u can be obtained as

p′u = ‖Hh=1a(
∑
j∈N I

u

αh
ujW

h
q qj +

∑
k∈NS

u

αh
ukW

h
s sk + αh

uuW
h
p pu). (6)

Similarly, one can obtain features representations of items, q′. The final rating
of user u on item j can be obtained as

ŷuj = σ(w · φuj), where φuj = g(p′u, q
′
j), (7)

where σ(·) is the sigmoid function defined as σ(z) = 1
1+e−z and w denotes weight

vector. Here, g(·, ·) is a function which constructs the representation for user-item
interaction φuj for (u, j) from p′u and q′j . One can use a feedforward neural
network for g(·, ·). In our experiments, we use g(p′u, q

′
j) = p′u � q′j , where �

denotes element-wise multiplication.
Note that, as mentioned earlier, it is easy to incorporate the side information

of the nodes (for example, gender, age and country for users; and keywords and
category for items) in the proposed model. Let user u (with the associated social
entity e) be involved in a user-item interaction network and a social network.
Let xpu and xse denote the side information associated with these nodes. This
information may be directly available in the dataset. Then the new representations
of the user and social entity nodes can be pu‖xpu and se‖xse respectively. Thus,
side information, if available, can be easily used in the proposed approach.

2.2 Loss Function

Some commonly used loss functions for the implicit rating setting are cross-
entropy (lce) [9] and pairwise loss (lpair) [22] functions, which can be defined for
a user-item pair (u, j) as

lce(yuj , ŷuj) = −yuj ln(ŷuj)− (1− yuj) ln(1− ŷuj),
lpair(ŷujj′) = − ln(σ(ŷuj − ŷuj′)), where (u, j) ∈ Ω and (u, j′) 6∈ Ω.

(8)

In this work, we use cross-entropy loss with negative sampling strategy [16] for
training the model. For all the training interactions, the loss function is defined
as follows:

min
W

L(W) = −
∑

(u,j)∈D

yuj ln ŷuj + (1− yuj) ln(1− ŷuj) + λ R(W), (9)

where R(·) is a regularizer, λ is a non-negative hyperparameter, and W denotes
all the model parameters. Here, D = D+ ∪D−samp where D+ := {(u, j) ∈ Ω} and
D−samp ⊂ {(u, j′) 6∈ Ω}, obtained using negative sampling.

2.3 Node Features

Initial embeddings of graph nodes, before using multi-head attention layers, are
obtained using skip-gram technique [16]. Node sequences for a given graph G are
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Algorithm 1: SoRecGAT

Input: graph G(V, E), epochs T , number of layers L, minibatch size m
1 Initialize W
2 obtain p,q, s from user-item interaction network and social network based on

equations (10)-(12) while t < Tand not converged do
3 O ← Shuffle(p,q, s)
4 for each minibatch of (p̄, q̄, s̄) = (pi, qi, si)

m
i=1 ⊆ O do

5 W ← GATEmbedding(p̄, q̄, s̄,W, L)

6 return

Algorithm 2: GATEmbedding learns weights for attention layers

Input: p,q, s, network weights W, number of layers L
Output: Wnew

1 for l = 1→ L− 1 do
2 compute p′,q′, s′ from p,q, s and W based on equations (3)-(6)
3 (p,q, s)← (p′,q′, s′)

4 compute ŷ based on equation (7)

5 Wnew ←Wold − η ∂L(W)
∂W //η is a learning rate

6 return Wnew

first generated by random walks [18, 4]. Treating these sequences as sentences,
the skip-gram technique is used to construct graph node embeddings. For a given
graph G(V, E) with entities belonging to the same type, the objective of the
skip-gram technique is to maximize the probability of predicting the context
node c of a given node v as

max
x

∏
v∈V

∏
c∈C(v)

Pr(c|v), where Pr(c|v) =
exc·xv∑

c′∈V e
xc′ ·xv

. (10)

Here, C(v) denotes the context of node v, x = (x1, x2, . . . , x|V|), and xv represents
the embedding of node v. These embeddings are learnt by solving the above opti-
mization problem. In our setting, we have two networks: a user-item interaction
network and a user-social entity social network. The node embeddings for these
networks are constructed separately. Note that, this procedure reflects meta-
path based node embedding construction for user-item and user-social entity
meta-paths. Considering heterogeneity among entities has been shown to improve
performance over ignoring the types and taking them as homogeneous entities [4].

