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Abstract. In the credit risk domain, lenders frequently face situations
where there is no, or limited historical lending outcome data. This gen-
erally results in limited or unaffordable credit for some individuals and
small businesses. Transfer learning can potentially reduce this limitation,
by leveraging knowledge from related domains, with sufficient outcome
data. We investigated the potential for applying transfer learning across
various credit domains, for example, from the credit card lending and
debt consolidation domain into the small business lending domain.

Keywords: Credit Risk · Transfer Learning · Data Science.

1 Introduction

We studied a new domain where no or limited historical lending outcomes are
available, for example: offering credit to un-banked or under-banked populations
or micro to small businesses, where limited historical data is available. Currently,
lenders rely mainly on expert rules for credit scoring. Due to high uncertainty
in the performance of such scoring models, lenders charge a high fee or simply
don’t offer credit. Transfer learning from related domains is a potential solution
to augment this lack of information and improve financial inclusion. For instance,
transferring knowledge from credit card/debt consolidation loans to more risky
small business loans or from utility bill payments to loan repayments could
potentially deliver a more accurate scoring model.

We investigated the application of transfer learning during the initial stage of
a credit risk model implementation, where there was limited historical labelled
data available. In the credit risk domain, business priorities are stability and
accuracy of model performance, in order to predict the probability of default. We
present our approach, that enabled us to combine the outcome of the transferred
model from related credit risk domains, with new models based on newly acquired
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labelled data from new domains. Using this approach, we were able to achieve a
higher accuracy and maintained stability of the overall model. Experiments on
real-world commercial data showed that combining the transferred models and
the new models can achieve these goals by using an incrementally transitioned
approach. To allow us to publish the results and comply with the privacy require-
ments of our client’s data, we reproduced our experiment using lendingclub.com
data, https://www.lendingclub.com/info/download-data.action, which is publicly
available.

When a lender expands into new market segments, a new credit risk model is
required to assess the credit risk of loan applications. The current approach is
based on expert rules, where the credit risk expert builds business rules based
on data and available derived data, combined with the expert’s experience and
knowledge. Lenders initially use an expert model to gather sufficient labelled
data, to build a supervised learning model. The expert model is compared against
the supervised learning model. If one model performs substantially better than
the other, the better model is used. Alternatively, if both models complement
each other, they can be combined into an ensemble model. In commercial lending
systems, lenders normally charge a higher price or limit credit offerings as there
is no (or limited) labelled data to validate the expert models. The result is
that many individuals and businesses are excluded from these “formal” lending
systems. Organizing data access for a suitable expert to perform analysis on such
typically sensitive data may be difficult, for example, when data can only be
accessed on site by authorized persons.

We studied two scenarios using a large dataset of existing loan products to
enhance the credit risk model for new loan products, which have a much smaller
dataset. The first scenario uses Lending Club data to mimic a lender that has
existing credit card and debt consolidation data and starts to offer loans to small
businesses. The second scenario also uses Lending Club data, to mimic a lender
that has an existing credit card loan product and starts to offer car loans.

When we pre-process the Lending Club data, we select 16 variables as inputs
and the output to be predicted is the loan status. To simplify the model, we
convert the loan status into a binary outcome. 1: for defaulted loans, charged-off
loans or late loan payments, 0: for paid-off loans. Any current loans that are not
yet due are excluded from this exercise. The pre-processing details are described
in Section 9.

