
An Algorithm for Reducing the Number of
Distinct Branching Conditions

in a Decision Forest

Atsuyoshi Nakamura[�]1[0000−0001−7078−8655] and Kento Sakurada1

Hokkaido University, Kita 14, Nishi 9 Kita-ku Sapporo 060-0814, Japan
{atsu,k sakurada}@ist.hokudai.ac.jp

Abstract. Given a decision forest, we study a problem of reducing the
number of its distinct branching conditions without changing each tree’s
structure while keeping classification performance. A decision forest with
a smaller number of distinct branching conditions can not only have a
smaller description length but also be implemented by hardware more
efficiently. To force the modified decision forest to keep classification
performance, we consider a condition that the decision paths at each
branching node do not change for 100σ% of the given feature vectors
passing through the node for a given 0 ≤ σ < 1. Under this condition,
we propose an algorithm that minimizes the number of distinct branch-
ing conditions by sharing the same condition among multiple branching
nodes. According to our experimental results using 13 datasets in UCI
machine learning repository, our algorithm succeeded more than 90%
reduction on the number of distinct branching conditions for random
forests learned from 3 datasets without degrading classification perfor-
mance. 90% condition reduction was also observed for 7 other datasets
within 0.17 degradation of prediction accuracy from the original predic-
tion accuracy at least 0.673.

Keywords: decision forest · algorithm · simplification

1 Introduction

A decision tree is a popular classifier not only for its classification performance
but also for its high interpretability. As base classifiers of an ensemble classifier,
decision trees are also preferred due to its usability such as being able to calculate
feature importance. Therefore, several decision-tree-based ensemble classifiers
such as random forests [3], extremely randomized trees [8] and gradient boosted
regression trees [7] have been developed so far.

Various researches have been done to obtain more useful decision trees and
forests, and one of them is their simplification such as pruning [9, 10]. Simplifica-
tion of decision trees and forests is important not only as a countermeasure for
overfitting but also as enhancement measures of interpretability and prediction
time-and-space complexities.

2 A. Nakamura and K. Sakurada

Simplification methods developed so far for a decision forest, reduce the num-
ber of branching nodes or trees. Here, however, we proposed an algorithm that
reduces the number of distinct branching conditions without changing the struc-
ture of each tree in a given forest. So, the number of branching nodes does not
change but multiple nodes become to share the same branching condition by
applying our algorithm.

This research is motivated by the recent development of hardware imple-
mentation of a random forest for fast inference. Implementation using FPGA
has been successful in accelerating the inference process of a random forest [12,
1]. In the system proposed in [1], all the branching conditions are processed by
fast comparators in parallel, then their binary outputs are used to parallelly
evaluate which leaf is reached through a boolean net. The decrease of the num-
ber of distinct branching conditions reduces the number of comparators needed
for this implementation.

In this paper, we first formalize our simplification problem as the problem
of minimizing the number of distinct branching conditions in a decision forest
by sharing conditions under the restriction that, given a set of feature vectors
DL and 0 ≤ σ < 1, at each branching node in each component tree, paths of at
most 100σ% of the vectors x ∈ DL passing through the node, can be changed.
Assume that all the features are numerical and all the branching conditions are
expressed as xi ≤ θi for ith component xi of a feature vector x and a fixed
threshold θi. Under the above restriction, the range in which θi can take a value
becomes some interval [`i, ui), and the above problem can be reduced to the
problem of obtaining a minimum set that intersects all the given intervals, which
are defined for each feature. We propose Algorithm Min IntSet for this reduced
problem and prove its correctness. We also develop Algorithm Min DBN for our
original problem using Min IntSet to solve the reduced problem for each feature.