To reduce the computational cost involved in computing Pr(c|v) (equation
(10)), we adopt the negative sampling strategy [16] as follows:

lnPr(c|v) = lnσ(xc · xv) +

M∑
m=1

Ec′∼Pn(c′)[lnσ(xv · xc′)]. (11)
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where M denotes number of negative samples. Hence, the loss function corre-
sponding to skip-gram model is defined as follows:

min
x
Lrw(x) = −

∑
v∈V

∑
c∈C(v)

lnσ(xc · xv) −
M∑

m=1

Ec′∼Pn(c′)[lnσ(xv · xc′)]. (12)

The complete training procedure for learning the parameters W for SoRec-
GAT is given in Algorithms 1 and 2. During training, we maintain the whole
graph structure in a sparse adjacency matrix. In our model, attention weight
parameters are shared across all the edges in the graph. Unlike other graph neural
network approaches, due to the shared attention weight parameters, we do not
operate on embeddings of all the nodes at every mini-batch iteration. Instead,
we operate only on the embeddings of the corresponding mini-batch nodes and
their neighbours. We randomly select a mini-batch of user-item interactions, that
is, the corresponding users and items based on their interactions in the training
set. During mini-batch training the gradient propagation happens only to the
respective nodes and their neighbours.

In the next section, we will discuss our experimental results.

3 Experiments

To demonstrate the effectiveness of the proposed model, in view of the following
research questions, we conduct several experiments:

RQ1 Does our proposed model – SoRecGAT perform better than state-of-
the-art social recommendation models? Does influence learning provide an
advantage when only the user-item rating matrix is available?

RQ2 What is the effect of various sparsity levels of the training set on the
performance of the proposed model?

RQ3 Employing the multi-head attention mechanism helpful for improving the
performance of SoRecGAT?

We address these questions after discussing experimental settings.

3.1 Experimental Settings

Datasets. We conduct experiments on eight datasets: four from Amazon6 – an
e-commerce recommendation system for products ranging from books, movie
DVDs to cloth items, and Yelp7 – a user review platform on local businesses
ranging from restaurants, hotels to real estates. Amazon dataset contains co-
purchased information for the items which we use as the item-social network.
Similarly, Yelp dataset contains friendship connections which we use as the user-
social network. Datasets contain ratings on the scale, [1-5]. We do the following
preprocessing as done in [19, 9]: (1) Ratings having value more than 3 are retained

6 http://jmcauley.ucsd.edu/data/amazon 7 https://www.yelp.com/dataset/challenge
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and treated as positive interactions (rating value 1 is assigned to them); (2) Those
users and items who have at least five ratings associated with them are retained;
and (3) Social connections between entities e1→ e2 for which either e1 or e2 is
a part of user-item interaction network are retained. The details of the datasets
are given in Table 1.

Dataset # users # items # ratings # social # social
entities connections

Amazon

Music 2412 1923 33237 6769 129848
Movie 9498 4786 156633 5835 85495

CD 7878 7247 137610 18687 485526
Book 10041 6477 143805 16711 264283

Yelp

Art 3071 1122 31438 7203 458322
Food 12615 4222 151394 13053 819044
Hotel 11040 3925 128130 14432 893278

Restaurant 13877 2233 158384 16702 1076506

Table 1. Dataset statistics.

Evaluation procedure. For evaluating the performance of the models, we closely
follow [9] and adopt the well-known leave-one-out procedure. That is, one item for
each user from the dataset is held-out for validation and test purpose respectively
and the remaining items are used for training the model. Since it is too time-
consuming to rank all the items for each user during the evaluation time, following
[9], we randomly sample 50 non-interacted items for each user along with the
held-out item to construct validation and test set. Likewise, we randomly extract
five such sets. Mean and standard deviation of the models on the test set with
respect to best validation set performance is reported as the final result.

Metric. We use two widely adopted ranking metrics – HitRatio@N (HR@N)
and normalized discounted cumulative gain (NDCG@N) for comparing the per-
formance of different models [19, 9]. While HR@N measures the existence of the
items a user has interacted with, NDCG@N emphasizes the position of the same
item from the predicted top-N ranked list.