Credit card and debt consolidation loans are typically unsecured consumer
loans. Their scoring model depends mainly on an individual’s credit rating,
income, expenses and other attributes like stability of their employment and
residence. A hive of recent fintech activities in this space (particularly in UK, US
and China) accumulated a legacy of historical data and concomitant stable and
accurate scoring models, in what is now a crowded and competitive market. Small
business lending is a relatively new market for fintechs; it is riskier, more diverse,
more challenging to predict the outcomes, and suffers from a scarcity of data.
As we can see in the Lending Club data, the quantity of the historical lending
outcome for small business loans is far lower, and insufficient to develop a stable
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and accurate model using traditional supervised learning. With less competition
and higher margin for small business lending (compared to consumer lending) it
is more valuable for lenders to find ways to predict loan outcomes and serve this
market. Furthermore, Micro, Small and Medium Enterprises (MSMEs) are one
of the strongest drivers of economic development, innovation and employment.
Access to finance is frequently identified as a critical barrier to growth for MSMEs.
Creating opportunities for MSMEs in emerging markets is a key way to advance
economic development and reduce poverty. 65 million (or 40% of formal MSMEs)
in developing countries have unmet financing needs. The MSME finance gap in
developing countries is estimated at $5.2 trillion - 1.4 times the current level of
MSME lending [5].

2 Related Work

We have seen increasing interest in transferred supervised models - from one
domain to another. Most published works in this area cover image processing,
for example: Yang proposed transferring parameters on SVM [14], Pan proposed
domain adaptation using transfer component analysis [7]. Pan and Yang grouped
transfer learning into four approaches: instance-transfer, feature-representation-
transfer, parameter-transfer, and relational-knowledge-transfer [8].

Our experimentation combines the reuse of features and derivation of new
features from the source (existing) domain. Source domain labels are available;
limited target (new) domain labels are available. We also focus on classification.
Our experimentation is similar in those ways to Transductive Transfer Learning [7]
- one key addition, is to the target classification task optimization. In Transductive
Transfer Learning, the source and target tasks must be the same (classification
in this case). In our experimentation though, we took a new step in optimizing
the target model accuracy, by introducing and experimenting with an extra
optimization variable: the level of relative source/target feature data contribution
proportions into the target model.

Many papers focus largely on making optimal choices of parameters, features,
and source(s), to transfer learning to the target model, as summarized in [12] -
which examines homogeneous and even heterogeneous data domains, symmet-
ric and asymmetric feature transformation, for instance-based, feature-based,
parameter-based, and relational-based related transfer learning. [10], [13], [3], [6]
make specific efforts to minimize ’negative transfer’ (a transfer that has a negative
impact on the target model). While these approaches help to improve target
model results - and can (in some cases) reduce target model build times, our
focus was centered on optimizing the target model configuration / composition
and design, for the transferred features after they were selected to be inputs to
the target model.
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3 Credit Risk

Lenders seek to optimize the risk return ratio across their lending portfolios.
Accurately and consistently measuring credit risk is the foundation of this
optimization. Lenders commonly use the concept of Expected Loss (EL) to
measure credit risk. In an unsecured lending scenario, EL is mainly determined
by the Probability of Default (PD). Credit scoring models are used to calculate
PD. Inputs of a credit scoring model are normally attributes of the loan applicant
and their application. In this paper we use a few attributes from lendingclub.com
data to illustrate our approach. In credit risk, the most common metrics to assess
the quality of credit scoring model are Gini, Kolmogorov-Smirnov statistics (KS),
Lift, the Mahalanobis distance and information statistics [9]. In this paper we
use Gini for this purpose.

The scoring model output is a score from 0 to 1. It is an estimated probability
of default. Usually some part of the data is pre-allocated for calibration of the
score. Lenders use a set of decision processes and rules to make an optimal
decision with the derived PD and loan application data as inputs. A decision
process generally starts with an eligibility test. PD is calculated for the eligible
applicants, and then used to group applicants into different decision groups. For
instance, the interest rate could vary for different decision groups, as could the
loan amount as a percentage of net income.

In this investigation, our focus is credit scoring for unsecured lending. We
measure the performance of our credit scoring model using Area Under Receiver
Operating Curve (AUC) or GiniROC which is 2AUC − 1 [4]. GiniROC shares
the same concept as Gini, for splitting criteria in CART [2]. Gini and GiniROC,
however, have different usages. The metric GiniROC is used to allow the assess-
ment of model quality, based on PD, without needing to convert PD into binary
classifications, since the threshold to do those classifications is defined in the
credit decisioning.