Effectiveness of our algorithm Min DBN is demonstrated for the random
forests that are learned from 13 datasets in UCI machine learning repository [6].
Without prediction performance degradation, Min DBN with σ = 0 succeeds to
reduce the number of distinct branching conditions at least 48.9% for all the
datasets but RNA-Seq PANCAN dataset, which has more than 30 times larger
number of features than the number of its train instances. For hapmass and
magic datasets, which have the two largest number of instances, more than 90%
condition reduction is achieved by running Min DBN with σ = 0. All the datasets
except RNA-Seq PANCAN, iris and blood datasets, whose vectors of the last two
datasets are composed of only four features, achieves more than 90% condition
reduction by allowing larger rate of path change (σ = 0.1, 0.2, 0.3) within about
0.17 prediction accuracy decrease from the original prediction accuracy, which
is at least 0.673.

2 Problem Setting

Consider a d-dimensional real feature space X = Rd and a finite class-label space
C = {1, . . . , `}. A classifier f : X → C is a function that assigns some label

An Algorithm for Reducing # of Distinct Branching Conditions in a DF 3

c ∈ C to an arbitrary input feature vector x = (x1, ..., xd) ∈ Rd. A decision tree
T is a kind of classifier that decides the class label assignment c of an input x by
starting from the root node, repeatedly choosing a child node at each internal
node depending on the branching condition attached to the node, and assigning
label c that is labeled at the reached leaf node. Here, we assume that each internal
node has just two child nodes and the attached branching condition is in the
form of xi ≤ θi. For a given feature vector x, the left child node is chosen at a
node if its branching condition xi ≤ θi is satisfied in the class label assignment
process using a decision tree. Otherwise, the right child node is chosen. The x’s
path in a decision tree T is the path from the root node to the reached leaf node
in the class label assignment process. We let a pair (i, θi) of a feature id i and
a threshold θi denote the branching condition xi ≤ θi. A set of decision trees is
called a decision forest.

We consider the following problem.

Problem 1 (Problem of minimizing the number of distinct branching conditions
in a decision forest). For a given decision forest {T1, ...Tm}, a given set of feature
vectors {x1, ...,xn} and a given path-changeable rate 0 ≤ σ < 1, minimize the
number of distinct branching conditions (i, θi) by changing the values of some
θi without changing more than 100σ% of feature vectors’ paths passing through
each node of each decision tree Ti (i = 1, . . . ,m).

x ≤ 4
1

x ≤ 5
2

1

10

T
1

T
2

x ≤ 5
1

x ≤ 4
2

1

10

T’
1

x ≤ 4
2

x ≤ 5
1

1

10

T
2

x ≤ 4
2

x ≤ 5
1

1

10

Fig. 1. The number of distinct branching conditions (1, 4), (1, 5), (2, 4), (2, 5) in decision
forest {T1, T2} can be reduced to (1, 5), (2, 4) by changing conditions (1, 4) and (2, 5)
in T1 to (1, 5) and (2, 4), respectively, without changing the path of any feature vector
in {(1, 1), (2, 7), (7, 2), (8, 8)}.

Example 1. Consider Problem 1 for a decision forest {T1, T2} in Fig. 1, a feature
vector set {(1, 1), (2, 7), (7, 2), (8, 8)}, and a path-changeable rate σ = 0. The
distinct branching conditions (i, θi) in decision forest {T1, T2} are the following
four:

(i, θi) = (1, 4), (1, 5), (2, 4), (2, 5).

The branching conditions (1, 4) and (2, 5) in T1 can be changed to (1, 5) and
(2, 4), respectively, without changing the path of any feature vector in the given

4 A. Nakamura and K. Sakurada

set {(1, 1), (2, 7), (7, 2), (8, 8)}. Decision tree T ′1 in Fig. 1 is the one that is made
from T1 by this branching-condition change. Decision forest {T ′1, T2} has two
distinct conditions (1, 5), (2, 4), which is a solution of Problem 1.