Comparison with different models. To evaluate the performance in rating-
only and social recommendation setting, we compare SoRecGAT with the fol-
lowing four groups of models. They are: rating-only models based on (i) matrix
factorization and (ii) neural networks; and social recommendation models based
on (iii) matrix factorization and (iv) neural networks. We select representatives
for each group and detail them below:

• SAMN [3] is a state-of-the-art model for top-N social recommendation
setting. It contains two components. The first component – attention-based
memory module learns aspect-level differences among friends, whereas the
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second component – friend-level attention module learns influence strength
of his friends.

• DeepSoR [5] follows the two-stage procedure. In the first stage, it obtains
user representations from social networks by leveraging random walks. It
extends PMF (Probabilistic Matrix Factorization) [17] for social recommen-
dation in the second stage. The representations obtained from the first stage
are used as regularizers for users.

• SBPR [31] is a state-of-the-model for the top-N recommendation setting. It
extends BPR for the social recommendation.

• TrustSVD [8] extends the MF based model [11] to social recommendation.
It jointly factorizes both social network and user-item rating matrices to
learn richer representations.

• NeuMF [9] is a recently proposed state-of-the-art model for rating-only
setting. It fuses multi-layer perceptron with matrix factorization model in
order to exploit both deep and wide representations.

• GMF is a generalization of matrix factorization and proposed as a part of
NeuMF [9].

• BPR [22] is a standard baseline for top-N ranking setting. It optimizes the
pairwise loss function during training.

• MF [11] is a standard and widely adopted baseline for collaborative filtering.
• RecGAT is a special case of our model which uses only user-item interaction

network.

Note that, SAMN and DeepSoR are neural network models, and SBPR and
TrustSVD are matrix factorization models for social recommendation. In addition,
NeuMF is based on a neural network model, and MF, GMF and BPR are matrix
factorization models for the rating-only setting.

Parameter setting and reproducibility. We use Python, Tensorflow 1.12 for
our implementation. Our implementation is available at https://github.com/
mvijaikumar/SoRecGAT

We use the dropout regularizer and adopt RMSProp [7] with mini-batch
for optimization. The number of layers, number of heads per layer and number
of activation functions per head are sensitive hyperparameters for RecGAT
and SoRecGAT. Hyperparameters are tuned using the validation set. From the
validation set performance, the number of layers are set to two for RecGAT,
SoRecGAT, DeepSoR and NeuMF. Further, for SoRecGAT, the batch size is set
to 1024, the number of heads for layers are set to [8,6] for Food dataset and [12,6]
for other datasets the number of activation functions per head is set to 32 in the
first layer and 96 for Movie, Book and CD, 48 for Hotel and 64 for other datasets
in the second layer, the dropout ratio is set to 0.2 for Art and Book datasets and
0.5 for other datasets, learning rate is set to 0.0004 for Music, 0.0001 for Art
and 0.00008 for other datasets. We use LeakyRELU as the activation function
in equation (3) and exponential linear unit (ELU) as the activation function
in other places. Further, we tune l2-regularization values for SBPR, TrustSVD,
DeepSoR, SAMN from {0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5} and the number of
factors for MF, GMF, BPR, SBPR, TrustSVD, DeepSoR and SAMN from {16,
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32, 64, 80, 128}, respectively. We use early stopping criterion with the maximum
number of epochs for training set to 60.

Model
Music CD

HR@5 NDCG@5 HR@5 NDCG@5

MF 0.6482 ± 0.0158 0.4844 ± 0.0107 0.6779 ± 0.0039 0.5198 ± 0.0032
BPR 0.6555 ± 0.0102 0.4855 ± 0.0082 0.6901 ± 0.0052 0.5340 ± 0.0054
GMF 0.6835 ± 0.0106 0.5163 ± 0.0109 0.7163 ± 0.0061 0.5609 ± 0.0056

NeuMF 0.6854 ± 0.0084 0.5182 ± 0.0095 0.7251 ± 0.0030 0.5776 ± 0.0036
RecGAT (ours) 0.7104 ± 0.0116* 0.5416 ± 0.0098* 0.7504 ± 0.0065* 0.6019 ± 0.0047*

SBPR 0.6646 ± 0.0122 0.4914 ± 0.0092 0.6985 ± 0.0047 0.5485 ± 0.0062
TrustSVD 0.6712 ± 0.0113 0.5015 ± 0.0087 0.7043 ± 0.0072 0.5713 ± 0.0049
DeepSoR 0.6759 ± 0.0082 0.5130 ± 0.0084 0.7373 ± 0.0026 0.5841 ± 0.0036
SAMN 0.6795 ± 0.0080 0.5008 ± 0.0046 0.7245 ± 0.0061 0.5695 ± 0.0042