3.1 Credit Scoring

Credit scoring produces a PD, which is used to predict binary outcomes, loan-
paid or loan-defaulted. In real-world scenarios, there are additional outcomes,
such as late payment or partial payment. In credit scoring, we need a metric
to assess the quality of the model without defining a threshold to convert the
PD into a classification. When we have classifications, we can use a metric such
as Fscore. In credit risk, this decision is deferred to the credit decisioning step,
where expert rules are utilized to decide whether the loan is approved or not.

3.2 Credit Decisioning

Credit decisioning consumes PD and produces a decision to approve or decline
a loan application. The conversion from PD to a decision is usually driven by
a mapping table to map ranges of PD to decisions. The decision is not only to
approve or to decline, it may also update the loan amount, interest and term.

https://www.lendingclub.com/info/download-data.action
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This model is usually based on expert rules, since the data is usually too sparse
and/or the search space is too large for building supervised learning models.

4 Model Development

We developed six example network configurations to empirically assess the
effectiveness of our transfer learning algorithm; their detail is explained in Sections
4.1 and 5. Table 1 shows those configurations in order of increasing Progressive
Shift Contribution (PSC) from the source domain to the target domain. The
PSC is our novel contribution and is explained in detail in Section 5.

Model No 1 is developed by training using source domain data only. The
domain contribution in Models No 2 to 5 is progressively shifted from source
to target domain. The last model, Model No 6 is trained using target domain
data only. The difference in contribution between the source and target domains
shows up in the ratio between the number of trained layers using the target
domain and the number of trained layers using the source domain. The algorithm
can be generalized for any network configuration size. Further details of the
algorithm will be discussed in Section 5. Source code and data for all experiments
is provided, see Section 9.

Table 1. Six Network Configurations with PSC

No Model Name Source Do-
main Con-
tribution

Target Do-
main Con-
tribution

Layers
Trained by
Source

Layers
Trained by
Target

Network
Configura-
tion

1 M(v)e 100% 0% 4 0 Fig 2

2 M(w)transfer 75% 25% 3 1 Fig 4

3 M(wx)transfer 71% 29% 5 2 Fig 5

4 M(wxy)transfer 60% 40% 6 4 Fig 6

5 M(wxyz)transfer 46% 54% 6 7 Fig 3

6 M(u)n 0% 100% 0 4 Fig 1

We discover the optimum network configuration by shifting the PSC from
the source to target domain and measure the Gini performance using the target
domain test data. The model performance is conceptually influenced by a) the
modelling techniques (e.g. deep learning, gradient boosting machine, generalized
linear model), hyper parameters3, b) the signal strength in the data and c) feature
engineering; Informally, the relationship between Gini and these factors can be
written as follows:

Gini = g(test(Me, se)) (1)

where se is test data from the source domain, Me is the model trained using
training data from the source domain, test() is an activity to test a model on the

3 the hyper parameters optimization has been done before this step
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test data producing the test results and g() is a function to calculate the Gini of
the results. Me is defined as follows:

Me = train(M0, Pe, te, Fe) (2)

where M0 is a deep neural network configuration with initial random weights, Pe

is a set of hyper parameters to train Me, te is the training data from the source
domain, Fe is a set of features derived from te, train() is an activity to train a
model based on these four factors. The result of train() is a trained model.

To explain how we perform the PSC, we define a function split() to conceptu-
ally split Me into two segments: Mfixe and Mfreee. Mfixe is the segment where
the layers were trained using te and these layers are not retrainable. Mfreee
is the segment where the layers were also trained using te, but these layers are
trainable using the training data from the target domain tn.

