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Abstract. Minimizing expected loss measured by a proper scoring rule,
such as Brier score or log-loss (cross-entropy), is a common objective
while training a probabilistic classifier. If the data have experienced
dataset shift where the class distributions change post-training, then
often the model’s performance will decrease, over-estimating the prob-
abilities of some classes while under-estimating the others on average.
We propose unbounded and bounded general adjustment (UGA and
BGA) methods that transform all predictions to (re-)equalize the aver-
age prediction and the class distribution. These methods act differently
depending on which proper scoring rule is to be minimized, and we have
a theoretical guarantee of reducing loss on test data, if the exact class
distribution is known. We also demonstrate experimentally that, when
in practice the class distribution is known only approximately, there is
often still a reduction in loss depending on the amount of shift and the
precision to which the class distribution is known.

Keywords: Multi-class classification · Proper scoring rule · Dataset
shift · Classifier calibration · Classifier adjustment

1 Introduction

Classical supervised machine learning is built on the assumption that the joint
probability distribution that features and labels are sourced from does not change
during the life cycle of the predictive model: from training to testing and deploy-
ment. However, in reality this assumption is broken more often than not: medical
diagnostic classifiers are often trained with an oversampling of disease-positive
instances, surveyors are often biased to collecting labelled samples from certain
segments of a population, user demographics and preferences change over time
on social media and e-commerce sites, etc.

While these are all examples of dataset shift, the nature of these shifts can be
quite different. There have been several efforts to create taxonomies of dataset
shift [14, 11]. The field of transfer learning offers many methods of learning
models for scenarios with awareness of the shift during training. However, often
the shift is not yet known during training and it is either too expensive or even
impossible to retrain once the shift happens. There are several reasons for it:

? T. Heiser can be reached at teddyheiser@google.com.
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original training data or training infrastructure might not be available; shift
happens so frequently that there is no time to retrain; the kind of shift is such
that without having labels in the shifted context there is no hope of learning a
better model than the original.

In this work we address multi-class classification scenarios where training
a classifier for the shifted deployment context is not possible (due to any of
the above reasons), and the only possibility is to post-process the outputs from
an existing classifier that was trained before the shift happened. To succeed,
such post-processing must be guided by some information about the shifted
deployment context. In the following, we will assume that we know the overall
expected class distribution in the shifted context, at least approximately. For
example, consider a medical diagnostic classifier of disease sub-types, which has
been trained on the cases of country A, and gets deployed to a different country
B. It is common that the distribution of sub-types can vary between countries,
but in many cases such information is available. So here many labels are available
but not the feature values (country B has data about sub-types in past cases,
but no diagnostic markers were measured back then), making training of a new
model impossible. Still, the model adjustment methods proposed in this paper
can be used to adjust the existing model to match the class distribution in
the deployment context. As another example, consider a bank’s fraud detection
classifier trained on one type of credit cards and deployed to a new type of credit
cards. For new cards there might not yet be enough cases of fraud to train a new
classifier, but there might be enough data to estimate the class distribution, that
is the prevalence of fraud. The old classifier might predict too few or too many
positives on the new data, so it must be adjusted to the new class distribution.

In many application domains, including the above examples of medical di-
agnostics and fraud detection, it is required that the classifiers would output
confidence information in addition to the predicted class. This is supported
by most classifiers, as they can be requested to provide for each instance the
class probabilities instead of a single label. For example, the feed-forward neural
networks for classification typically produce class probabilities using the final
soft-max layer. Such confidence information can then be interpreted by a human
expert to choose the action based on the prediction, or feeded into an automatic
cost-sensitive decision-making system, which would use the class probability esti-
mates and the mis-classification cost information to make cost-optimal decisions.
Probabilistic classifiers are typically evaluated using Brier score or log-loss (also
known as squared error and cross-entropy, respectively). Both measures belong
to the family of proper scoring rules: measures which are minimized by the true
posterior class probabilities produced by the Bayes-optimal model. Proper losses
also encourage the model to produce calibrated probabilities, as every proper loss
decomposes into calibration loss and refinement loss [9].