Remark 1. Decision forest {T1, T2} in Fig. 1 can be outputted by a decision forest
learner with training samples ((x1, x2), y) = ((1, 1), 1), ((2, 7), 0), ((7, 2), 0), ((8, 8), 1).
Assume that two sets of bootstrap samples areD1 = {((1, 1), 1), ((7, 2), 0), ((8, 8), 1)}
and D2 = {((1, 1), 1), ((2, 7), 0), ((8, 8), 1)}, and all the features are sampled for
both the sets. In the implementation that the middle points of adjacent feature
values are used as threshold candidates for branching conditions, CART algo-
rithm can output T1 for D1 and T2 for D2. Decision tree T ′1 in Fig. 1 has the
same Gini Impurity as T1 at each corresponding branching node for the set of
samples D1.

3 Problem of Minimum Set Intersecting All the Given
Intervals

For a given path-changeable rate 0 ≤ σ < 1, at each branching node with
condition (i, θi), the range in which θi can take a value without changing more
than 100σ% of given feature vectors’ paths passing through the node, becomes
interval [`i, ui). So, the problem of minimizing the number of distinct branching
conditions in a decision forest can be solved by finding clusters of conditions
(i, θi) whose changeable intervals have a common value for each feature i. Thus,
solving Problem 1 can be reduced to solving the following problem for each
feature i.

Problem 2 (Problem of Minimum Set Intersecting All the Given Intervals). For
a given set of intervals {[`1, u1), . . . , [`n, un)}, find a minimum set that intersects
all the intervals [`j , uj) (j = 1, . . . , n).

We propose Min IntSet (Algorithm 1) as an algorithm for Problem 2. The al-
gorithm is very simple. First, it sorts the given set of intervals {[`1, u1), . . . , [`n, un)}
by lower bound `i in ascending order (Line 1). For the obtained sorted list
([`i1 , ui1), . . . , [`in , uin)), starting from k = 1 and b1 = 1, the algorithm finds the
kth point sk by calculating the maximal prefix ([`ibk , uibk), . . . , [`ij−1 , uij−1)) of
the list ([`ibk , uibk), . . . , [`in , uin)) that contain non-empty intersection

j−1⋂
h=bk

[`ih , uih) = [`ij−1
, min
h=bk,...,j−1

uih),

and tk is updated such that tk = minh=bk,...,j−1 uih holds (Line 9). The algorithm
can know the maximality of the prefix ([`ibk , uibk), . . . , [`ij−1 , uij−1)) by checking
the condition `ij ≥ tk which means that the intersection [`ij , tk) is empty (Line
4). After finding the maximal prefix with non-empty intersection [`ij−1

, tk), the
middle point of the interval is set to sk (Line 5) and repeat the same procedure
for the updated k and bk (Line 8).

The following theorem holds for Algorithm Min IntSet.

An Algorithm for Reducing # of Distinct Branching Conditions in a DF 5

Algorithm 1 Min IntSet

Input: {[`i, ui)|i ∈ I} : Non-empty set of intervals
Output: {s1, ..., sk} : Minimum set satisfying {s1, . . . , sk} ∩ [`i, ui) 6= ∅ (i = 1, . . . , n)

{I1, ..Ik} : Ij = {i ∈ I|sj ∈ [`i, ui)} (j = 1, ..., k)
1: [`i1 , ui1), ..., [`in , uin)← list sorted by the values of `i in ascending order.
2: k ← 1, t1 ← ui1 , b1 ← 1
3: for j = 2 to n do
4: if `ij ≥ tk then

5: sk ←
`ij−1

+tk

2

6: Ik ← {ibk , ..., ij−1}
7: k ← k + 1, tk ← uij , bk ← j
8: else if uij < tk then
9: tk ← uij

10: end if
11: end for
12: sk ←

`in+tk
2

, Ik ← {ibk , ..., in}
13: return {s1, ..., sk}, {I1, .., Ik}

Theorem 1. For a given set of intervals {[`1, u1), ..., [`n, un)}, the set {s1, ..., sk}
outputted by Algorithm Min IntSet is a minimum set that intersects all the in-
tervals [`j , uj) (j = 1, . . . , n).

