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Abstract. In this paper, we develop a novel Aligned-Spatial Graph Con-
volutional Network (ASGCN) model to learn effective features for graph
classification. Our idea is to transform arbitrary-sized graphs into fixed-
sized aligned grid structures, and define a new spatial graph convolution
operation associated with the grid structures. We show that the proposed
ASGCN model not only reduces the problems of information loss and
imprecise information representation arising in existing spatially-based
Graph Convolutional Network (GCN) models, but also bridges the the-
oretical gap between traditional Convolutional Neural Network (CNN)
models and spatially-based GCN models. Moreover, the proposed AS-
GCN model can adaptively discriminate the importance between speci-
fied vertices during the process of spatial graph convolution, explaining
the effectiveness of the proposed model. Experiments on standard graph
datasets demonstrate the effectiveness of the proposed model.

Keywords: Graph Convolutional Networks · Graph Classification.

1 Introduction

Graph-based representations are powerful tools to analyze structured data that
are described in terms of pairwise relationships between components [27,5]. One
common challenge arising in the analysis of graph-based data is how to learn
effective graph representations. Due to the recent successes of deep learning
networks in machine learning, there is increasing interest to generalize deep
Convolutional Neural Networks (CNN) [16] into the graph domain. These deep
learning networks on graphs are the so-called Graph Convolutional Networks
(GCN) [15], and have proven to be an effective way to extract highly meaningful
statistical features for graph classification [9].

Generally speaking, most existing state-of-the-art GCN approaches can be
divided into two main categories with GCN models based on a) spectral and b)
spatial strategies. Specifically, approaches based on the spectral strategy define
the convolution operation based on spectral graph theory [8,12,19]. By trans-
forming the graph into the spectral domain through the eigenvectors of the
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Laplacian matrix, these methods perform the filter operation by multiplying
the graph by a series of filter coefficients. Unfortunately, most spectral-based
approaches cannot be performed on graphs with different size numbers of ver-
tices and Fourier bases. Thus, these approaches demand the same-sized graph
structures and are usually employed for vertex classification tasks. On the other
hand, approaches based on the spatial strategy are not restricted to the same-
sized graph structures. These approaches generalize the graph convolution op-
eration to the spatial structure of a graph by directly defining an operation on
neighboring vertices [1,10,24]. For example, Duvenaud et al. [10] have proposed
a spatially-based GCN model by defining a spatial graph convolution operation
on the 1-layer neighboring vertices to simulate the traditional circular finger-
print. Atwood and Towsley [1] have proposed a spatially-based GCN model by
performing spatial graph convolution operations on different layers of neighbor-
ing vertices rooted at a vertex. Although these spatially-based GCN models can
be directly applied to real-world graph classification problems, they still need
to further transform the multi-scale features learned from graph convolution
layers into the fixed-sized representations, so that the standard classifiers can
directly read the representations for classifications. One way to achieve this is to
directly sum up the learned local-level vertex features from the graph convolu-
tion operation as global-level graph features through a SumPooling layer. Since
it is difficult to learn rich local vertex topological information from the global
features, these spatially-based GCN methods associated with SumPooling have
relatively poor performance on graph classification.

To overcome the shortcoming of existing spatially-based GCN models, Zhang
et al. [28] have developed a novel spatially-based Deep Graph Convolutional Neu-
ral Network (DGCNN) model to preserve more vertex information. Specifically,
they propose a new SortPooling layer to transform the extracted vertex features
of unordered vertices from the spatial graph convolution layers into a fixed-sized
local-level vertex grid structure. This is done by sequentially preserving a speci-
fied number of vertices with prior orders. With the fixed-sized grid structures of
graphs to hand, a traditional CNN model followed by a Softmax layer can be di-
rectly employed for graph classification. Although this spatially-based DGCNN
model focuses more on local-level vertex features and outperforms state-of-the-
art GCN models on graph classification tasks, this method tends to sort the
vertex order based on each individual graph. Thus, it cannot accurately reflect
the topological correspondence information between graph structures. Moreover,
this model also leads to significant information loss, since some vertices associ-
ated with lower ranking may be discarded. In summary, developing effective
methods to learn graph representations still remains a significant challenge.

In this paper, we propose a novel Aligned-Spatial Graph Convolutional Net-
work (ASGCN) model for graph classification problems. One key innovation of
the proposed ASGCN model is that of transitively aligning vertices between
graphs. That is, given three vertices v, w and x from three different sample
graphs, if v and x are aligned, and w and x are aligned, the proposed model can
guarantee that v and w are also aligned. More specifically, the proposed model
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employs the transitive alignment procedure to transform arbitrary-sized graphs
into fixed-sized aligned grid structures with consistent vertex orders, guarantee-
ing that the vertices on the same spatial position are also transitively aligned to
each other in terms of the topological structures. The conceptual framework of
the proposed ASGCN model is shown in Fig.1. Specifically, the main contribu-
tions are threefold.

First, we develop a new transitive matching method to map different arbitrary-
sized graphs into fixed-sized aligned vertex grid structures. We show that the grid
structures not only establish reliable vertex correspondence information between
graphs, but also minimize the loss of structural information from the original
graphs.

