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Abstract. Recently, neural networks trained as optimizers under the
“learning to learn” or meta-learning framework have been shown to be
effective for a broad range of optimization tasks including derivative-
free black-box function optimization. Recurrent neural networks (RNNs)
trained to optimize a diverse set of synthetic non-convex differentiable
functions via gradient descent have been effective at optimizing derivative-
free black-box functions. In this work, we propose RNN-Opt : an approach
for learning RNN-based optimizers for optimizing real-parameter single-
objective continuous functions under limited budget constraints. Exist-
ing approaches utilize an observed improvement based meta-learning loss
function for training such models. We propose training RNN-Opt by us-
ing synthetic non-convex functions with known (approximate) optimal
values by directly using discounted regret as our meta-learning loss func-
tion. We hypothesize that a regret-based loss function mimics typical
testing scenarios, and would therefore lead to better optimizers com-
pared to optimizers trained only to propose queries that improve over
previous queries. Further, RNN-Opt incorporates simple yet effective en-
hancements during training and inference procedures to deal with the
following practical challenges: i) Unknown range of possible values for
the black-box function to be optimized, and ii) Practical and domain-
knowledge based constraints on the input parameters. We demonstrate
the efficacy of RNN-Opt in comparison to existing methods on several
synthetic as well as standard benchmark black-box functions along with
an anonymized industrial constrained optimization problem.

Keywords: Black-box optimization · Learning to Optimize ·Meta-learning
· Recurrent Neural Networks · Constrained Optimization.

1 Introduction

Several practical optimization problems such as process black-box optimization
for complex dynamical systems pose a unique challenge owing to the restriction
on the number of possible function evaluations. Such black-box functions do
not have a simple closed form but can be evaluated (queried) at any arbitrary
query point in the domain. However, evaluation of real-world complex processes
is expensive and time consuming, therefore the optimization algorithm must
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optimize while employing as few real-world function evaluations as possible.
Most practical optimization problems are constrained in nature, i.e. have one or
more constraints on the values of input parameters. In this work, we focus on
real-parameter single-objective black-box optimization (BBO) where the goal is
to obtain a value as close to the maximum value of the objective function as
possible by adjusting the values of the real-valued continuous input parameters
while ensuring domain constraints are not violated. We further assume a limited
budget, i.e. assume that querying the black-box function is expensive and thus
only a small number of queries can be made.

Efficient global optimization of expensive black-box functions [14] requires
proposing the next query (input parameter values) to the black-box function
based on past queries and the corresponding responses (function evaluations).
BBO can be mapped to the problem of proposing the next query given past
queries and the corresponding responses such that the expected improvement
in the function value is maximized, as in Bayesian Optimization approaches [4].
While most research in optimization has focused on engineering algorithms cater-
ing to specific classes of problems, recent meta-learning [24] approaches, e.g. [2,
18, 5, 27, 7], cast design of an optimization algorithm as a learning problem rather
than the traditional hand-engineering approach, and then, propose approaches
to train neural networks that learn to optimize. In contrast to a traditional ma-
chine learning approach involving training of a neural network on a single task
using training data samples so that it can generalize to unseen data samples
from the same data distribution, here the neural network is trained on a distri-
bution of similar tasks (in our case optimization tasks) so as to learn a strategy
that generalizes to related but unseen tasks from a similar task distribution. The
meta-learning approaches attempt to train a single network to optimize several
functions at once such that the network can effectively generalize to optimize
unseen functions.

Recently, [5] proposed a meta-learning approach wherein a recurrent neural
network (RNN with gated units such as Long Short Term Memory (LSTM)
[9]) learns to optimize a large number of diverse synthetic non-convex functions
to yield a learned task-independent optimizer. The RNN iteratively uses the
sequence of past queries and corresponding responses to propose the next query
in order to maximize the observed improvement (OI) in the response value.
We refer to this approach as RNN-OI in this work. Once the RNN is trained
to optimize a diverse set of synthetic functions by using gradient descent, it
is able to generalize well to solve unseen derivative-free black-box optimization
problems [5, 29]. Such learned optimizers are shown to be faster in terms of the
time taken to propose the next query compared to Bayesian optimizers as they
do not require any matrix inversion or optimization of acquisition functions, and
also have lower regret values within the training horizon, i.e. the number of steps
of the optimization process for which the RNN is trained to generate queries.