Proof. We prove the theorem by mathematical induction in the number of inter-
vals n. For n = 1, for-sentence between Line 3 and 11 is not executed. At Line
12, s1 is set as

s1 =
`i1 + ui1

2

because t1 = ui1 , and at Line 13 Min IntSet outputs {s1}, which is trivially a
minimum set that intersects all the interval in the given set {[`1, u1)}.

Consider the case with n = k + 1. When if-sentence at Line 4 never holds,
`ij ≤ `in < t1 holds for all j = 1, . . . , n and Line 8-9 ensures t1 ≤ uij for all
j = 1, . . . , n. Thus, [`in , t1) is contained by all the intervals and the set that is
composed of its middle point s1 only is trivially a minimum set that intersects
all the intervals in the given set {[`1, u1), . . . , [`n, un)}.

When if-sentence at Line 4 holds at least once, s1 is set as

s1 =
`ij−1

+ t1

2
,

and the rest for-loop is executed for j from j + 1 to n given k = 2, t2 = uij ,
and b2 = j. It is easy to check that s2, . . . , sk calculated in the rest part are the
same as those outputted by

Min IntSet({[`ij , uij), ..., [`in , uin)}).

The condition of if-sentence at Line 4 ensures that the intersection [`ij−1
, t1) of

[`i1 , ui1), . . . , [`ij−1
, uij−1

) does not intersect the rest intervals [`ij , uij), . . . , [`in , uin).

6 A. Nakamura and K. Sakurada

So, any minimum set that intersects all the intervals, must contain at least
one value that is at most t1. Any value s1 in [`ij−1

, t1) can minimize the set
of the rest intervals that does not contain s1. In fact, s1 is set to the middle
point of [`ij−1 , t1), so the rest set of intervals is minimized. The set of the rest
points s2, . . . , sk calculated by Min IntSet is the same as the set outputted by
Min IntSet({[`ij , uij), ..., [`in , uin)}), so the minimum set intersecting all the
intervals in {[`ij , uij), ..., [`in , uin)} can be obtained using inductive assumption.
Thus, Min IntSet outputs a minimum set that intersects all the given intervals
in the case with n = k + 1. ut

The time complexity of Algorithm Min IntSet is O(n log n) for the number
of intervals n due to the bottleneck of sorting. Its space complexity is trivially
O(n).

4 Algorithm for Minimizing the Number of Distinct
Branching Conditions

Algorithm 2 Min DBN

Input: {x1, ...,xn} : Set of feature vectors
{T1, ..., Tm} : decision forest
σ : path-changeable rate (0 ≤ σ < 1)

1: Li ← ∅ for i = 1, . . . , d
2: for j = 1 to m do
3: for each branching node Nj,h in Tj do
4: (i, θi)← branching condition attached to Nj,h

5: [`j,h, uj,h)← the range of values that θi can take without changing
more than 100σ% of paths of x1, ..,xn passing through Nj,h in Tj

6: Li ← Li ∪ {[`j,h, uj,h)}
7: end for
8: end for
9: for i = 1 to d do

10: {s1, .., sk}, {I1, ..., Ik} ← Min IntSet(Li)
11: for g = 1 to k do
12: for each (j, h) ∈ Ig do
13: Replace the branching condition (i, θi) attached to node Nj,h with (i, sg).
14: end for
15: end for
16: end for

Min DBN (Algorithm 2) is an algorithm for the problem of minimizing the
number of distinct branching conditions in a decision forest. The algorithm uses
Algorithm Min IntSet for each feature i = 1, . . . , d to find a minimum set of
branching thresholds that can share the same value without changing 100σ% of
paths of given feature vectors passing through each node of each tree in a given
decision forest.

An Algorithm for Reducing # of Distinct Branching Conditions in a DF 7

For the branching condition (i, θi) attached to each branching node Nj,h
of decision tree Tj in a given decision forest {T1, . . . , Tm}, Algorithm Min DBN
calculates the range of values [`j,h, uj,h) that θi can take without changing 100σ%
of paths of a given feature vectors x1, . . . ,xn passing through Nj,h in Tj (Line
2-8), and adds the range (interval) to Li, which is initially set to ∅ (Line 1).
Then, by running Min IntSet for each Li (i = 1, . . . , d), Min DBN obtains its
output {s1, ..., sk} (Line 10), and the branching condition (i, θi) of node Nj,h
with sg ∈ [`j,h, uj,h) is replaced with (i, sg) (Line 11-15).