Our goal is to improve the predictions of a given model in a shifted de-
ployment context, using the information about the expected class distribution
in this context, without making any additional assumptions about the type of
dataset shift. The idea proposed by Kull et al. [9] is to take advantage of a prop-



Shift Happens: Adjusting Classifiers 3

erty that many dataset shift cases share: a difference in the classifier’s average
prediction and the expected class distribution of the data. They proposed two
different adjustment procedures which transform the predictions to re-equalise
the average prediction with the expected class distribution, resulting in a theo-
retically guaranteed reduction of Brier score or log-loss. Interestingly, it turned
out that different loss measures require different adjustment procedures. They
proved that their proposed additive adjustment (additively shifting all predic-
tions, see Section 2 for the definitions) is guaranteed to reduce Brier score, while
it can increase log-loss in some circumstances. They also proposed multiplicative
adjustment (multiplicatively shifting and renormalising all predictions) which is
guaranteed to reduce log-loss, while it can sometimes increase Brier score. It
was proved that if the adjustment procedure is coherent with the proper loss
(see Section 2), then the reduction of loss is guaranteed, assuming that the class
distribution is known exactly. They introduced the term adjustment loss to refer
to the part of calibration loss which can be eliminated by adjustment. Hence,
adjustment can be viewed as a weak form of calibration. In the end, it remained
open: (1) whether for every proper scoring rule there exists an adjustment pro-
cedure that is guaranteed to reduce loss; (2) is there a general way of finding an
adjustment procedure to reduce a given proper loss; (3) whether this reduction
of loss from adjustment materializes in practice where the new class distribution
is only known approximately; (4) how to solve algorithm convergence issues of
the multiplicative adjustment method; (5) how to solve the problem of additive
adjustment sometimes producing predictions with negative ’probabilities’.

The contributions of our work are the following: (1) we construct a family
called BGA (Bounded General Adjustment) of adjustment procedures, with one
procedure for each proper loss, and prove that each BGA procedure is guaran-
teed to reduce the respective proper loss, if the class distribution of the dataset
is known; (2) we show that each BGA procedure can be represented as a con-
vex optimization task, leading to a practical and tractable algorithm; (3) we
demonstrate experimentally that even if the new class distribution is only known
approximately, the proposed BGA methods still usually improve over the unad-
justed model; (4) we prove that the BGA procedure of log-loss is the same
as multiplicative adjustment, thus solving the convergence problems of multi-
plicative adjustment; (5) we construct another family called UGA (Unbounded
General Adjustment) with adjustment procedures that are dominated by the
respective BGA methods according to the loss, but are theoretically interesting
by being coherent to the respective proper loss in the sense of Kull et al. [9], and
by containing the additive adjustment procedure as the UGA for Brier score.

Section 2 of this paper provides the background for this work, covering the
specific types of dataset shift and reviewing some popular methods of adapting
to them. We also review the family of proper losses, i.e. the loss functions that
adjustment is designed for. Section 3 introduces the UGA and BGA families of
adjustment procedures and provides the theoretical results of the paper. Section
4 provides experimental evidence for the effectiveness of BGA adjustment in
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practical settings. Section 5 concludes the paper, reviewing its contributions
and proposing open questions.

2 Background and Related Work

2.1 Dataset Shift and Prior Probability Adjustment

In supervised learning, dataset shift can be defined as any change in the joint
probability distribution of the feature vector X and label Y between two data
generating processes, that is Pold(X,Y ) 6= Pnew(X,Y ), where Pold and Pnew
are the probability distributions before and after the shift, respectively. While
the proposed adjustment methods are in principle applicable for any kind of
dataset shift, there are differences in performance across different types of shift.
According to Moreno-Torres et al [11] there are 4 main kinds of shift: covariate
shift, prior probability shift, concept shift and other types of shift. Covariate
shift is when the distribution P(X) of the covariates/features changes, but the
posterior class probabilities P (Y |X) do not. At first, this may not seem to be of
much interest since the classifiers output estimates of posterior class probabilities
and these remain unshifted. However, unless the classifier is Bayes-optimal, then
covariate shift can still result in a classifier under-performing [14]. Many cases
of covariate shift can be modelled as sample selection bias [8], often addressed
by retraining the model on a reweighted training set [15, 13, 7].

Prior probability shift is when the prior class probabilities P(Y ) change, but
the likelihoods P(X|Y ) do not. An example of this is down- or up-sampling of the
instances based on their class in the training or testing phase. Given the new class
distribution, the posterior class probability predictions can be modified according
to Bayes’ theorem to take into account the new prior class probabilities, as shown
in [12]. We will refer to this procedure as the Prior Probability Adjuster (PPA)
and the formal definition is as follows:

PPA: Pnew(Y= y|X) =
Pold(Y= y|X)Pnew(Y= y)/Pold(Y= y)∑
y′ Pold(Y= y′|X)Pnew(Y= y′)/Pold(Y= y′)

In other types of shift both conditional probability distributions P(X|Y ) and
P(Y |X) change. The special case where P(Y ) or P(X) remains unchanged is
called concept shift. Concept shift and other types of shift are in general hard to
adapt to, as the relationship between X and Y has changed in an unknown way.