Second, we develop a novel spatially-based graph convolution network model,
i.e., the ASGCN model, for graph classification. More specifically, we propose a
new spatial graph convolution operation associated with the aligned vertex grid
structures as well as their associated adjacency matrices, to extract multi-scale
local-level vertex features. We show that the proposed convolution operation
not only reduces the problems of information loss and imprecise information
representation arising in existing spatially-based GCN models associated with
SortPooling or SumPooling, but also theoretically relates to the classical convo-
lution operation on standard grid structures. Thus, the proposed ASGCN model
bridges the theoretical gap between traditional CNN models and spatially-based
GCN models, and can adaptively discriminate the importance between specified
vertices during the process of the spatial graph convolution operation. Further-
more, since our spatial graph convolution operation does not change the original
spatial sequence of vertices, the proposed ASGCN model utilizes the traditional
CNN to further learn graph features. In this way, we provide an end-to-end deep
learning architecture that integrates the graph representation learning into both
the spatial graph convolutional layer and the traditional convolution layer for
graph classification.

Third, we empirically evaluate the performance of the proposed ASGCN
model on graph classification tasks. Experiments on benchmarks demonstrate
the effectiveness of the proposed method, when compared to state-of-the-art
methods.

2 Related Works of Spatially-based GCN Models

In this section, we briefly review state-of-the art spatially-based GCN models
in the literature. More specifically, we introduce the associated spatial graph
convolution operation of the existing spatially-based Deep Graph Convolutional
Neural Network (DGCNN) model [28]. To commence, consider a sample graph G
with n vertices, X = (x1, x2, ..., xn) ∈ Rn×c is the collection of n vertex feature
vectors of G in c dimensions, and A ∈ Rn×n is the vertex adjacency matrix (A
can be a weighted adjacency matrix). The spatial graph convolution operation
of the DGCNN model takes the following form

Z = f(D̃−1ÃXW ), (1)
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Fig. 1. The architecture of the proposed ASGCN model. An input graph Gp(Vp, Ep) ∈
G of arbitrary size is first aligned to the prototype graph GR(VR, ER). Then, Gp

is mapped into a fixed-sized aligned vertex grid structure, where the vertex orders
follow that of GR. The grid structure of Gp is passed through multiple spatial graph
convolution layers to extract multi-scale vertex features, where the vertex information
is propagated between specified vertices associated with the adjacency matrix. Since the
graph convolution layers preserve the original vertex orders of the input grid structure,
the concatenated vertex features through the graph convolution layers form a new
vertex grid structure for Gp. This vertex grid structure is then passed to a traditional
CNN layer for classifications. Note that, vertex features are visualized as different
colors.

where Ã = A + I is the adjacency matrix of graph G with added self-loops,

D̃ is the degree matrix of Ã with Ãi,i =
∑
j Ãi,j , W ∈ Rc×c

′

is the matrix of
trainable graph convolution parameters, f is a nonlinear activation function, and

Z ∈ Rn×c
′

is the output of the convolution operation.

For the spatial graph convolution operation defined by Eq.(1), the process
XW first maps the c-dimensional features of each vertex into a set of new c

′
-

dimensional features. Here, the filter weights W are shared by all vertices. More-
over, ÃY (Y := XW ) propagates the feature information of each vertex to its
neighboring vertices as well as the vertex itself. The i-th row (ÃY )i,: represents
the extracted features of the i-th vertex, and corresponds to the summation or
aggregation of Yi,: itself and Yj,: from the neighboring vertices of the i-th ver-

tex. Multiplying by the inverse of D̃ (i.e., D̃−1) can be seen as the process of
normalizing and assigning equal weights between the i-th vertex and each of its
neighbours.

Remark: Eq.(1) indicates that the spatial graph convolution operation of the
DGCNN model cannot discriminate the importance between specified vertices
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in the convolution operation process. This is because the required filter weights
of W are shared by each vertex, i.e., the feature transformations of the ver-
tices are all based on the same trainable function. Thus, the DGCNN model
cannot directly influence the aggregation process of the vertex features. In fact,
this problem also arises in other spatially-based GCN models, e.g., the Neu-
ral Graph Fingerprint Network (NGFN) model [10], the Diffusion Convolution
Neural Network (DCNN) model [1], etc. Since the associated spatial graph con-
volution operations of these models also take the similar form with that of the
DGCNN model, i.e., the trainable parameters of their spatial graph convolution
operations are also shared by each vertex. This drawback influences the effec-
tiveness of the existing spatially-based GCN models for graph classification. In
this paper, we aim to propose a new spatially-based GCN model to overcome
the above problems. 2

3 Constructing Aligned Grid Structures for Arbitrary
Graphs

Although, spatially-based GCN models are not restricted to the same graph
structure, and can thus be applied for graph classification tasks. These methods
still require to further transform the extracted multi-scale features from graph
convolution layers into the fixed-sized characteristics, so that the standard clas-
sifiers (e.g., the traditional convolutional neural network followed by a Softmax
layer) can be directly employed for classifications. In this section, we develop a
new transitive matching method to map different graphs of arbitrary sizes into
fixed-sized aligned grid structures. Moreover, we show that the proposed grid
structure not only integrates precise structural correspondence information but
also minimises the loss of structural information.