Note that, for node Nj,h with branching condition (i, θi) in decision tree Tj ,
the interval [`j,h, uj,h) in which threshold θi can take a value without changing
more than 100σ% of paths of feature vectors x1, . . . ,xn passing through Nj,h in
Tj , is expressed as

`j,h = inf
`
{` | |{xf ∈ Xj,h | ` < xf,i ≤ θi}| ≤ σ|Xj,h|} and

uj,h = sup
u
{u | |{xf ∈ Xj,h | θi < xf,i ≤ u}| ≤ σ|Xj,h|},

where

Xj,h = {xf |The path of xf in Tj passes through node Nj,h},

and |S| for set S denotes the number of elements in S.
Let us analyze time and space complexities of Min DBN. Let N denote

the number of nodes in a given decision forest. For each branching node Nj,h,
Min DBN needs O(|Xj,h| log(σ|Xj,h|+ 1)) ≤ O(n log(σn+ 1)) time for calculat-
ing `j,h and uj,h using size-(σ|Xj,h|+ 1) heap. Min IntSet(Li) for all i = 1, . . . , d
totally consumes at most O(N logN) time. Considering that O(d) time is needed
additionally, time complexity of Min DBN is O(N(n log(σn + 1) + logN) + d).
Space complexity of Min DBN is O(dn+N) because space linear in the sizes of
given feature vectors and decision forest are enough to run Min DBN.

5 Experiments

We show the results of the experiments that demonstrate the effectiveness of
Algorithm Min DBN.

5.1 Settings

We used 13 numerical-feature datasets registered in UCI machine learning repos-
itory [6], whose numbers of instances, features and distinct class labels are shown
in Table 1. In the table, datasets are sorted in the order of the number of in-
stances. The largest one is hepmass dataset that has 7 million instances. The
dataset with the largest number of features is RNA-Seq PANCAN whose number
of features is more than 20 thousands. Note that the number of features is larger
than the number of instances only for this dataset. The number of distinct class

8 A. Nakamura and K. Sakurada

Table 1. Dataset used in our experiments

dataset #instance #feature #class reference

iris 150 4 3 Iris [6]
parkinsons 195 22 2 Parkinsons [11]
breast cancer 569 30 1 Breast Cancer Wisconsin (Diagnostic) [6]
blood 748 4 2 Blood Transfusion Service Center [13]
RNA-Seq PANCAN 801 20531 5 gene expression cancer RNA-Seq [4]
winequality red 1599 11 11 Wine Quality [5]
winequality white 4898 11 11 Wine Quality [5]
waveform 5000 40 3 Waveform Database Generator (Version 2) [6]
robot 5456 24 4 Wall-Following Robot Navigation [6]
musk 6598 166 2 Musk (Version 2) [6]
epileptic seizure 11500 178 5 Epileptic Seizure Recognition [2]
magic 19020 10 2 MAGIC Gamma Telescope [6]
hepmass 7000000 28 2 HEPMASS (train) [6]

labels are not so large for all the dataset we used, and winequality datasets have
the largest number of distinct labels (11 distinct labels).