2.2 Proper Scoring Rules and Bregman Divergences

The best possible probabilistic classifier is the Bayes-optimal classifier which
for any instance X outputs its true posterior class probabilities P(Y |X). When
choosing a loss function for evaluating probabilistic classifiers, it is then natural
to require that the loss would be minimized when the predictions match the
correct posterior probabilities. Loss functions with this property are called proper
scoring rules [5, 10, 9]. Note that throughout the paper we consider multi-class
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classification with k classes and represent class labels as one-hot vectors, i.e. the
label of class i is a vector of k − 1 zeros and a single 1 at position i.

Definition 1 (Proper Scoring Rule (or Proper Loss)). In a k-class clas-
sification task a loss function f : [0, 1]k × {0, 1}k → R is called a proper scoring
rule (or proper loss), if for any probability vectors p, q ∈ [0, 1]k with

∑
i=1 pi = 1

and
∑
i=1 qi = 1 the following inequality holds:

EY∼q[f(q, Y )] ≤ EY∼q[f(p, Y )]

where Y is a one-hot encoded label randomly drawn from the categorical distri-
bution over k classes with class probabilities represented by vector q. The loss
function f is called strictly proper if the inequality is strict for all p 6= q.

This is a useful definition, but it does not give a very clear idea of what the
geometry of these functions looks like. Bregman divergences [4] were developed
independently of proper scoring rules and have a constructive definition (note
that many authors have the arguments p and q the other way around, but we
use this order to match proper losses).

Definition 2 (Bregman Divergence). Let φ : Ω → R be a strictly convex
function defined on a convex set Ω ⊆ Rk such that φ is differentiable on the
relative interior of Ω, ri(Ω). Denoting the dot product by 〈·, ·〉, the Bregman
divergence dφ : ri(Ω)×Ω → [0,∞) is defined as

dφ(p, q) = φ(q)− φ(p)− 〈q − p,∇φ(p)〉

Previous works [1] have shown that the two concepts are closely related. Every
Bregman divergence is a strictly proper scoring rule and every strictly proper
scoring rule (within an additive constant) is a Bregman divergence. Best known
functions in these families are squared Euclidean distance defined as dSED(p,q) =∑d
j=1(pj − qj)

2 and Kullback-Leibler-divergence dKL(p,q) =
∑d
j=1 qj log

qj
pj

.

When used as a scoring rule to measure loss of a prediction against labels, they
are typically referred to as Brier Score dBS , and log-loss dLL, respectively.

2.3 Adjusted Predictions and Adjustment Procedures

Let us now come to the main scenario of this work, where dataset shift of un-
known type occurs after a probabilistic k-class classifier has been trained. Sup-
pose that we have a test dataset with n instances from the post-shift distribution.
We denote the predictions of the existing probabilistic classifier on these data by
p ∈ [0, 1]n×k, where pij is the predicted class j probability on the i-th instance,

and hence
∑k
j=1 pij = 1. We further denote the hidden actual labels in the one-

hot encoded form by y ∈ {0, 1}n×k, where yij = 1 if the i-th instance belongs
to class j, and otherwise yij = 0. While the actual labels are hidden, we assume
that the overall class distribution π ∈ [0, 1]k is known, where πj = 1

n

∑n
i=1 yij .
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The following theoretical results require π to be known exactly, but in the ex-
periments we demonstrate benefits from the proposed adjustment methods also
in the case where π is known approximately. As discussed in the introduction,
examples of such scenarios include medical diagnostics and fraud detection. Be-
fore introducing the adjustment procedures we define what we mean by adjusted
predictions.

Definition 3 (Adjusted Predictions). Let p ∈ [0, 1]n×k be the predictions of
a probabilistic k-class classifier on n instances and let π ∈ [0, 1]k be the actual
class distribution on these instances. We say that predictions p are adjusted on
this dataset, if the average prediction is equal to the class proportion for every
class j, that is 1

n

∑n
i=1 pij = πj.

Essentially, the model provides adjusted predictions on a dataset, if for each
class its predicted probabilities on the given data are on average neither under-
nor over-estimated. Note that this definition was presented in [9] using random
variables and expected values, and our definition can be viewed as a finite case
where a random instance is drawn from the given dataset.