3.1 Identifying Transitive Alignment Information between Graphs

We introduce a new graph matching method to transitively align graph ver-
tices. We first designate a family of prototype representations that encapsulate
the principle characteristics over all vectorial vertex representations in a set of
graphs G. Assume there are n vertices from all graphs in G, and their associ-
ated K-dimensional vectorial representations are RK = {RK

1 ,R
K
2 , . . . ,R

K
n }. We

utilize k-means [25] to locate M centroids over RK , by minimizing the objective
function

arg min
Ω

M∑
j=1

∑
RK

i ∈cj

‖RK
i − µKj ‖2, (2)

Ω = (c1, c2, . . . , cM ) represents M clusters, and µKj is the mean of the vertex
representations belonging to the j-th cluster cj .

Let G = {G1, · · · , Gp, · · · , GN} be the graph sample set. For each sample
graph Gp(Vp, Ep) ∈ G and each vertex vi ∈ Vp associated with its K-dimensional
vectorial representation RK

p;i, we commence by identifying a set of K-dimensional
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prototype representations as PRK = {µK1 , . . . , µKj , . . . , µKM} for the graph set G.
We align the vectorial vertex representations of each graph Gp to the family of

prototype representations in PRK . The alignment procedure is similar to that
introduced in [6] for point matching in a pattern space, and we compute a K-
level affinity matrix in terms of the Euclidean distances between the two sets of
points, i.e.,

AKp (i, j) = ‖RK
p;i − µKj ‖2. (3)

where AKp is a |Vp| ×M matrix, and each element AKp (i, j) represents the dis-

tance between the vectrial representation RK
p;i of v ∈ Vp and the j-th prototype

representation µKj ∈ PRK . If AKp (i, j) is the smallest element in row i, we say
that the vertex vi is aligned to the j-th prototype representation. Note that
for each graph there may be two or more vertices aligned to the same prototype
representation. We record the correspondence information using the K-level cor-
respondence matrix CKp ∈ {0, 1}|Vp|×M

CKp (i, j) =

{
1 if AKp (i, j) is the smallest in row i
0 otherwise.

(4)

For each pair of graphs Gp ∈ G and Gq ∈ G, if their vertices vp and vq
are aligned to the same prototype representation µKj , we say that vp and vq
are also aligned. Thus, we identify the transitive correspondence information
between all graphs in G, by aligning their vertices to a common set of prototype
representations.
Remark: The alignment process is equivalent to assigning the vectorial repre-
sentation RK

p;i of each vertex vi ∈ Vp to the mean µKj of the cluster cj . Thus,
the proposed alignment procedure can be seen as an optimization process that
gradually minimizes the inner-vertex-cluster sum of squares over the vertices of
all graphs through k-means, and can establish reliable vertex correspondence
information over all graphs. 2

3.2 Aligned Grid Structures of Graphs

We employ the transitive correspondence information to map arbitrary-sized
graphs into fixed-sized aligned grid structures. Assume Gp(Vp, Ep, Ãp) is a sam-
ple graph from the graph set G, with Vp representing the vertex set, Ep rep-
resenting the edge set, and Āp representing the vertex adjacency matrix with

added self-loops (i.e., Ã = A+ I, where A is the original adjacency matrix with
no self-loops and I is the identity matrix). Let Xp ∈ Rn×c be the collection of
n (n = |Vp|) vertex feature vectors of Gp in c dimensions. Note that, the row

of Xp follows the same vertex order of Ãp. If Gp are vertex attributed graphs,
Xp can be the one-hot encoding matrix of the vertex labels. For un-attributed
graphs, we use the vertex degree as the vertex label.

For each graphGp, we utilize the proposed transitive vertex matching method
to compute the K-level vertex correspondence matrix CKp that records the
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Fig. 2. The procedure of computing the correspondence matrix. Given a set of graphs,
for each graph Gp: (1) we compute the K-dimensional depth-based (DB) representation
DBK

p;v rooted at each vertex (e.g., vertex 2) as the K-dimensional vectorial vertex
representation, where each element Hs(GK

p;2) represents the Shannon entropy of the
K-layer expansion subgraph rooted at vertex v2 of Gp [2]; (2) we identify a family
of K-dimensional prototype representations PRK = {µK

1 , . . . , µ
K
j , . . . , µ

K
M} using k-

means on the K-dimensional DB representations of all graphs; (3) we align the K-
dimensional DB representations to the K-dimensional prototype representations and
compute a K-level correspondence matrix CK

p .

correspondence information between the K-dimensional vectorial vertex repre-
sentations of Gp and the K-dimensional prototype representations in PRK =
{µK1 , . . . , µKj , . . . , µKM}. With CKp to hand, we compute the K-level aligned vertex
feature matrix for Gp as

X̄K
p = (CKp )TXp, (5)

where X̄K
p ∈ RM×c and each row of X̄K

p represents the feature of a corresponding
aligned vertex. Moreover, we also compute the associated K-level aligned vertex
adjacency matrix for Gp as

ĀKp = (CKp )T (Ãp)(C
K
p ), (6)

where ĀKp ∈ RM×M . Both X̄K
p and ĀKp are indexed by the corresponding proto-

types in PRK . Since X̄K
p and ĀKp are computed from the original vertex feature

matrix Xp and the original adjacency matrix Ãp, respectively, by mapping the
original feature and adjacency information of each vertex vp ∈ Vp to that of the
new aligned vertices, X̄K

p and ĀKp encapsulate the original feature and structural
information of Gp. Note that, according to Eq. 4 each prototype may be aligned
by more than one vertex from Vp,thus ĀKp may be a weighted adjacency matrix.