(Mfixe,Mfreee) = split(Me) (3)

The inverse function of split() is c(), for combining Mfixe and Mfreee back
into Me

Me = c(Mfixe,Mfreee) (4)

To create a mixed model based on both the source and target domain data, we
developed a model for the target domain Mtransfer, by transferring the structure
and weights of Mfixe layers and retraining the structure and weights of Mfreee.

Mfreen = train(Mfreee, Pn, tn, Fn) (5)

Finally, we combined the target model Mfreen with Mfixe. The result is the
transferred model Mtransfer

Mtransfer = c(Mfixe,Mfreen) (6)

The overall goal is to maximize Ginitransfer, where sn is the test data from the
target domain:

Ginitransfer = g(test(Mtransfer, sn)) (7)

by monitoring Ginitransfer as we shift the PSC from the source to target domain
data. Finally, we discover the maximum Ginitransfer by testing the performance
of all six network configurations outlined in Table 1.

4.1 The base model

The base models were configured based on network structures. The first is shown
in Figure 1. It has 16 input nodes on the input layer, 3 hidden layers, each layer
has 32 nodes and 1 output node on the output layer. This network configuration is
selected by using a hyper parameter search to find a near optimum configuration.
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Fig. 1: Network u: the base model

4.2 The Comparison model (Model u)

The comparison model is based on network configuration u as shown in Figure 1.
This model is trained using the target domain data only (no contribution from
source domain data). Similar to Equation 2, the model built using target domain
data, can be defined as follows:

M(u)n = train(M(u)0, Pn, tn, Fn) (8)

where M(u)n is a model developed using data from the target domain based on
network configuration u, M(u)0 is the initial model based on network configuration
u with all weights randomly initialized, Pn, tn, Fn are parameters, training data
and features respectively, used to develop the model M(u)n.

Gini = g(test(M(u)n, sn)) (9)

where sn is test data from the target domain.

5 Progressive Shift Contribution Models

In Section 4, we introduced six models where the Progressive Shift Contribution
(PSC) shifts between the source and target domain data. To perform the PSC,
we extended the split function defined in Equation 3 with an additional parameter
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to define the proportion of PSC. The value of this parameter one of: v, w, wx,
wxy, or wxyz. Each value results in a different network configuration as shown
in Table 1, and a different PSC from the source to the target domain. Using
these five values, we developed five PSC models. We also include the baseline
Comparison Model discussed in Subsection 4.2. The following subsections explain
models No 2 to 6 in detail.

5.1 Model v

Model v is only created from source domain data (no target domain contribution
whatsoever). To create Model v, we started by training model M(v)e, based on
Equation 10, using configuration shown in Figure 2

M(v)e = train(M(v)0, Pe, te, Fe) (10)

Then the model was tested on target domain data, and a Gini value was calculated
from the test results.

Gini = g(test(M(v)e, sn)) (11)

Fig. 2: Network v
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5.2 Model wxyz

This model was created using four parallel networks - each with three hidden
layers, connected to the input and output layers. To create this model, we
initially copied hidden layers of network v (both the structure and the weights)
into networks w, x, y and z. Conceptually, we illustrate the transformation using
Equation 12.

M(wxyz)e = transform(M(v)e) (12)

Networks w, x, y and z were setup as shown in Figure 3.

Fig. 3: Network wxyz

After the structure and weights were set (as shown in Figure 3), we then set
the following as trainable, using the target domain data: The 3rd hidden layer of
Network x, the 2nd and 3rd hidden layers of Network y, and all hidden layers of
Network z. The next three steps are indicated in numbers 1, 2, 3 within ellipses
in Figure 3:

1. Weights for networks w, x, y, z were derived from training using te. Some
layers in networks x, y, z and w, the output layers are set as trainable, using
tn.

2. Train these layers using tn.
3. Test the performance of the whole parallel network (w, x, y, z) on sn, then

calculate the Gini value from the test result.
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The development of Model wxyz can be summarized by three equations:
Equation 13, Equation 14, Equation 15.