SoRecGAT (ours) 0.7333 ± 0.0029 0.5582 ± 0.0129 0.7796 ± 0.0023 0.6225 ± 0.0033

Movie Book

MF 0.5370 ± 0.0021 0.3799 ± 0.0027 0.7193 ± 0.0008 0.5614 ± 0.0014
BPR 0.5401 ± 0.0047 0.3843 ± 0.0042 0.7144 ± 0.0042 0.5626 ± 0.0021
GMF 0.5590 ± 0.0023 0.4006 ± 0.0012 0.7397 ± 0.0038 0.5931 ± 0.0027

NeuMF 0.5607 ± 0.0053 0.4022 ± 0.0037 0.7457 ± 0.0035 0.5965 ± 0.0033
RecGAT (ours) 0.5815 ± 0.0018* 0.4243 ± 0.0015* 0.7734 ± 0.0012* 0.6241 ± 0.0017*

SBPR 0.5493 ± 0.0034 0.3918 ± 0.0021 0.7217 ± 0.0029 0.5998 ± 0.0018
TrustSVD 0.5531 ± 0.0065 0.3973 ± 0.0032 0.7265 ±0.0032 0.5910 ± 0.0024
DeepSoR 0.5610 ± 0.0042 0.4079 ± 0.0035 0.7478 ± 0.0009 0.5964 ± 0.0024
SAMN 0.5621 ± 0.0065 0.4107 ± 0.0033 0.7405 ± 0.0041 0.5937 ± 0.0021

SoRecGAT (ours) 0.5888 ± 0.0043 0.4306 ± 0.0019 0.7805 ± 0.0014 0.6297 ± 0.0011

Table 2. Performance of different models on four real-world datasets – Music, CD,
Movie, Book from Amazon. Social recommendation models are separated from rating-
only models. The best overall scores are indicated in boldface, while the best scores
among rating-only models are highlighted by asterisk (*). We conduct paired t-test and
the improvements using SoRecGAT are statistically significant with p < 0.01.

3.2 Results and Discussion

Overall performance (RQ1). Tables 2 and 3 detail the performance of our
models and the other comparison models on eight datasets from Amazon and Yelp.
Learning influence strength among entities in both user-item interaction network
and social network is crucial. To understand this phenomenon, we study two cases
here – without social network (RecGAT) and with social network (SoRecGAT).
RecGAT achieves better performance consistently across the datasets as compared
to the rating-only alternatives – MF, BPR, GMF and NeuMF. From this, we
observe that when only implicit ratings are available, understanding the influence
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Model
Art Hotel

HR@5 NDCG@5 HR@5 NDCG@5

MF 0.7111 ± 0.0063 0.5124 ± 0.0091 0.8147 ± 0.0006 0.6127 ± 0.0015
BPR 0.7051 ± 0.0057 0.5123 ± 0.0027 0.7994 ± 0.0028 0.6009 ± 0.0025
GMF 0.7235 ± 0.0065 0.5319 ± 0.0068 0.8350 ± 0.0024 0.6359 ± 0.0018

NeuMF 0.7204 ± 0.0083 0.5314 ± 0.0059 0.8313 ± 0.0022 0.6364 ± 0.0017
RecGAT (ours) 0.7371 ± 0.0048* 0.5370 ± 0.0036* 0.8462 ± 0.0044* 0.6454 ± 0.0032*

SBPR 0.7284 ± 0.0062 0.5334 ± 0.0046 0.8332 ± 0.0037 0.6318 ± 0.0026
TrustSVD 0.7310 ± 0.0056 0.5391 ± 0.0032 0.8382 ± 0.0027 0.6353 ± 0.0019
DeepSoR 0.7322 ± 0.0065 0.5363 ± 0.0047 0.8357 ± 0.0040 0.6364 ± 0.0023
SAMN 0.7345 ± 0.0104 0.5374 ± 0.0067 0.8292 ± 0.0025 0.6215 ± 0.0033

SoRecGAT (ours) 0.7460 ± 0.0051 0.5407 ± 0.0038 0.8506 ± 0.0039 0.6546 ± 0.0035

Food Restaurant

MF 0.8087 ± 0.0022 0.6086 ± 0.0025 0.7744 ± 0.0017 0.5649 ± 0.0025
BPR 0.7862 ± 0.0027 0.5895 ± 0.0025 0.7536 ± 0.0034 0.5499 ± 0.0023
GMF 0.8285 ± 0.0024 0.6314 ± 0.0015 0.7925 ± 0.0037 0.5881 ± 0.0022