Key contributions of this work and the challenges addressed can be summa-
rized as follows:
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1. Regret-based loss function: We hypothesize that training an RNN optimizer
using a loss function that minimizes the regret observed for a given number
of queries more closely resembles the performance measure of an optimizer.
So it is better than a loss function based on OI such as the one used in [5, 29].
To this end, we propose a simple yet highly effective loss function that yields
superior results than the existing OI loss for black-box optimization. Regret
of the optimizer is the difference between the optimal value (maximum of
the black-box function) and the realized maximum value.

2. Deal with lack of prior knowledge on range of the black-box function: In
many practical optimization problems, it may be difficult to ascertain the
possible range of values the function can take, and the range of values would
vary across applications. On the other hand, neural networks are known
to work well only on normalized inputs, and can be numerically unstable
and difficult to train on very large or very small values as typical non-linear
activation functions like sigmoid activation function tend to saturate for large
inputs and will then adjust slowly during training. RNNs are most easily
trained when their inputs are well conditioned, and have a similar scale as
their latent state, and suitable scaling often accelerates training [27]. We,
therefore, propose incremental normalization that dynamically normalizes
the output (response) from the black-box function using the response values
observed so far before the value is passed as an input to the RNN, and
observe significant improvements in terms of regret by doing so.

3. Incorporate domain-constraints: Any practical optimization problem has a
set of constraints on the input parameters. It is important that the RNN op-
timizer is penalized when it proposes query points outside the desired limits.
We introduce a mechanism to achieve this by giving an additional feedback
to the RNN whenever it proposes a query that violates domain constraints.
In addition to regret-based loss, RNN is also trained to simultaneously mini-
mize domain constraint violations. We show that an RNN optimizer trained
in this manner attains lower regret values in fewer steps when subjected to
domain constraints compared to an RNN optimizer not explicitly trained to
utilize feedback.

We refer to the proposed approach as RNN-Opt. As a result of the above con-
siderations, RNN-Opt can deal with an unknown range of function values and
also incorporate domain constraints. We demonstrate that RNN-Opt works well
on optimizing unseen benchmark black-box functions and outperforms RNN-OI
in terms of the optimal value attained under a limited budget for 2-dimensional
and 6-dimensional input spaces. We also perform extensive ablation experiments
demonstrating the importance of each of the above-stated features in RNN-Opt.

The rest of the paper is organized as follows: We contrast our work to existing
literature in Section 2, followed by defining the problem in Section 3. We present
the details of our approach in Section 4, followed by experimental evaluation in
Section 5, and conclude in Section 6.
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2 Related Work

Our work falls under the category of real-parameter black-box global optimiza-
tion [21]. Traditional approaches for black-box optimization like covariance ma-
trix adaptation evolution strategy (CMA-ES) [8], Nelder-Mead [20], and Particle
Swarm Optimization (PSO) [15] hand-design rules using heuristics (e.g. using
nature-inspired genetic algorithms) to decide the next query point(s) given the
observations made so far. Another category of approaches for global optimiza-
tion of black-box functions include Bayesian optimization techniques [4, 26, 25].
These approaches use observations (query and response) made thus far to ap-
proximate the black-box function via a surrogate (meta-) model, e.g. using a
Gaussian Process [10], and then use this model to construct an acquisition func-
tion to decide the next query point. The acquisition function updates needed at
each step are known to be costly [5].

Learned optimizers: There has been a recent interest in learning optimizers
under the meta-learning setting [24] by training RNN optimizers via gradient
descent. For example, [2] casts the design of an optimization algorithm as a
learning problem and uses an LSTM model to learn an optimizer for a par-
ticular class of optimization problems, e.g. quadratic functions, training neural
networks, etc. Similarly, [18, 7] cast optimizer learning as learning a policy under
a reinforcement learning setting. [27] proposes a hierarchical RNN architecture
to learn optimizers that scale well to optimize a large number of parameters
(high-dimensional input space). However, the above meta-learning approaches
for optimization assume the availability of gradient information to decide the
next set of parameters, which is not available in the case of black-box optimiza-
tion. Our work builds upon the meta-learning approach for learning black-box
optimizers proposed in [5]. This approach mimics the sequential model-based
Bayesian approaches in the sense that it proposes an RNN optimizer that stores
sequential information about previous queries and responses, and accesses this
memory to generate the next candidate query. RNN-OI mimics the Bayesian
optimization based sequential decision-making process [4] (refer [5] for details)
while being significantly faster than standard BBO algorithms like SMAC [11]
and Spearmint [26] as it does not involve any matrix inversion or optimization
of acquisition functions. RNN-OI was successfully tested on Gaussian process
bandits, simple low dimensional controllers, and hyper-parameter tuning.