(Mfix(wxyz)e,Mfree(wxyz)e) = split(M(wxyz)e) (13)

Mfree(wxyz)n = train(Mfree(wxyz)e, Pn, tn, Fn) (14)

M(wxyz)transfer = c(Mfix(wxyz)e,Mfree(wxyz)n) (15)

In Model wxyz, six hidden layers were trained using the source domain data and
seven layers were retrained using the target domain data, i.e. six hidden layers
and the output layer were retrained.

5.3 Model w

Model w is developed based on Model wxyz, where Networks x, y and z are
deleted. This network configuration is shown in Figure 4. In Model w, three
hidden layers were trained using the source domain data and only the output
layer was retrained using the target domain data. The development of model w
is shown in Equation 16, Equation 17, Equation 18.

Fig. 4: Network w

(Mfix(w)e,Mfree(w)e) = split(M(w)e) (16)

Mfree(w)n = train(Mfree(w)e, Pn, tn, Fn) (17)

M(w)transfer = c(Mfix(w)e,Mfree(w)n) (18)
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5.4 Model wx

Model wx is developed based on Model wxyz, where Networks y and z are deleted.
This network configuration shown in Figure 5. In Model wx, five hidden layers
were trained using the source domain data. One hidden layer and the output
layer were retrained using the target domain data. The development of model
wx is shown in Equation 19, Equation 20, Equation 21.

Fig. 5: Network wx

(Mfix(wx)e,Mfree(wx)e) = split(M(wx)e) (19)

Mfree(wx)n = train(Mfree(wx)e, Pn, tn, Fn) (20)

M(wx)transfer = c(Mfix(wx)e,Mfree(wx)n) (21)

5.5 Model wxy

Model wxy is developed based on Model wxyz, where only Network z is deleted.
This network configuration is shown in Figure 6. In Model wxy, six hidden layers
were trained using source domain data. Three hidden layers and the output layer
were retrained using target domain data. The development of model wxy is shown
in Equation 22, Equation 23, Equation 24.

(Mfix(wxy)e,Mfree(wxy)e) = split(M(wxy)e) (22)
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Mfree(wxy)n = train(Mfree(wxy)e, Pn, tn, Fn) (23)

M(wxy)transfer = c(Mfix(wxy)e,Mfree(wxy)n) (24)

Fig. 6: Network wxy

6 Experiments

In our experiments, we used data based on lendingclub.com data, which is similar
to our client’s data, with a time range of 2007 to 2018, see Section 9. We first
created base models - training them from scratch, without transfer learning. We
applied a grid search to discover a near optimal set of hyper parameters for the
Deep Learning (DL) structure. In these Transfer Learning experiments, we used
Credit Card/Debt Consolidation (CD) as the source domain and Small Business
(SB) as the target domain. Our goal is to transfer learning from CD to SB, as
the data in SB is limited.

Table 2. Performance of Gradient Boosting Machine (GBM) and Deep Learning (DL)
on Credit Card and Debt Consolidation (CD) and Small Business Loan (SB) datasets,
evaluated using 10 fold cross validation

Name Sampling Gini GBM Gini DL

CreditCard/DebtConsolidation random 0.43 ±0.01 0.43 ±0.01
SmallBusiness random 0.30 ±0.05 0.31 ±0.02

https://www.lendingclub.com/info/download-data.action
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We validated the performance using CD and SB data extracts, by developing
comparison models that used Gradient Boosting Machines (GBM). The com-
parison of performances is shown in Table 2. There is no significant difference
between the performance of GBM and DL. The next experiments only focused
on DL.