In order to construct the fixed-sized aligned grid structure for each graph
Gp ∈ G, we need to sort the vertices to determine their spatial orders. Since the
vertices of each graph are all aligned to the same prototype representations, we
sort the vertices of each graph by reordering the prototype representations. To
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this end, we construct a prototype graph GR(VR, ER) that captures the pairwise
similarity between the K-dimensional prototype representations in PRK , with
each vertex vj ∈ VR representing the prototype representation µKj ∈ PRK and

each edge (vj , vk) ∈ ER representing the similarity between µKj ∈ PRK and

µKk ∈ PRK . The similarity between two vertices of GR is computed as

s(µKj , µ
K
k ) = exp(−

‖µKj − µKk ‖2
K

). (7)

The degree of each prototype representation µKj is DR(µKj ) =
∑M
k=1 s(µ

K
j , µ

K
k ).

We propose to sort the K-dimensional prototype representations in PRK ac-
cording to their degree DR(µKj ). Then, we rearrange X̄K

p and ĀKp accordingly.

To construct reliable grid structures for graphs, in this work we employ the
depth-based (DB) representations as the vectorial vertex representations to com-
pute the required K-level vertex correspondence matrix CKp . The DB represen-
tation of each vertex is defined by measuring the entropies on a family of k-layer
expansion subgraphs rooted at the vertex [3], where the parameter k varies from
1 to K. It is shown that such a K-dimensional DB representation encapsulates
rich entropy content flow from each local vertex to the global graph structure,
as a function of depth. The process of computing the correspondence matrix CKp
associated with depth-based representations is shown in Fig.3. When we vary
the number of layers K from 1 to L (i.e., K ≤ L), we compute the final aligned
vertex grid structure for each graph Gp ∈ G as

X̄p =

L∑
K=1

X̄K
p

L
, (8)

and the associated aligned grid vertex adjacency matrix as

Āp =

L∑
K=1

ĀKp
L
, (9)

where X̄p ∈ RM×c, Āp ∈ RM×M , the i-th row of X̄p corresponds to the feature
vector of the i-th aligned grid vertex, and the i-row and j-column element of Āp
corresponds to the adjacency information between the i-th and j-th aligned grid
vertices.

Remark: Eq.(8) and Eq.(9) indicate that they can transform the original graph
Gp ∈ G with arbitrary number of vertices |Vp| into a new aligned grid graph
structure with the same number of vertices, where X̄p is the corresponding
aligned grid vertex feature matrix and Āp is the corresponding aligned grid

vertex adjacency matrix. Since both X̂p and Āp are mapped from the original
graph Gp, they not only reflect reliable structure correspondence information
between Gp and the remaining graphs in graph set G but also encapsulate more
original feature and structural information of Gp. 2



Title Suppressed Due to Excessive Length 9

4 The Aligned-Spatial Graph Convolutional Network
Model

In this section, we propose a new spatially-based GCN model, namely the
Aligned-Spatial Graph Convolutional Network (ASGCN) model. The core stage
of a spatially-based GCN model is the associated graph convolution operation
that extracts multi-scale features for each vertex based on the original features
of its neighboring vertices as well as itself. As we have stated, most existing
spatially-based GCN models perform the convolution operation by first apply-
ing a trainable parameter matrix to map the original feature of each vertex in c
dimensions to that in c′ dimensions, and then averaging the vertex features of
specified vertices [1,10,24,28]. Since the trainable parameter matrix is shared by
all vertices, these models cannot discriminate the importance of different vertices
and have inferior ability to aggregate vertex features. To overcome the shortcom-
ing, in this section we first propose a new spatial graph convolution operation
associated with aligned grid structures of graphs. Unlike existing methods, the
trainable parameters of the proposed convolution operation can directly influence
the aggregation of the aligned grid vertex features, thus the proposed convolu-
tion operation can discriminate the importance between specified aligned grid
vertices. Finally, we introduce the architecture of the ASGCN model associated
with the proposed convolution operation.

4.1 The Proposed Spatial Graph Convolution Operation

In this subsection, we propose a new spatial graph convolution operation to
further extract multi-scale features of graphs, by propagating features between
aligned grid vertices. Specifically, given a sample graph G(V,E) with its aligned
vertex grid structure X̄ ∈ RM×c and the associated aligned grid vertex adjacency
matrix Ā ∈ RM×M , the proposed spatial graph convolution operation takes the
following form

Zh = Relu(D̄−1Ā

c∑
j=1

(X̄ �Wh):,j), (10)

where Relu is the rectified linear units function (i.e., a nonlinear activation func-
tion), Wh ∈ RM×c is the trainable graph convolution parameter matrix of the
h-th convolution filter with the filter size M × 1 and the channel number c, �
represents the element-wise Hadamard product, D̄ is the degree matrix of Ā, and
Zh ∈ RM×1 is the output activation matrix. Note that, since the aligned grid
vertex adjacency matrix Ā is computed based on the original vertex adjacency
matrix with added self-loop information, the degree matrix also encapsulates the
self-loop information from Ā.