Handling domain constraints in neural networks Recent work on Physics-
guided deep learning [13, 19] incorporates domain knowledge in the learning
process via additional loss terms. Such approaches can be useful in our setting
if the optimizer network is to be trained from scratch for a given application.
However, the purpose of building a generic optimizer that can be transferred
to new applications requires incorporating domain constraints in a posterior
manner during inference time when the optimizer is suggesting query points.
This is not only useful to adapt the same optimizer to a new application but
also useful in another practical scenario of adapting to a new set of domain
constraints for a given application. ThermalNet [6] uses a deep Q-network as an
optimizer and uses an LSTM predictor for combustion optimization of a boiler in
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a power plant but does not handle domain constraints. Similar to our approach,
ChemOpt [29] uses an RNN based optimizer for chemical reaction optimization
but does not address aspects related to handling an unknown range for the
function being optimized and incorporating domain constraints.

Handling unknown range of function values: Suitable scaling of input and
output of hidden layers in neural networks has been shown to accelerate training
of neural networks [12, 23, 3, 17]. Dynamic input scaling has been used in a similar
setting as ours [27] to ensure that the neural network based optimizer is invariant
to parameter scale. However, the scaling is applied to the average gradients. In
our setting, we use a similar approach but apply dynamic scaling to the function
evaluations being fed back as input to RNN-Opt.

3 Problem Overview

We consider learning an optimizer that can optimize (e.g., maximize) a black-
box function fb : Θ 7→ R, where Θ ⊆ Rd is the domain of the input parameters.
We assume that the function fb does not have a closed-form representation, is
costly to evaluate, and does not allow the computation of gradients. In other
words, the optimizer can query the function fb at a point x to obtain a response
y = fb(x), but it does not obtain any gradient information, and in particular it
cannot make any assumptions on the analytical form of fb. The goal is to find
xopt = arg maxx∈Θ fb(x) within a limited budget, i.e. within a limited number
of queries T that can be made to the black-box.

We consider training an optimizer fopt with parameters θopt such that,
given the queries x1...t = x1,x2, . . . ,xt and the corresponding responses y1...t =
y1, y2, . . . , yt from fb where yt = fb(xt), fopt proposes the next query point xt+1

under a budget constraint of T queries, i.e. t ≤ T − 1:

xt+1 = fopt(x1...t, y1...t;θopt). (1)

4 RNN-Opt

We model fopt using an LSTM-based RNN. (For implementation, we use a vari-
ant of LSTMs as described in [28].) Recurrent Neural Networks (RNNs) with
gated units such as Long Short Term Memory (LSTM) [9] units are a popular
choice for sequence modeling to make predictions about future values given the
past. They do so by maintaining a memory of all the relevant information from
the sequence of inputs observed so far. In the meta-learning or training phase,
a diverse set of synthetically-generated differentiable non-convex functions (re-
fer Appendix A) with known global optima are used to train the RNN (using
gradient descent). The RNN is then used to predict the next query in order to
intelligently explore the search space given the sequence of previous queries and
the function responses. The RNN is expected to learn to retain any informa-
tion about previous queries and responses that is relevant to proposing the next
query to minimize the regret as shown in Fig. 1.
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4.1 RNN-Opt without Domain Constraints

Given a trained RNN-based optimizer and a differentiable function fg, inference
in RNN-Opt follows the following iterative process for t = 1, . . . , T − 1: At each
step t, the output of the final recurrent hidden layer of the RNN is used to
generate the output via an affine transformation to finally obtain xt+1.

ht+1 = fo(ht,xt, yt;θ), (2)

µxt+1,Σ
x
t+1 = W2m,d(ht+1), (3)

xt+1 ∼ N (µxt+1,Σ
x
t+1), (4)

yt+1 = fg(xt+1), (5)

where fo represents the RNN with parameters θ, fg is the function to be opti-
mized, W2m,d defines the affine transformation of the final output (hidden state)
ht+1 of the RNN. The parameters θ and W2m,d together constitute θopt. In-
stead of directly training fo to propose the next query xt+1 as in [5], we use a
stochastic RNN to estimate µxt+1 ∈ Rd and Σx

t+1 ∈ Rd×d as in Equation 3, then
sample xt+1 from a multivariate Gaussian distribution N (µxt+1,Σ

x
t+1). Intro-

ducing randomness in the query generation process leads to better exploration
compared to a deterministic model [29]. The first query x1 is sampled from a
uniform distribution over the domain of the function fg to be optimized. Once
the network is trained, fg can be replaced by any black-box function fb that
takes d-dimensional input.