Consider now the case where the predictions are not adjusted on the given
test dataset, and so the estimated class probabilities are on average too large for
some class(es) and too small for some other class(es). This raises a question of
whether the overall loss (as measured with some proper loss) could be reduced by
shifting all predictions by a bit, for example with additive shifting by adding the
same constant vector ε to each prediction vector pi·. The answer is not obvious
as in this process some predictions would also be moved further away from their
true class. This is in some sense analogous to the case where a regression model is
on average over- or under-estimating its target, as there also for some instances
the predictions would become worse after shifting. However, additive shifting
still pays off, if the regression results are evaluated by mean squared error. This
is well known from the theory of linear models where mean squared error fitting
leads to an intercept value such that the average predicted target value on the
training set is equal to the actual mean target value (unless regularisation is
applied). Since Brier score is essentially the same as mean squared error, it is
natural to expect reduction of Brier score after additive shifting of predictions
towards the actual class distribution. This is indeed so, and [9] proved that
additive adjustment guarantees a reduction of Brier score. Additive adjustment
is a method which adds the same constant vector to all prediction vectors to
achieve equality between average prediction vector and actual class distribution.

Definition 4 (Additive Adjustment). Additive adjustment is the function
α+ : [0, 1]n×k × [0, 1]k → [0, 1]n×k which takes in the predictions of a prob-
abilistic k-class classifier on n instances and the actual class distribution π
on these instances, and outputs adjusted predictions a = α+(p, π) defined as
ai· = pi· + (ε1, . . . , εk) where ai· = (ai1, . . . , aik), pi· = (pi1, . . . , pik), and
εj = πj − 1

n

∑n
i=1 pij for each class j ∈ {1, . . . , k}.

It is easy to see that additive adjustment procedure indeed results in ad-
justed predictions, as 1

n

∑n
i=1 aij = 1

n

∑n
i=1 pij + εj = πj . Note that even if the
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original predictions p are probabilities between 0 and 1, the additively adjusted
predictions a can sometimes go out from that range and be negative or larger
than 1. For example, if an instance i is predicted to have probability pij = 0
to be in class j and at the same time on average the overall proportion of class
j is over-estimated, then εj < 0 and the adjusted prediction aij = εj is nega-
tive. While such predictions are no longer probabilities in the standard sense,
these can still be evaluated with Brier score. So it is always true that the over-
all Brier score on adjusted predictions is lower than on the original predictions,
1
ndBS(ai·, yi·) ≤ 1

ndBS(pi·, yi·), with equality only when the original predictions
are already adjusted, a = p. Note that whenever we mention the guaranteed
reduction of loss, it always means that there is no reduction in the special case
where the predictions are already adjusted, since then adjustment has no effect.

Additive adjustment is just one possible transformation of unadjusted predic-
tions into adjusted predictions, and there are infinitely many other such trans-
formations. We will refer to these as adjustment procedures. If we have explicitly
required the output values to be in the range [0, 1] then we use the term bounded
adjustment procedure, otherwise we use the term unbounded adjustment proce-
dure, even if actually the values do not go out from that range.

Definition 5 (Adjustment Procedure). Adjustment procedure is any func-
tion α : [0, 1]n×k × [0, 1]k → [0, 1]n×k which takes as arguments the predictions
p of a probabilistic k-class classifier on n instances and the actual class distri-
bution π on these instances, such that for any p and π the output predictions
a = α(p, π) are adjusted, that is 1

n

∑n
i=1 aij = πj for each class j ∈ {1, . . . , k}.

In this definition and also in the rest of the paper we assume silently, that p
contains valid predictions of a probabilistic classifier, and so for each instance i
the predicted class probabilities add up to 1, that is

∑k
j=1 pij = 1. Similarly, we

assume that π contains a valid class distribution, with
∑k
j=1 πj = 1.

Definition 6 (Bounded Adjustment Procedure). An adjustment procedure
α : [0, 1]n×k × [0, 1]k → [0, 1]n×k is bounded, if for any p and π the output
predictions a = α(p, π) are in the range [0, 1], that is aij ∈ [0, 1] for all i, j.

An example of a bounded adjustment procedure is the multiplicative adjust-
ment method proposed in [9], which multiplies the prediction vector component-
wise with a constant weight vector and renormalizes the result to add up to 1.

Definition 7 (Multiplicative Adjustment). Multiplicative adjustment is the
function α∗ : [0, 1]n×k × [0, 1]k → [0, 1]n×k which takes in the predictions of a
probabilistic k-class classifier on n instances and the actual class distribution
π on these instances, and outputs adjusted predictions a = α∗(p, π) defined as
aij =

wjpij
zi

, where w1, . . . , wk ≥ 0 are real-valued weights chosen based on p and
π such that the predictions α∗(p, π) would be adjusted, and zi are the renormal-

isation factors defined as zi =
∑k
j=1 wjpij.

As proved in [9], the suitable class weights w1, . . . , wk are guaranteed to
exist, but finding these weights is a non-trivial task and the algorithm based on
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coordinate descent proposed in [9] can sometimes fail to converge. In the next
Section 3 we will propose a more reliable algorithm for multiplicative adjustment.