An instance of the proposed spatial graph convolution operation defined by
Eq.(10) is shown in Fig.3. Specifically, the proposed convolution operation con-
sists of four steps. In the first step, the procedure

∑c
j=1 (X̄ �Wh):,j com-

mences by computing the element-wise Hadamard product between X̄ and Wh,
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Fig. 3. An Instance of the Proposed Spatial Graph Convolution Operation.

and then summing the channels of X̄ � Wh (i.e., summing the columns of
X̄ �Wh). Fig.3 exhibits this process. Assume X̄ is the collection of 5 aligned
grid vertex feature vectors in the 3 dimensions (i.e., 3 feature channels), Wh is
the h-th convolution filter with the filter size 5 × 1 and the channel number 3.
The resulting

∑3
j=1 (X̄ �Wh):,j first assigns the feature vector xi,: of each i-th

aligned grid vertex a different weighted vector wi,:, and then sums the channels
of each weighted feature vector. Thus, for the first step,

∑c
j=1 (X̄ �Wh):,j can

be seen as a new weighted aligned vertex grid structure with 1 vertex feature
channel. The second step ĀY , where Y :=

∑c
j=1 (X̄ �Wh):,j , propagates

the weighted feature information between each aligned grid vertex as well as
its neighboring aligned grid vertices. Specifically, each i-th row (ĀY )i,: of ĀY
equals to

∑
j Āi,jY:,j , and can be seen as the aggregated feature vector of the

i-th aligned grid vertex by summing its original weighted feature vector as well
as all the original weighted feature vectors of the j-th aligned grid vertex that is
adjacent to it. Note that, since the first step has assigned each i-th aligned grid
vertex a different weighted vector wi,:, this aggregation procedure is similar to
performing a standard fixed-sized convolution filter on a standard grid structure,
where the filter first assigns different weighted vectors to the features of each grid
element as well as its neighboring grid elements and then aggregates (i.e., sum)
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the weighted features as the new feature for each grid element. This indicates
that the trainable parameter matrix Wh of the proposed convolution operation
can directly influence the aggregation process of the vertex features, i.e., it can
adaptively discriminate the importance between specified vertices. Fig.3 exhibits
this propagation process. For the 2-nd aligned grid vertex v2 (marked by the red
broken-line frame), the 1-st and 3-rd aligned grid vertices v1 and v3 are adja-
cent to it. The process of computing

∑
j Ā2,jY:,j (marked by the red real-line

frame) aggregates the weighted feature vectors of aligned grid vertex v2 as well
as its neighboring aligned grid vertices v1 and v3 as the new feature vector of
v2. The vertices participating in this aggregation process are indicated by the
2-nd row of Ā (marked by the purple broken-line frame on Ā) that encapsulates
the aligned grid vertex adjacent information. The third step normalizes each
i-th row of ĀY by multiplying D̄−1i,i , where D̄i,i is the i-th diagonal element of

the degree matrix D̄. This process can guarantee a fixed feature scale after the
proposed convolution operation. Specifically, Fig.3 exhibits this normalization
process. The aggregated feature of the 2-nd aligned grid vertex (marked by the
red real-line frame) is multiplied by 3−1, where 3 is the 3-rd diagonal element of
D̄ (marked by the purple broken-line frame on D̄). The last step employs the
Relu activation function and outputs the result.

Note that, since the proposed spatial graph convolution operation only ex-
tracts new features for the aligned grid vertex and does not change the vertex
orders, the output Zh is still an aligned vertex grid structure with the same
vertex order of X̄.

4.2 The Architecture of the Proposed ASGCN Model

In this subsection, we introduce the architecture of the proposed ASGCN Model.
Fig.1 has shown the overview of the ASGCN model. Specifically, the architecture
is composed of three sequential stages, i.e., 1) the grid structure construction and
input layer, 2) the spatial graph convolution layer, and 3) the traditional CNN
and Softmax layers.

The Grid Structure Construction and Input Layer: For the proposed AS-
GCN model, we commence by employing the transitive matching method defined
earlier to map each graph G ∈ G of arbitrary sizes into the fixed-sized aligned
grid structure, including the aligned vertex grid structure X̄ and the associated
aligned grid vertex adjacency matrix Ā. We then input the grid structures to
the proposed ASGCN model.

The Spatial Graph Convolutional Layer: For each graph G, to extract
multi-scale features of the aligned grid vertices, we stack multiple graph convo-
lution layers associated with the proposed spatial graph convolution operation
defined by Eq.(10) as

Zht = Relu(D̄−1Ā

Ht−1∑
j=1

(Zt−1 �Wh
t ):,j), (11)
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where Z0 is the input aligned vertex grid structure X̄, Ht−1 is the number of
convolution filters in graph convolution layer t − 1, Zt−1 ∈ RM×Ht−1 is the
concatenated output of all Ht−1 convolution filters in layer t − 1, Zht is the
output of the h-th convolution filter in layer t, and Wh

t ∈ RM×Ht−1 is the
trainable parameter matrix of the h-th convolution filter in layer t with the filter
size M × 1 and the channel number Ht−1.
The Traditional CNN Layer: After each t-th spatial graph convolution layer,
we horizontally concatenate the output Zt associated with the outputs of the
previous 1 to t−1 spatial graph convolutional layers as well as the original input
Z0 as Z0:t, i.e., Z0:t = [Z0, Z1, . . . , Zt] and Z0:t ∈ RM×(c+

∑t
z=1Ht). As a result, for

the concatenated output Z0:t, each of its row can be seen as the new multi-scale
features for the corresponding aligned grid vertex. Since Z0:t is still an aligned
vertex grid structure, one can directly utilize the traditional CNN on the grid
structure. Specifically, Fig.1 exhibits the architecture of the traditional CNN
layers associated with each Z0:t. Here, each concatenated vertex grid structure
Z0:t is seen as a M × 1 (in Fig.1 M = 5) vertex grid structure and each vertex
is represented by a (c+

∑t
z=1Ht)-dimensional feature, i.e., the channel of each

grid vertex is c +
∑t
z=1Ht. Then, we add a one-dimension convolution layer.