6.1 Experimentation datasets

We downloaded all datasets from lendingclub.com in mid October 2018. The
datasets were filtered based on purpose (CD and SB) and year (2007 to 2018).
10 datasets were created from the downloaded data. The first extract was dataset
CD4, time range: 2007 to 2018. The size was 100,000 records, extracted randomly
from 940,948 records, where the loan purpose was paying Credit Card and Debt
Consolidation. The bad debt rate from this dataset was 21%. Next was dataset
SB4, time range: 2007 to 2018, the size was 13,794 records where the loan purpose
was for investing in Small Business; this type of loan is riskier; the bad debt rate
is 30%. No outlier filtering was performed for these two datasets. Datasets CD1,
CD2, CD3 are subsets of dataset CD4, filtered based on different time ranges.
Similarly datasets SB1, SB2, SB3 are subsets of dataset SB4. Dataset CCD is
also a subset of dataset CD4, filtered on Credit Card Loans. Similarly the Car
Loan data is extracted from the Lending Club datasets, see Section 9.

Table 3. List of datasets for transfer learning experiments, the type column indicates
whether the dataset is used as the source or the target of the transfer learning process.

ID Dataset Period Size Type Gini

CD1 CreditCard/DebtConsolidation 2007-2011 23,813 Source 0.364 ±0.023
SB1 SmallBusinessLoan 2007-2011 1,831 Target 0.272 ±0.067
CD2 CreditCard/DebtConsolidation 2007-2014 100,000 Source 0.417 ±0.016
SB2 SmallBusinessLoan 2007-2014 6,686 Target 0.274 ±0.040
CD3 CreditCard/DebtConsolidation 2007-2016 100,000 Source 0.447 ±0.013
SB3 SmallBusinessLoan 2007-2016 12,114 Target 0.331 ±0.032
CD4 CreditCard/DebtConsolidation 2007-2018 100,000 Source 0.448 ±0.012
SB4 SmallBusinessLoan 2007-2018 13,794 Target 0.351 ±0.024
CCD CreditCard 2007-2018 100,000 Source 0.463 ±0.014
CAR CarLoan 2007-2018 12,734 Target 0.436 ±0.036

All experiments were based on the data in Table 3. They were performed
using 10 fold cross validation, repeated 5 times. The base model to be transferred
was developed using the dataset CD1, CD2, CD3, CD4, CCD and the network
configuration u, as shown in Figure 1 and defined in Equation 2. One factor that
influenced model performance was the strength of signal 4 from the data. Table
3 also shows, the larger the dataset the higher the Gini; as the data is becoming
more mature, it represents the real-world better.

4 associated with the outcome being predicted
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Similarly, the Gini for SB1, SB2, SB3, SB4 and CAR shown in Table 3
and Table 4 is calculated from the test result of model M(u)n by applying the
function g() on the test results, as defined in Equation 9.

6.2 Experimentation results

The experiment results are summarized in Table 4 where we applied Progressive
Shifted Contributions (PSC) from the source to the target domain data. We found
that M(w)transfer had the highest Gini of 0.301 a (10.7% improvement compared
to M(u)n) for the experiment over source/target:CD1/SB1. As the target data
became more mature in CD2/SB2, M(w)transfer still had the highest Gini of
0.287, however the improvement was only 4.7%. As the target data became
more mature in CD3/SB3 the contribution shifted toward the target data;
model M(wx)transfer had the highest Gini of 0.337. It contributed marginal
improvement (1.8%) over M(u)n. Finally, in CD4/SB4, the contribution was
completely shifted into the target, resulting in M(u)n having the highest Gini of
0.351.

The experiment on datasets CCD/CAR, M(w)transfer had the highest Gini
of 0.447, a small improvement (2.5%) over M(u)n. It shows the Car Loan dataset
had similar maturity to the credit card dataset.

The experiments show the contribution was shifted from source to target
as the target data matured. The contribution was based on the number of
trainable layers using the source and target domain data. All these experiments
were performed using 10 fold cross validation, repeated 5 times. That is, each
experiment was repeated 50 times; we then record the average of the Gini scores
and the standard deviation.