It turns out that the adjustment procedure should be selected depending on
which proper scoring rule is aimed to be minimised. It was proved in [9] that
Brier score is guaranteed to be reduced with additive adjustment and log-loss
with multiplicative adjustment. It was shown that when the ’wrong’ adjustment
method is used, then the loss can actually increase. In particular, additive ad-
justment can increase log-loss and multiplicative adjustment can increase Brier
score. A sufficient condition for a guaranteed reduction of loss is coherence be-
tween the adjustment procedure and the proper loss corresponding to a Bregman
divergence. Intuitively, coherence means that the effect of adjustment is the same
across instances, where the effect is measured as the difference of divergences of
this instance from any fixed class labels j and j′. The definition is the following:

Definition 8 (Coherence of Adjustment Procedure and Bregman Di-
vergence [9]). Let α : [0, 1]n×k × [0, 1]k → [0, 1]n×k be an adjustment procedure
and dφ be a Bregman divergence. Then α is called to be coherent with dφ if and
only if for any predictions p and class distribution π the following holds for all
i = 1, . . . , n and j, j′ = 1, . . . , k:

(dφ(ai·, cj)− dφ(pi·, cj))− (dφ(ai·, cj′)− dφ(pi·, cj′)) = constj,j′

where constj,j′ is a quantity not depending on i, and where a = α(p, π) and cj is
a one-hot vector corresponding to class j (with 1 at position j and 0 elsewhere).

The following result can be seen as a direct corollary of Theorem 4 in [9].

Theorem 9 (Decomposition of Bregman Divergences [9]). Let dφ be a
Bregman divergence and let α : [0, 1]n×k × [0, 1]k → [0, 1]n×k be an adjustment
procedure coherent with dφ. Then for any predictions p, one-hot encoded true
labels y ∈ {0, 1}n×k and class distribution π (with πj = 1

n

∑n
i=1 yij) the following

decomposition holds:

1

n

n∑
i=1

dφ(pi·, yi·) =
1

n

n∑
i=1

dφ(pi·, ai·) +
1

n

n∑
i=1

dφ(ai·, yi·) (1)

Proof. The proofs and source code are in the Online Supplementary1.

Due to non-negativity of dφ this theorem gives a guaranteed reduction of
loss, that is the loss on the adjusted probabilities a (average divergence between
a and y) is less than the loss on the original unadjusted probabilities (average di-
vergence between p and y), unless the probabilities are already adjusted (p = a).
As additive adjustment can be shown to be coherent with the squared Euclidean
distance and multiplicative adjustment with KL-divergence [9], the respective
guarantees of loss reduction follow from Theorem 9.

1 Proofs, code: https://github.com/teddyheiser/Shift_Happens_ECML_PKDD_2019
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3 General Adjustment

Our main contribution is a family of adjustment procedures called BGA (Bounded
General Adjustment). We use the term ’general’ to emphasise that it is not a sin-
gle method, but a family with exactly one adjustment procedure for each proper
loss. We will prove that every adjustment procedure of this family is guaranteed
to reduce the respective proper loss, assuming that the true class distribution is
known exactly. To obtain more theoretical insights and answer the open ques-
tions regarding coherence of adjustment procedures with Bregman divergences
and proper losses, we define a weaker variant of BGA called UGA (Unbounded
General Adjustment). As the name says, these methods can sometimes output
predictions that are not in the range [0, 1]. On the other hand, the UGA pro-
cedures turn out to be coherent with their corresponding divergence measure,
and hence have the decomposition stated in Theorem 9 and also guarantee re-
duced loss. However, UGA procedures have less practical value, as each UGA
procedure is dominated by the respective BGA in terms of reductions in loss.
We start by defining the UGA procedures, as these are mathematically simpler.

3.1 Unbounded General Adjustment (UGA)

We work here with the same notations as introduced earlier, with p denoting
the n × k matrix with the outputs of a k-class probabilistic classifier on a test
dataset with n instances, and y denoting the matrix with the same shape con-
taining one-hot encoded actual labels. We denote the unknown true posterior
class probabilities P(Y |X) on these instances by q, again a matrix with the same
shape as p and y.

Our goal is to reduce the loss 1
n

∑n
i=1 dφ(pi·, yi·) knowing the overall class

distribution π, while not having any other information about labels y. Due
to the defining property of any proper loss, the expected value of this quan-
tity is minimised at p = q. As we know neither y nor q, we consider instead
the set of all possible predictions Qπ that are adjusted to π, that is Qπ ={
a ∈ Rn×k

∣∣∣ 1
n

∑n
i=1 ai,j = πj ,

∑k
j=1 ai,j = 1

}
. Note that here we do not require

aij ≥ 0, as in this subsection we are working to derive unbounded adjustment
methods which allow predictions to go out from the range [0, 1].