The convolution operation can be performed by sliding a fixed-sized filter of size
k × 1 (in Fig.1 k = 3) over the spatially neighboring vertices. After this, several
AvgPooling layers and remaining one-dimensional convolutional layers can be
added to learn the local patterns on the aligned grid vertex sequence. Finally,
when we vary t from 0 to T (in Fig.1 T = 2), we will obtain T + 1 extracted
pattern representations. We concatenate the extracted patterns of each Z0:t and
add a fully-connected layer followed by a Softmax layer.

4.3 Discussions of the Proposed ASGCN

Comparing to existing state-of-the-art spatially-based GCN models, the pro-
posed ASGCN model has a number of advantages.

First, in order to transform the extracted multi-scale features from the graph
convolution layers into fixed-sized representations, both the Neural Graph Fin-
gerprint Network (NGFN) model [10] and the Diffusion Convolution Neural
Network (DCNN) model [1] sum up the extracted local-level vertex features
as global-level graph features through a SumPooling layer. Although the fixed-
sized features can be directly read by a classifier for classifications, it is difficult
to capture local topological information residing on the local vertices through
the global-level graph features. By contrast, the proposed ASGCN model focuses
more on extracting local-level aligned grid vertex features through the proposed
spatial graph convolution operation on the aligned grid structures of graphs.
Thus, the proposed ASGCN model can encapsulate richer local structural infor-
mation than the NGFN and DCNN models associated with SumPooling.

Second, similar to the proposed ASGCN model, both the PATCHY-SAN
based Graph Convolution Neural Network (PSGCNN) model [17] and the Deep
Graph Convolution Neural Network (DGCNN) model [28] also need to form
fixed-sized vertex grid structures for arbitrary-sized graphs. To achieve this,
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these models rearrange the vertex order of each graph structure, and preserve
a specified number of vertices with higher ranks. Although, unify the number
of vertices for different graphs, the discarded vertices may lead to significant
information loss. By contrast, the associated aligned grid structures of the pro-
posed ASGCN model can encapsulate all the original vertex features from the
original graphs, thus the proposed ASGCN model constrains the shortcoming
of information loss arising in the PSGCNN and DGCNN models. On the other
hand, both the PSGCNN and DGCNN models tend to sort the vertices of each
graph based on the local structural descriptor, ignoring consistent vertex cor-
respondence information between different graphs. By contrast, the associated
aligned grid structure of the proposed ASGCN model is constructed through a
transitive vertex alignment procedure. As a result, only the proposed ASGCN
model can encapsulate the structural correspondence information between any
pair of graph structures, i.e., the vertices on the same spatial position are also
transitively aligned to each other.

Finally, as we have stated in Sec.4.1, the spatial graph convolution opera-
tion of the proposed ASGCN model is similar to performing standard fixed-sized
convolution filters on standard grid structures. To further reveal this property,
we explain the convolution process one step further associated with Fig.3. For
the sample graph G shown in Fig.3, assume it has 5 vertices following the fixed
spatial vertex orders (positions) v1, v2, v3, v4 and v5, X̄ is the collection of its
vertex feature vectors with 3 feature channels, and Wh is the h-th convolution fil-
ter with the filter size 5×1 and the channel number 3. Specifically, the procedure
marked by the blue broken-line frame of Fig.3 indicates that performing the pro-
posed spatial graph convolution operation on the aligned vertex grid structure
X̄ can be seen as respectively performing the same 5× 1-sized convolution filter
Wh on five 5×1-sized local-level neighborhood vertex grid structures included in
the green broken-line frame. Here, each neighborhood vertex grid structure only
encapsulates the original feature vectors of a root vertex as well as its adjacent
vertices from G, and all the vertices follow their original vertex spatial positions
in G. For the non-adjacent vertices, we assign dummy vertices (marked by the
grey block) on the corresponding spatial positions of the neighborhood vertex
grid structures, i.e., the elements of their feature vectors are all 0. Since the five
neighborhood vertex grid structures are arranged by the spatial orders of their
root vertices from G, the vertically concatenation of these neighborhood vertex
grid structures can be seen as a 25 × 1-sized global-level grid structure X̄G of
G. We observe that the process of the proposed spatial convolution operation
on X̄ is equivalent to sliding the 5 × 1 fixed-sized convolution filter Wh over
X̄G with 5-stride, i.e., this process is equivalent to sliding a standard classical
convolution filter on standard grid structures. As a result, the spatial graph con-
volution operation of the proposed ASGCN model is theoretically related to the
classical convolution operation on standard grid structures, bridging the theo-
retical gap between the traditional CNN models and the spatially-based GCN
models. Furthermore, since the convolution filter Wh of the proposed ASGCN
model is related to the classical convolution operation, it assigns each vertex a
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different weighted parameter. Thus, the proposed ASGCN model can adaptively
discriminate the importance between specified vertices during the convolution
operation. By contrast, as stated in Sec.2, the existing spatial graph convolution
operation of the DGCNN model only maps each vertex feature vector in c di-
mensions to that in c′ dimensions, and all the vertices share the same trainable
parameters. As a result, the DGCNN model has less ability to discriminate the
importance of different vertices during the convolution operation.