NeuMF 0.8387 ± 0.0038 0.6403 ± 0.0032 0.7945 ± 0.0044 0.5896 ± 0.0034*
RecGAT (ours) 0.8420 ± 0.0016* 0.6442 ± 0.0012* 0.7961 ± 0.0031* 0.5860 ± 0.0029

SBPR 0.8295 ± 0.0028 0.6277 ± 0.0019 0.7904 ± 0.0041 0.5811 ± 0.0028
TrustSVD 0.8380 ± 0.0034 0.6390 ± 0.0024 0.7946 ± 0.0038 0.5874 ± 0.0027
DeepSoR 0.8294 ± 0.0022 0.6333 ± 0.0023 0.7963 ± 0.0025 0.5937 ± 0.0031
SAMN 0.8218 ± 0.0032 0.6119 ± 0.0016 0.7777 ± 0.0034 0.5658 ± 0.0029

SoRecGAT (ours) 0.8471 ± 0.0074 0.6515 ± 0.0017 0.8038 ± 0.0042 0.5972 ± 0.0033

Table 3. Performance of different models on four real-world datasets – Art, Hotel,
Food and Restaurant from Yelp. Social recommendation models are separated from
rating-only models. The best overall scores are indicated in boldface, while the best
scores among rating-only models are highlighted by asterisk (*). We conduct paired
t-test and the improvements using SoRecGAT are statistically significant with p < 0.01.

of users and items on each other is essential. RecGAT achieves this by utilizing
the multi-head attention mechanism layerwise.

SoRecGAT performs better than both rating-only and other social recom-
mendation models. Note that DeepSoR and SAMN are neural network models.
Further, SAMN leverages attention-based memory network and friend-level atten-
tion mechanism to learn the influence strength of users from the social network.
However, the above procedure is insufficient when we are given access to only
implicit ratings. This is because the users may not have an equal opinion on
all the items they interact within a system. In contrast, SoRecGAT accounts
for this by integrating both user-item interaction network and social network
together, and captures the influence strength in an end-to-end fashion using
graph attention mechanism. Also note that, in SoRecGAT, the representations
of any entity in the graph is obtained from all its neighbours irrespective of its
entity type. This provides a more unified framework than DeepSoR and SAMN.

Performance of models with respect to different sparsity levels (RQ2).
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Fig. 2. Performance (HR@5) comparison of different models with respect to different
sparsity levels on the datasets: Music, CD, Movie, Book, Art, Hotel, Food and Restaurant.
Here, we report the mean value obtained from five different experiments for each sparsity
level.

To investigate the effectiveness of our models under various sparsity levels, we
do the following. We start from the full training set and randomly remove 20%
ratings at each step. We continue this until only 20% of the ratings are left in
the training set. We repeat this for five different experiments for each sparsity
level, and report the mean value. Figs. 2 and 3 show the detailed comparison
using the metrics HR@5 and NDCG@5, respectively.

As can be seen from Figs. 2 and 3, RecGAT and SoRecGAT consistently
perform better than the other models across different datasets, and their per-
formance does not deteriorate drastically as the sparsity level increases. This is
particularly evident for Amazon datasets ((a), (b), (c) and (d) in Figs. 2 and 3).
This shows that RecGAT and SoRecGAT are more robust to the situations where
data are extremely sparse. From this, we can conclude that learning influence
strength among entities in the user-item interaction network and social network
by our approach helps in alleviating data sparsity issues.

Effect of multi-head attention for obtaining influence (RQ3). Here, we
study the advantage of employing multiple attention heads in layers. We keep
two layers, and vary the number of attention heads from [2,1] to [20,10] in the re-
spective layers. The performance of SoRecGAT, in terms of HR@5 and NDCG@5,
is depicted in Fig. 4 for Music and Art datasets. From this figure, it is clear
that the performance improves, as we increase the number of attention heads.
However, in our experiments, we notice that the performance starts deteriorating
once the number of attention heads exceeds [12,6] as this results in overfitting.
We thus observe that each attention head provides different complementary
knowledge about the relationship that exists among entities, which boosts the
overall performance of SoRecGAT.