Decision forests used in the experiments are random forest classifiers [3] which
are outputted by the fit method of the sklearn.ensemble.RandomForestClassifier
class1 for the input of each dataset. The parameters of the classifier were set
to defaults except the number of trees (n estimators), the number of jobs to
run in parallel (n jobs) and and the seed used by the random number genera-
tor (random state): n estimators = 100, n jobs = −1 (which means the same
as the number of processors) and random state = 1. Note that parameter ran-
dom state was fixed in order to ensure that the same decision forest is gen-
erated for the same training dataset. Also note that the number of randomly
selected features used for branching conditions of each decision tree was set to√
d as default value. Each dataset was split into training and test datasets using

function sklearn.model selection.train test split, and the training dataset only
is fed to the fit method of the classifier. The non-default option parameters for
train test split are the proportions of the dataset to include in the test (test size)
and the train (train size) splits, and the seed used the random number genera-
tor (random state): test size = 0.2, train size = 0.8 and random state = 0, . . . , 9.
Note that 10 different pairs of train and test datasets were generated for each
dataset by setting different values to random state parameter. For each pair
of train and test datasets (DL, DP), a random forest RF was learned using
DL, and Min DBN with parameter σ was run for the RF to obtain RFσ in
which the number of distinct branching conditions was minimized. Accuracies
of RF and RFσ for DP were checked for the labels predicted by the predict
method of the classifier. We conducted this procedure for 10 train-test splits
of each dataset and obtained the number of distinct branching conditions and

1 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

An Algorithm for Reducing # of Distinct Branching Conditions in a DF 9

the accuracy averaged over 10 runs for each dataset and each random forest in
{RF} ∪ {RFσ | σ = 0.0, 0.1, 0.2, 0.3}.

5.2 Results

The number of distinct branching conditions and prediction accuracy for each
original decision forest and those with reduced distinct branching conditions are
shown in Table 2. In the table, reduction rate of the number of distinct branching
conditions, which is defined as

1− #(distinct branching conditions in RFσ)

#(distinct branching conditions in RF)
,

and prediction accuracy decrease, which is defined as

(accuracy of RF)− (accuracy of RFσ) for the test dataset

are also shown for original decision forest RF and decision forests RFσ that are
outputted by Algorithm Min DBN for the input decision forest RF and path-
changeable-rate σ.

Under the condition that the path of any given feature vector in each decision
tree must be the same as that in the original tree (σ = 0), the reduction rate on
the number of distinct branching conditions is at least 48.9% for all the datasets
but RNA-Seq PANCAN dataset. The number of features is more than 30 times
lager than the number of training instances in RNA-Seq PANCAN dataset,
and number of distinct features in the original decision tree is less than 1/10
of the number of features, so the number of appearing branching conditions
for each feature might be small, which makes condition-sharing difficult. The
reduction rate exceeds 90% for magic and hepmass datasets, and especially it
reaches 99% for hepmass dataset. Note that the prediction accuracy decrease is
between −0.004 and 0.007 for all the datasets, so no degradation of prediction
performance was observed.

There is a tradeoff between reduction rate and prediction accuracy decrease,
that is, larger reduction rate causes larger prediction accuracy decrease, and it
can be to some extent controllable by path-changeable rate σ. By using larger
σ, reduction rate can be increased but prediction accuracy decrease is also in-
creased. 90% reduction rate is achieved by waveform dataset with 0.3% predic-
tion accuracy decrease (PAD), by parkinsons and breast cancer datasets with
5-7% PAD, by musk and epileptic seizure datasets with about 11% PAD, by
winequality and robot datasets with 14-17% PAD. Note that the minimum pre-
diction accuracy of the original random forests among the 13 datasets is 67.3%.
The reduction rate cannot reach 90% for iris, blood and RNA-Seq PANCAN
datasets even using σ = 0.3. Iris and blood datasets have only four features,
which causes a small number of distinct branching conditions even for original
decision forest: 168.3 and 154.2 distinct branching conditions for iris and blood
datasets, respectively, in 100 decision trees. Considering comparison to the num-
ber of trees, such relatively small number of distinct branching conditions seems
to be difficult to reduce.

10 A. Nakamura and K. Sakurada

6 Conclusions and Future Work

We formalized a novel simplification problem of a decision forest, proposed an
algorithm for the problem and demonstrated its effectiveness on reduction rate
of the number of distinct branching conditions for the random forests that were
trained using 13 datasets in UCI machine learning repository. Hardware im-
plementation for checking effectiveness of the proposed algorithm on inference
efficiency is planned for our next step.