Table 4. Experimentation Results (source:Credit Card/Debt Consolidation, tar-
get:Small Business Loan), six models with progressively shifted contribution, built
based on source and target datasets described in Table 3, the best performing models
are marked with the symbol *.

Source/Target

Model CD1/SB1 CD2/SB2 CD3/SB3 CD4/SB4 CCD/CAR

M(v)e 0.157 ±0.022 0.236 ±0.051 -0.191 ±0.260 0.196 ±0.026 0.262 ±0.355
M(w)transfer *0.301 ±0.097 *0.287 ±0.051 0.334 ±0.029 0.350 ±0.029 *0.447 ±0.037
M(wx)transfer 0.292 ±0.091 0.272 ±0.054 *0.337 ±0.030 0.350 ±0.028 0.434 ±0.035
M(wxy)transfer 0.230 ±0.087 0.217 ±0.057 0.300 ±0.032 0.310 ±0.030 0.376 ±0.040
M(wxyz)transfer 0.174 ±0.010 0.172 ±0.051 0.254 ±0.029 0.273 ±0.030 0.310 ±0.050
M(u)n 0.272 ±0.067 0.274 ±0.040 0.331 ±0.032 *0.351 ±0.024 0.436 ±0.036

% improvement 10.7% 4.7% 1.8% 0.0% 2.5%
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6.3 Additional Experiments

We investigated the hypothesis that the Gini performance improvement was
due to the complexity of the network structure. We conducted experiments as
described in Equation 25 and Equation 26. The model with network configuration
wxyz was trained and retrained on source domain data. The performance of this
model was 0.39 ±0.01, which is lower than the base model Gini 0.43 ±0.01. It
showed that the additional complexity of M(wxyz)transfer did not improve Gini
performance. The improvement was instead due to the diversity of the source
data, complementing the target data.

Mfree(wxyz)e = train(Mfree(wxyz)e, Pe, te, Fe) (25)

M(wxyz)retrain = c(Mfix(wxyz)e,Mfree(wxyz)e) (26)

7 Conclusion

We propose an algorithm to progressively shift the contribution from the source
to target domains. The PSC algorithm lets us evaluate incremental complements
of target domain data with source domain data. While we undertook some
activities manually, the underlying goal has been to devise a framework that can
automatically search for the optimum balance between the source and target
domain data, generating the highest Gini score for that combination. Six PSC
models were built, ranging from Model v (using source domain data only) all the
way to Model u (using target domain data only) as described in Table 1.

8 Future Work

The presented research is part of a larger effort to develop transfer learning
knowledge based systems. The presented experiment and results are the first of a
series of experiments which will be used to discover and formulate a stream of
rules. The rules will be incrementally incorporated in a knowledge base, follow-
ing the Ripple Down Rule framework, specifically geared towards incremental
construction of rule-based systems [1], [11].

To realise the knowledge based system, an appropriate representation of
the transfer context and the transfer recommendations will first be needed,
to enable appropriate encoding of rules within the system. To formulate the
representation, we will need to identify an adequate set of features for the context
transfer, requiring further experiments with additional source data, such as utility
payments, taxation, etc. Through these experiments, we will also seek ways to
accommodate different PSC levels from each data source, and assess target model
Gini impact. Further, the representation will need to account for articulating the
recommendations output from the rule-based system. We will also require new
features to represent the following:
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1. Domain adaptation, to adjust the variables/features before performing the
transfer learning process.

2. Selection of optimization approaches, by assessing their impact on the target
model Gini.

9 Software and Data

The software and steps to pre-process the data are available at the following
Gitlab URL: https://gitlab.com/richdataco/rdc-public/rdc-ic/research/transfer-
learning/ecmlpkdd2019.

The datasets for Credit Card, Debt Consolidation, Small Business Loan, Car
Loan are available from https://www.lendingclub.com/info/download-data.action.
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