Effect of attention mechanism. Here, we study the effect of attention mech-
anism in our graph networks. We use the same architecture (two layers with
the number of heads set to [12,6], the number of activation functions set to 32
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Fig. 3. Performance (NDCG@5) comparison of different models with respect to
different sparsity levels on the datasets: Music, CD, Movie, Book, Art, Hotel, Food and
Restaurant. Here, we report the mean value obtained from five different experiments
for each sparsity level.
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Fig. 4. Performance of SoRecGAT with respect
to different number of attention heads in the
layers on Music and Art datasets.
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Fig. 5. Performance of the pro-
posed architecture without and
with attention mechanism on Mu-
sic and Art datasets.

and 64 respectively in the first and second layers, and the dropout set to 0.5 for
Music and 0.2 for Art) without and with attention mechanism on Music and
Art datasets. The performance is shown in Fig. 5 for the two datasets. From
this figure, we can observe that attention mechanism in the proposed approach
improve the performance.

4 Related Work

In the literature of recommendation systems, early successful models are mostly
based on matrix factorization techniques [11, 17, 22]. In particular, [2, 22] are
proposed for top-N recommendation framework where only implicit ratings
are available. Despite being simple, MF models act as strong baselines among
collaborative filtering techniques. Owing to its rich representation capability [7,
12], a surge of neural networks and deep learning models have been proposed
for recommendation systems recently [9, 13, 28–30]. In contrast to MF, these
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models replace the simple dot product between latent representation of users and
items with neural networks. Further, He et al. [9] proposed NeuMF that marries
multi-layer perceptron with generalized matrix factorization model to get the
best of both MF and neural network world. Nevertheless, these aforementioned
models suffer from data sparsity issues.

Exploiting social connections along with the user-item ratings have been shown
to greatly improve the performance of recommendation systems over traditional
models that use only ratings [8, 10, 14, 15, 1, 25]. Most existing works on social
recommendation extend matrix factorization techniques to incorporate social
network information into the recommendation system framework. For instance,
SocialMF [10] considers social influence by trust propagation mechanism; SoReg
[15] incorporates social connections as regularizers to user representations learned
from user-item ratings; and TrustSVD [8] extends SVD++ model [11] to trust
and social recommendation. Further, [19, 20, 31] have been proposed specifically
for top-N social recommendation tasks. Neural network models [5, 21] also have
been proposed for social recommendation framework. However, the above models
assume that there exists equal influence across users in the social network, which
is not true in practice.

Our work is related to [6, 23, 27, 29] in terms of using graph framework, and
[3, 24, 32] in terms of using attention mechanism for the top-N recommendation
setting. However, inspired by GAT [26], we employ multiple levels of attention
mechanism to account for complex relationships that exist among entities. Further,
in contrast to GAT which is proposed for node classifications in graphs, our
model is proposed for top-N recommendation setting and the objective function
is designed to predict future links between the users and items. Thus, here, the
social network helps in fine-tuning the user and item representations.

Furthermore, the models [23, 24, 27] are proposed for session-based social
recommendations which require temporal information and [32] requires context
information in addition to user-item interaction network and social network. In
particular, Wu et al. [27] proposed SR-GNN that models session sequences as
graph structured data. Further, they employ graph neural networks to capture
complex transitions of items. Fan et al. [6] proposed GraphRec for social rec-
ommendation to jointly model interactions and opinions in the user-item graph.
In [29], a graph neural network algorithm called PinSage was proposed. PinSage
employs low latency random walks and localized graph convolution operations
to learn rich representations for nodes. The model [23] uses graph attention
mechanism for learning the influence of users in a social network. In contrast,
our model is more general and unified than [23], and the former learns influence
from both the social network and user-item interaction network, collectively.

5 Conclusion

In this paper, we presented a novel graph attention-based model, SoRecGAT,
for top-N social recommendation. More importantly, our model integrates social
network with user-item interaction network and learns the complex relation-
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ships among entities by multi-head and multi-layer attention mechanism. We
conducted extensive experiments on eight real-world datasets, and demonstrated
the effectiveness of the proposed model over state-of-the-art models under various
settings. Further, the proposed model has an advantage of using network-specific
side information, if available of nodes. Our model is more general and it can be
used for recommendations with any number of external networks. In future, we
plan to extend these ideas to a multimedia recommendation system where data
come from different modalities such as audios, images and videos.
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