Practically better problem formalization may exist. It might be better to
restrict the rate of path changes not at each branching node but at each whole
tree. Furthermore, important thing is not the rate of path changes but the rate
of reached leaf label changes, so its control might be more preferred. There are
a tradeoff between the number of distinct branching conditions and prediction
accuracy. So, formalization with restriction directly on one of them might be
more useful. As our future work, we would like to pursue better formalizations
of the problem, develop their algorithms and analyze their complexity.

Acknowledgments

We thank Assoc. Prof. Ichigaku Takigawa and Assoc. Prof. Shinya Takamaeda-
Yamazaki of Hokkaido University for helpful comments to improve this research.
We also thank Prof. Hiroki Arimura of Hokkaido University and Prof. Masato
Motomura of Tokyo Institute of Technology for their support and encourage-
ment. This work was supported by JST CREST Grant Number JPMJCR18K3,
Japan.

References

1. Amato, F., Barbareschi, M., Casola, V., Mazzeo, A.: An fpga-based smart classifier
for decision support systems. In: Intelligent Distributed Computing VII. pp. 289–
299. Springer International Publishing (2014)

2. Andrzejak, R., Lehnertz, K., Rieke, C., Mormann, F., David, P., CE, E.: Indications
of nonlinear deterministic and finite dimensional structures in time series of brain
electrical activity: Dependence on recording region and brain state. Phys. Rev. E
64(061907) (2001)

3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
4. Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills,

G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart,
J.M.: The cancer genome atlas pan-cancer analysis project. Nature genetics 45(10),
1113–1120 (2013)

5. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine prefer-
ences by data mining from physicochemical properties. Decision Support Systems
47(4), 547–553 (2009)

6. Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

7. Friedman, J.H.: Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29, 1189–1232 (2000)

An Algorithm for Reducing # of Distinct Branching Conditions in a DF 11

8. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning
63(1), 3–42 (2006)

9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics, Springer New York Inc. (2001)

10. Kulkarni, V.Y., Sinha, P.K.: Pruning of random forest classifiers: A survey and
future directions. In: 2012 International Conference on Data Science Engineering
(ICDSE). pp. 64–68 (2012)

11. Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A., Moroz, I.M.: Exploiting
nonlinear recurrence and fractal scaling properties for voice disorder detection.
BioMedical Engineering OnLine 6(23) (2007)

12. Van Essen, B., Macaraeg, C., Gokhale, M., Prenger, R.: Accelerating a random
forest classifier: Multi-core, gp-gpu, or fpga? In: Proceedings of the 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines.
pp. 232–239 (2012)

13. Yeh, I.C., Yang, K.J., Ting, T.M.: Knowledge discovery on rfm model using
bernoulli sequence. Expert Systems with Applications 36(3), 5866–5871 (2009)

12 A. Nakamura and K. Sakurada

Table 2. Number of distinct branching conditions and prediction accuracy of original
random forest classifier and those outputted by Min DBN

original
outputted by Min DBN

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3

dataset

#(distinct conditions)(95% confidence interval)
reduction rate of #(distinct conditions)

prediction accuracy(95% confidence interval)
prediction accuracy decrease

iris

168.3(±6.5) 53.1(±2.1) 46.0(±2.3) 37.8(±2.4) 31.1(±2.1)
0 0.684 0.727 0.775 0.815

0.943(±0.044) 0.937(±0.043) 0.917(±0.038) 0.857(±0.058) 0.833(±0.059)
0 0.007 0.027 0.087 0.11

parkinsons

1005.5(±33.9) 398.0(±13.4) 176.9(±6.5) 105.9(±1.8) 77.7(±2.5)
0 0.604 0.824 0.895 0.923

0.89(±0.031) 0.885(±0.029) 0.854(±0.036) 0.846(±0.032) 0.841(±0.031)
0 0.005 0.036 0.044 0.049

breast
cancer

1389.8(±54.7) 572.0(±15.2) 210.7(±7.3) 130.8(±4.7) 98.5(±2.9)
0 0.588 0.848 0.906 0.929