The question is now whether there exists a prediction matrix a ∈ Qπ that
is better than p (i.e. has lower divergence from y) regardless of what the actual
labels y are (as a sidenote, y also belongs to Qπ). It is not obvious that such a
exists, as one could suspect that for any a there exists some bad y such that the
original p would be closer to y than the ‘adjusted’ a is.

Now we will define UGA and prove that it outputs adjusted predictions a?

that are indeed better than p, regardless of what the actual labels y are.

Definition 10 (Unbounded General Adjuster (UGA)). Consider a k-
class classification task with a test dataset of n instances, and let dφ be a Breg-
man divergence. Then the unbounded general adjuster corresponding to dφ is
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Qπα□(p, π)

p

α★(p, π)

y
□

Fig. 1. A schematic explanation with α?(p, π) of UGA and α�(p, π) of BGA.

the function α? : Rn×k × Rk → Rn×k defined as follows:

α?(p, π) = arg min
a∈Qπ

1

n

n∑
i=1

dφ(pi·, ai·)

The definition of UGA is correct in the sense that the optimisation task used
to define it has a unique optimum. This is because it is a convex optimisation
task, as will be explained in Section 3.3. Intuitively, Qπ can be thought of as
an infinite hyperplane of adjusted predictions, also containing the unknown y.
The original prediction p is presumably not adjusted, so it does not belong to
Qπ. UGA essentially ‘projects’ p to the hyperplane Qπ, in the sense of finding
a in the hyperplane which is closest from p according to dφ, see the diagram in
Figure 1.

The following theorem guarantees that the loss is reduced after applying
UGA by showing that UGA is coherent with its Bregman divergence.

Theorem 11. Let α? be the unbounded general adjuster corresponding to the
Bregman divergence dφ. Then α? is coherent with dφ.

The next theorem proves that UGA is actually the one and only adjustment
procedure that decomposes in the sense of Theorem 9. Therefore, UGA coin-
cides with additive and multiplicative adjustment on Brier score and log-loss,
respectively.

Theorem 12. Let dφ be a Bregman divergence, let p be a set of predictions,
and π be a class distribution over k classes. Suppose a ∈ Qπ is such that for any
y ∈ Qπ the decomposition of Eq.(1) holds. Then a = α?(p, π).

As explained in the example of additive adjustment (which is UGA for Brier
score), some adjusted predictions can get out from the range [0, 1]. It is clear that
a prediction involving negative probabilities cannot be optimal. In the following
section we propose the Bounded General Adjuster (BGA) which does not satisfy
the decomposition property but is guaranteed to be at least as good as UGA.
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3.2 Bounded General Adjustment

For a given class distribution π, let us constrain the set of all possible adjusted
predictions Qπ further, by requiring that all probabilities are non-negative:

Q�
π = {a ∈ Qπ | ai,j ≥ 0 for i = 1, . . . , n and j = 1, . . . , k}

We now propose our bounded general adjuster (BGA), which outputs predictions
within Q�

π .

Definition 13 (Bounded General Adjuster (BGA)). Consider a k-class
classification task with a test dataset of n instances, and let dφ be a Bregman di-
vergence. Then the bounded general adjuster corresponding to dφ is the function
α� : [0, 1]n×k × [0, 1]k → [0, 1]n×k defined as follows:

α�(p, π) = arg min
a∈Q�

π

1

n

n∑
i=1

dφ(pi·, ai·)

Similarly as for UGA, the correctness of BGA is guaranteed by the convex-
ity of the optimisation task, as shown in Section 3.3. BGA solves almost the
same optimisation task as UGA, except that instead of considering the whole
hyperplane Qπ it finds the closest a within a bounded subset Q�

π within the
hyperplane. Multiplicative adjustment is the BGA for log-loss, because log-loss
is not defined at all outside the [0, 1] bounds, and hence the UGA for log-loss is
the same as the BGA for log-loss. The following theorem shows that there is a
guaranteed reduction of loss after BGA, and the reduction is at least as big as
after UGA.