5 Experiments

In this section, we compare the performance of the proposed ASGCN model to
both state-of-the-art graph kernels and deep learning methods on graph classi-
fication problems based on seven standard graph datasets. These datasets are
abstracted from bioinformatics and social networks. Detailed statistics of these
datasets are shown in Table.1.

Table 1. Information of the Graph Datasets

Datasets MUTAG PROTEINS D&D ENZYMES IMDB-B IMDB-M RED-B

Max # vertices 28 620 5748 126 136 89 3783

Mean # vertices 17.93 39.06 284.30 32.63 19.77 13.00 429.61

# graphs 188 1113 1178 600 1000 1500 2000

# vertex labels 7 61 82 3 − − −
# classes 2 2 2 6 2 3 2

Description Bioinformatics Bioinformatics Bioinformatics Bioinformatics Social Social Social

Experimental Setup: We compare the performance of the proposed AS-
GCN model on graph classification problems with a) six alternative state-of-
the-art graph kernels and b) seven alternative state-of-the-art deep learning
methods for graphs. Specifically, the graph kernels include 1) the Jensen-Tsallis
q-difference kernel (JTQK) with q = 2 [4], 2) the Weisfeiler-Lehman subtree
kernel (WLSK) [21], 3) the shortest path graph kernel (SPGK) [7], 4) the short-
est path kernel based on core variants (CORE SP) [18], 5) the random walk
graph kernel (RWGK) [14], and 6) the graphlet count kernel (GK) [20]. The
deep learning methods include 1) the deep graph convolutional neural net-
work (DGCNN) [28], 2) the PATCHY-SAN based convolutional neural net-
work for graphs (PSGCNN) [17], 3) the diffusion convolutional neural network
(DCNN) [1], 4) the deep graphlet kernel (DGK) [26], 5) the graph capsule con-
volutional neural network (GCCNN) [23], 6) the anonymous walk embeddings
based on feature driven (AWE) [13], and 7) the edge-conditioned convolutional
network (ECC) [22].

For the evaluation, we employ the same network structure for the proposed
ASGCN model on all graph datasets. Specifically, we set the number of the pro-
totype representations as M = 64, the number of the proposed spatial graph
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Table 2. Classification Accuracy (In % ± Standard Error) for Comparisons.

Datasets MUTAG PROTEINS D&D ENZYMES IMDB-B IMDB-M RED-B

ASGCN 89.70± 0.85 76.50± 0.59 80.40± 0.95 50.61± 1.01 73.86± 0.92 50.86± .85 90.60± 0.24

JTQK 85.50± 0.55 72.86± 0.41 79.89± 0.32 56.41± 0.42 72.45± 0.81 50.33± 0.49 77.60± 0.35

WLSK 82.88± 0.57 73.52± 0.43 79.78± 0.36 52.75± 0.44 71.88± 0.77 49.50± 0.49 76.56± 0.30

SPGK 83.38± 0.81 75.10± 0.50 78.45± 0.26 29.00± 0.48 71.26± 1.04 51.33± 0.57 84.20± 0.70

CORE SP 88.29± 1.55 − 77.30± 0.80 41.20± 1.21 72.62± 0.59 49.43± 0.42 90.84± 0.14

GK 81.66± 2.11 71.67± 0.55 78.45± 0.26 24.87± 0.22 65.87± 0.98 45.42± 0.87 77.34± 0.18

RWGK 80.77± 0.72 74.20± 0.40 71.70± 0.47 22.37± 0.35 67.94± 0.77 46.72± 0.30 72.73± 0.39

Datasets MUTAG PROTEINS D&D ENZYMES IMDB-B IMDB-M RED-B

ASGCN 89.70± 0.85 76.50± 0.59 80.40± 0.95 50.61± 1.01 73.86± 0.92 50.86± .85 90.60± 0.24

DGCNN 85.83± 1.66 75.54± 0.94 79.37± 0.94 51.00± 7.29 70.03± 0.86 47.83± 0.85 76.02± 1.73

PSGCNN 88.95± 4.37 75.00± 2.51 76.27± 2.64 − 71.00± 2.29 45.23± 2.84 86.30± 1.58

DCNN 66.98 61.29± 1.60 58.09± 0.53 42.44± 1.76 49.06± 1.37 33.49± 1.42 −
GCCNN − 76.40± 4.71 77.62± 4.99 61.83± 5.39 71.69± 3.40 48.50± 4.10 87.61± 2.51