0.961(±0.015) 0.958(±0.015) 0.911(±0.028) 0.891(±0.03) 0.86(±0.026)
0 0.003 0.05 0.069 0.101

blood

154.2(±5.8) 78.5(±2.7) 71.0(±3.4) 62.7(±3.0) 58.5(±2.6)
0 0.491 0.54 0.593 0.621

0.761(±0.018) 0.765(±0.015) 0.755(±0.014) 0.75(±0.012) 0.743(±0.014)
0 -0.004 0.006 0.011 0.018

RNA-Seq
PANCAN

1938.5(±24.1) 1851.5(±21.7) 1664.2(±23.9) 1641.0(±23.7) 1633.8(±22.9)
0 0.045 0.142 0.153 0.157

0.998(±0.003) 0.998(±0.003) 0.996(±0.004) 0.994(±0.004) 0.99(±0.003)
0 0.0 0.001 0.003 0.007

winequality
red

4066.2(±25.4) 873.8(±8.7) 583.7(±7.3) 424.8(±5.2) 340.0(±5.2)
0 0.785 0.856 0.896 0.916

0.68(±0.01) 0.684(±0.008) 0.626(±0.015) 0.566(±0.009) 0.524(±0.016)
0 -0.003 0.054 0.114 0.156

winequality
white

7194.9(±48.3) 1358.2(±12.3) 871.7(±5.8) 661.8(±6.6) 559.9(±10.3)
0 0.811 0.879 0.908 0.922

0.673(±0.012) 0.673(±0.011) 0.583(±0.017) 0.5(±0.012) 0.443(±0.011)
0 0.0 0.09 0.173 0.23

waveform

32232.4(±140.8) 5774.0(±26.3) 1233.6(±12.0) 646.2(±7.8) 471.8(±6.6)
0 0.821 0.962 0.98 0.985

0.849(±0.004) 0.847(±0.006) 0.846(±0.009) 0.838(±0.009) 0.824(±0.01)
0 0.002 0.003 0.011 0.025

robot

9337.7(±171.0) 2966.1(±51.7) 986.9(±18.3) 579.1(±11.4) 396.1(±10.3)
0 0.682 0.894 0.938 0.958

0.994(±0.002) 0.994(±0.002) 0.91(±0.009) 0.853(±0.009) 0.854(±0.014)
0 0.0 0.084 0.141 0.14

musk

12306.9(±141.4) 6288.6(±66.1) 2700.7(±26.6) 1617.5(±25.3) 1125.2(±20.3)
0 0.489 0.781 0.869 0.909

0.977(±0.004) 0.977(±0.004) 0.935(±0.008) 0.885(±0.01) 0.867(±0.008)
0 0.0 0.042 0.092 0.11

epileptic
seizure

75492.5(±131.4) 23540.7(±61.0) 6857.6(±29.0) 3746.4(±21.1) 2738.8(±13.7)
0 0.688 0.909 0.95 0.964

0.696(±0.009) 0.695(±0.008) 0.587(±0.006) 0.441(±0.008) 0.304(±0.008)
0 0.001 0.109 0.256 0.392

magic

110441.9(±526.1) 9535.3(±34.1) 2440.7(±24.7) 1352.1(±10.2) 985.6(±8.2)
0 0.914 0.978 0.988 0.991

0.877(±0.003) 0.877(±0.003) 0.8(±0.005) 0.595(±0.008) 0.426(±0.007)
0 0.0 0.077 0.282 0.451

hepmass

45125069.6(±8951.8) 431851.6(±263.1) 57199.1(±60.1) 29626.6(±83.4) 21704.1(±63.8)
0 0.99 0.999 0.999 1.0

0.821(±0.0) 0.821(±0.0) 0.809(±0.0) 0.773(±0.001) 0.684(±0.003)
0 0.0 0.011 0.048 0.137