Theorem 14. Let dφ be a Bregman divergence, let p be a set of predictions,
and π be a class distribution over k classes. Then for any y ∈ Q�

π the following
holds:

n∑
i=1

(dφ(pi·, yi·)− dφ(a�i· , yi·))

≥
n∑
i=1

dφ(pi·, a
�
i· ) ≥

n∑
i=1

dφ(pi·, a
?
i·) =

n∑
i=1

(dφ(pi·, yi·)− dφ(a?i·, yi·))

Note that the theorem is even more general than we need and holds for
all y ∈ Q�

π , not only those y which represent label matrices. A corollary of this
theorem is that the BGA for Brier score is a new adjustment method dominating
over additive adjustment in reducing Brier score. In practice, all practitioners
should prefer BGA over UGA when looking to adjust their classifiers. Coherence
and decomposition are interesting from a theoretical perspective but from a loss
reduction standpoint, BGA is superior to UGA.
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3.3 Implementation

Both UGA and BGA are defined through optimisation tasks, which can be shown
to be convex. First, the objective function is convex as a sum of convex functions
(Bregman divergences are convex in their second argument [2]). Second, the
equality constraints that define Qπ are linear, making up a convex set. Finally,
the inequality constraints of Q�

π make up a convex set, which after intersecting
with Qπ remains convex. These properties are sufficient [3] to prove that both
the UGA and BGA optimisation tasks are convex.

UGA has only equality constraints, so Newton’s method works fine with it.
For Brier score there is a closed form solution [9] of simply adding the difference
between the new distribution and the old distribution for every set of k probabil-
ities. BGA computations are a little more difficult due to inequality constraints,
therefore requiring interior point methods [3]. While multiplicative adjustment
is for log-loss both BGA and UGA at the same time, it is easier to calculate it
as a UGA, due to not having inequality constraints.

4 Experiments

4.1 Experimental Setup

While our theorems provide loss reduction guarantees when the exact class dis-
tribution is known, this is rarely something to be expected in practice. Therefore,
the goal of our experiments was to evaluate the proposed adjustment methods
in the setting where the class distribution is known approximately. For loss mea-
sures we selected Brier score and log-loss, which are the two most well known
proper losses. As UGA is dominated by BGA, we decided to evaluate only BGA,
across a wide range of different types of dataset shift, across different classifier
learning algorithms, and across many datasets. We compare the results of BGA
with the prior probability adjuster (PPA) introduced in Section 2, as this is
to our knowledge the only existing method that inputs nothing else than the
predictions of the model and the shifted class distribution. As reviewed in [17],
other existing transfer learning methods need either the information about the
features or a limited set of labelled data from the shifted context.

To cover a wide range of classifiers and datasets, we opted for using OpenML
[16], which contains many datasets, and for each dataset many runs of different
learning algorithms. For each run OpenML provides the predicted class proba-
bilities in 10-fold cross-validation. As the predictions in 10-fold cross-validation
are obtained with 10 different models trained on different subsets of folds, we
compiled the prediction matrix p from one fold at a time. From OpenML we
downloaded all user-submitted sets of predictions for both binary and multiclass
(up to eight classes) classification tasks, restricting ourselves to tasks with the
number of instances in the interval of [2000, 1000000]. Then we discarded every
dataset that included a predicted score outside the range (0, 1). To emphasize,
we did not include runs which contain a 0 or a 1 anywhere in the predictions,
since log-loss becomes infinite in case of errors with full confidence. We discarded



Shift Happens: Adjusting Classifiers 13

datasets with less than 500 instances and sampled datasets with more than 1000
instances down to 1000 instances. This left us with 590 sets of predictions, each
from a different model. These 590 sets of predictions come from 59 different runs
from 56 different classification tasks. The list of used datasets and the source
code for running the experiments is available in the Online Supplementary at
https://github.com/teddyheiser/Shift_Happens_ECML_PKDD_2019.

Shifting. For each dataset we first identified the majority class(es). After sorting
the classes by size decreasingly, the class(es) 1, . . . ,m were considered as majority
class(es), where j was the smallest possible integer such that π1+ · · ·+πm > 0.5.
We refer to other class(es) as minority class(es). We then created 4 variants of
each dataset by artificially inducing shift in four ways. Each of those shifts has
a parameter ε ∈ [0.1, 0.5] quantifying the amount of shift, and ε was chosen
uniformly randomly and independently for each adjustment task.

The first method induces prior probability shift by undersampling the major-
ity class(es), reducing their total proportion from π1+· · ·+πm to π1+· · ·+πm−ε.
The second method induces a variety of concept shift by selecting randomly a
proportion ε of instances from majority class(es) and changing their labels into
uniformly random minority class labels. The third method induces covariate shift
by deleting within class m the proportion ε of the instances with the lowest val-
ues of the numeric feature which correlates best with this class label. The fourth
method was simply running the other three methods all one after another, which
produces an other type of shift.