DGK 82.66± 1.45 71.68± 0.50 78.50± 0.22 53.40± .90 66.96± 0.56 44.55± 0.52 78.30± 0.30

AWE 87.87± 9.76 − 71.51± 4.02 35.77± 5.93 73.13± 3.28 51.58± 4.66 82.97± 2.86

ECC 76.11 − 72.54 45.67 − − −

convolution layers as 5, and the number of the spatial graph convolutions in
each layer as 32. Based on Fig.1 and Sec.4.2, we will get 6 concatenated out-
puts after the graph convolution layers, we utilize a traditional CNN layer with
the architecture as C32-P2-C32-P2-C32-F128 to further learn the extracted pat-
terns, where Ck denotes a traditional convolutional layer with k channels, Pk
denotes a classical AvgPooling layer of size and stride k, and FCk denotes a
fully-connected layer consisting of k hidden units. The filter size and stride of
each Ck are all 5 and 1. With the six sets of extracted patterns after the CNN
layers to hand, we concatenate and input them into a new fully-connected layer
followed by a Softmax layer with a dropout rate of 0.5. We use the rectified lin-
ear units (ReLU) in either the graph convolution or the traditional convolution
layer. The learning rate of the proposed model is 0.00005 for all datasets. The
only hyperparameter we optimized is the number of epochs and the batch size
for the mini-batch gradient decent algorithm. To optimize the proposed ASGCN
model, we use the Stochastic Gradient Descent with the Adam updating rules.
Finally, note that, our model needs to construct the prototype representations
to identify the transitive vertex alignment information over all graphs. In this
evaluation we propose to compute the prototype representations from both the
training and testing graphs. Thus, our model is an instance of transductive learn-
ing [11], where all graphs are used to compute the prototype representations but
the class labels of the testing graphs are not used during the training process.
For our model, we perform 10-fold cross-validation to compute the classifica-
tion accuracies, with nine folds for training and one fold for testing. For each
dataset, we repeat the experiment 10 times and report the average classification
accuracies and standard errors in Table.2.



16 L. Bai et al.

For the alternative graph kernels, we follow the parameter setting from their
original papers. We perform 10-fold cross-validation using the LIBSVM imple-
mentation of C-Support Vector Machines (C-SVM) and we compute the classifi-
cation accuracies. We perform cross-validation on the training data to select the
optimal parameters for each kernel and fold. We repeat the experiment 10 times
for each kernel and dataset and we report the average classification accuracies
and standard errors in Table.2. Note that for some kernels we directly report
the best results from the original corresponding papers, since the evaluation of
these kernels followed the same setting of ours. For the alternative deep learn-
ing methods, we report the best results for the PSGCNN, DCNN, DGK models
from their original papers, since these methods followed the same setting of the
proposed model. For the AWE model, we report the classification accuracies of
the feature-driven AWE, since the author have stated that this kind of AWE
model can achieve competitive performance on label dataset. Finally, note that
the PSGCNN and ECC models can leverage additional edge features, most of
the graph datasets and the alternative methods do not leverage edge features.
Thus, we do not report the results associated with edge features in the evalu-
ation. The classification accuracies and standard errors for each deep learning
method are also shown in Table.2.

Experimental Results and Discussions: Table.2 indicates that the pro-
posed ASGCN model can significantly outperform either the remaining graph
kernel methods or the remaining deep learning methods for graph classification.
Specifically, compared with the alternative graph kernel methods, only the ac-
curacies on the ENZYMES, IMDB-M and RED-B datasets are not the best for
the proposed model. However, the proposed model is still competitive on the
IMDB-M and RED-B datasets. On the other hand, compared with the alterna-
tive deep learning methods, only the accuracies on the ENZYMES and IMDB-M
datasets are not the best for the proposed model. But the proposed model is still
competitive on the IMDB-M dataset.

Overall, the reasons for the effectiveness are fourfold. First, the C-SVM classi-
fier associated with graph kernels are instances of shallow learning methods [29].
By contrast, the proposed model can provide an end-to-end deep learning archi-
tecture, and thus better learn graph characteristics. Second, as we have discussed
earlier, most deep learning based graph convolution methods cannot integrate
the correspondence information between graphs into the learning architecture.
Especially, the PSGCNN and DGCNN models need to reorder the vertices and
some vertices may be discarded, leading to information loss. By contrast, the
associated aligned vertex grid structures can preserve more information of each
original graph, reducing the problem of information loss. Third, unlike the pro-
posed model, the DCNN model needs to sum up the extracted local-level vertex
features as global-level graph features. By contrast, the proposed model can learn
richer multi-scale local-level vertex features. The experiments demonstrate the
effectiveness of the proposed model. Finally, as instances of spatially-based GCN
models, the trainable parameters of the DGCNN and CNN models are shared for
each vertex. Thus, these models cannot directly influence the aggregation process
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of the vertex features. By contrast, the required graph convolution operation of
the proposed model is theoretically related to the classical convolution opera-
tion on standard grid structures and can adaptively discriminate the importance
between specified vertices.

6 Conclusions

In this paper, we have developed a new spatially-based GCN model, namely
the Aligned-Spatial Graph Convolutional Network (ASGCN) model, to learn
effective features for graph classification. This model is based on transforming the
arbitrary-sized graphs into fixed-sized aligned grid structures, and performing
a new developed spatial graph convolution operation on the grid structures.
Unlike most existing spatially-based GCN models, the proposed ASGCN model
can adaptively discriminate the importance between specified vertices during the
process of the spatial graph convolution operation, explaining the effectiveness
of the proposed model. Experiments on standard graph datasets demonstrate
the effectiveness of the proposed model.
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