Approximating the New Class Distribution. It is unlikely that a practitioner of
adjustment would know the exact class distribution of a shifted dataset. To in-
vestigate this, we ran our adjustment algorithms on our shifted datasets with not
only the exact class distribution, but also eight ‘estimations’ of the class distribu-
tion obtained by artificially modifying the correct class distribution (π1, . . . , πk)
into (π1 + δ, . . . , πm + δ, πm+1 − δ′, . . . , πk − δ′, where δ was one of eight val-
ues +0.01,−0.01,+0.02,−0.02,+0.04,−0.04,+0.08,−0.08, and δ′ was chosen to
ensure that the sum of class proportions adds up to 1. If any resulting class pro-
portion left the [0,1] bounds, then the respective adjustment task was skipped.In
total, we recorded results for 17527 adjustment tasks resulting from combinations
of dataset fold, shift amount, shift method, and estimated class distribution.

Adjustment. For every combination of shift and for the corresponding nine
different class distribution estimations, we adjusted the datasets/predictions
using the three above-mentioned adjusters: Brier-score-minimizing-BGA, log-
loss-minimizing-BGA, and PPA. PPA has a simple implementation, but for the
general adjusters we used the CVXPY library [6] to perform convex optimiza-
tion. For Brier-score-minimizing-BGA, the selected method of optimization was
OSQP (as part of the CVXPY library). For log-loss-minimizing-BGA, we used
the ECOS optimizer with the SCS optimizer as backup (under rare conditions
the optimizers could numerically fail, occurred 30 times out of 17527). For both
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Fig. 2. The reduction in Brier score (left figure) and log-loss (right figure) after BGA
adjustment (left side of the violin) and after PPA adjustment (right side of the violin).
The rows correspond to different amounts of shift (with high shift at the top and low at
the bottom). The columns correspond to amount of induced error in class distribution
estimation, starting from left: 0.00, 0.01, 0.02, 0.04 and 0.08.

Brier score and log loss, we measured the unadjusted loss and the loss after
running the dataset through the aforementioned three adjusters.

4.2 Results

On different datasets the effects of our shifting procedures vary and thus we
have categorized the shifted datasets into 3 equal-sized groups by the amount
of squared Euclidean distance between the original and new class distributions
(high, medium and low shift). Note that these are correlated to the shift amount
parameter ε, but not determined by it. Figures 2 and 3 both visualise the loss
reduction after adjustment in proportion to the loss before adjustment. In these
violin plots the part of distributions above 0 stands for reduction of loss and
below 0 for increased loss after adjustment. For example, proportional reduction
value 0.2 means that 20% of the loss was eliminated by adjustment. The left side
of the left-most violins in Figure 2 show the case where BGA for Brier score is
evaluated on Brier score (with high shift at the top row and low at the bottom).
Due to guaranteed reduction in loss the left sides of violins are all above 0. In
contrast, the right side of the same violins shows the effect of PPA adjustment,
and PPA can be seen to sometimes increase the loss, while also having lower
average reduction of loss (the horizontal black line marking the mean is lower).
When the injected estimation error in the class distribution increases (next 4
columns of violins), BGA adjustment can sometimes increase the loss as well,
but is on average still reducing loss more than PPA in all of the violin plots.
Similar patterns of results can be seen in the right subfigure of Figure 2, where
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Fig. 3. The reduction in Brier score (left figure) and log-loss (right figure) after BGA
adjustment to reduce Brier score (left side of the violin) and after BGA to reduce log-
loss (right side of the violin). The rows correspond to different amounts of shift (high
at the top and low at the bottom). The columns correspond to amount of induced error
in class distribution estimation, starting from left: 0.00, 0.01, 0.02, 0.04 and 0.08.

BGA for log-loss is compared with PPA, both evaluated on log-loss. The mean
proportional reduction of loss by BGA is higher than by PPA in 13 out of 15
cases. The bumps in some violins are due to using 4 different types of shift.

Figure 3 demonstrates the differences between BGA aiming to reduce Brier
score (left side of each violin) and BGA to reduce log loss (right side of each
violin), evaluated on Brier score (left subfigure) and log-loss (right subfigure).
As seen from the right side of the leftmost violins, BGA aiming to reduce the
wrong loss (log-loss) can actually increase loss (Brier score), even if the class
distribution is known exactly. Therefore, as expected, it is important to adjust
by minimising the same divergence that is going to be used to test the method.

5 Conclusion

In this paper we have constructed a family BGA of adjustment procedures aiming
to reduce any proper loss of probabilistic classifiers after experiencing dataset
shift, using knowledge about the class distribution. We have proved that the loss
is guaranteed to reduce, if the class distribution is known exactly. According to
our experiments, BGA adjustment to an approximated class distribution often
still reduces loss more than prior probability adjustment.
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