For any synthetically generated function fg ∈ F , we assume xopt (approx-
imate) can be found, e.g. using gradient-descent, since the closed form of the
function is known. Hence, we assume that yopt of fg given by yopt = fg(xopt)
is known. Therefore, it is easy to determine the regret yopt − maxi≤t yi after t
iterations (queries) to the function fg. We can then define a regret-based loss
function as follows:

LR =
∑
fg∈F

T∑
t=2

1

γt
ReLU(yopt −max

i≤t
yi), (6)

where ReLU(x) = max(x, 0). Since the regret is expected to be high during initial
iterations because of random initialization of x but desired to be low close to
T , we give exponentially increasing importance to regret terms via a discount
factor 0 < γ ≤ 1. In contrast to regret loss, OI loss used in RNN-OI is given by
[5, 29]:

LOI =
∑
fg∈F

T∑
t=2

1

γt
ReLU(yt −max

i<t
yi) (7)

It is to be noted that using LR as the loss function mimics a supervised sce-
nario where the target yopt for each optimization task is known and explicitly
used to guide the learning process. On the other hand, LOI mimics an unsuper-
vised scenario where the target yopt is unknown and the learning process solely
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Fig. 1. Computation flow in RNN-Opt. During training, the functions fg are differen-
tiable and obtained using Equation 12. Once trained, fg is replaced by the black-box
function fb.

relies on the feedback about whether it is able to improve yt over iterations. It
is important to note that once trained, the model requires neither yopt nor xopt
during inference.

Incremental Normalization We do not assume any constraint on the range of
values the functions fg and fb can take. Although this feature is critical for most
practical aspects, it poses a challenge on the training and inference procedures
using RNN: Neural networks are known to work well only on normalized inputs,
and can be numerically unstable and difficult to train on very large or very small
values as typical non-linear activation functions like sigmoid activation function
tend to saturate for large inputs and will adjust slowly during training. RNNs are
most easily trained when their inputs are well conditioned, and have a similar
scale as their latent state, and suitable scaling often accelerates training [12,
27]. This poses a challenge during both training and inference if we directly use
yt as an input to the RNN. Fig. 2 illustrates the saturation effect if suitable
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g(
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Fig. 2. Effect of not using suitable scaling (incremental normalization in our case) of
black-box function value during inference.
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incremental normalization of function values is not used during inference. This
behavior at inference time was noted1 in [5], however, was not considered while
training RNN-OI. In order to deal with any range of values that fg can take
during training or that fb can take during inference, we consider incremental
normalization while training such that yt in Eq. 2 is replaced by ỹt = yt−µt√

σ2
t+ε

such that ht+1 = fo(ht,xt, ỹt;θ), where µt = 1
t

∑t
i=1 yi, σ

2
t = 1

t

∑t
i=1(yi− µt)2,

and 0 < ε� 1. (We used ε = 0.05 in our experiments).

4.2 RNN-Opt with Domain Constraints (RNN-Opt-DC)

Consider a constrained optimization problem of finding arg maxx fb(x) subject
to constraints given by cj(x) ≤ 0, j = 1, . . . , C, where C is the number of
constraints. To ensure that the optimizer proposes queries that satisfy the do-
main constraints, or is at least able to receive feedback when it proposes a query
that violates any domain constraints, we consider the following enhancements in
RNN-Opt, as depicted in Fig. 3:

Loss L
R

f
g

f
g

f
g

y
t+1

h
t+1

Norm Norm Norm

f
p

f
p

f
p

Loss L
D

p
t-2

p
t-2

p
t-1 p

t

p
t

p
t-1

Fig. 3. Computation flow in RNN-Opt-DC. Here fg is the function to be optimized,
and fp is used to compute the penalty pt. Further, if pt = 0, actual value of fg, i.e. yt
is passed to the loss function and RNN, else yt is set to yt−1.

1. Input an explicit feedback pt via a penalty function s.t. pt = fp(xt) to the
RNN that captures the extent to which a proposed query xt violates any of the C
domain constraints. We consider the following instantiation of penalty function:
fp(xt) =

∑C
j=1 ReLU(cj(xt)), i.e. for any j for which cj(xt) > 0 a penalty equal

to cj(xt) is considered, while for any j with cj(xt) ≤ 0 the contribution to

1 as per electronic correspondence with the authors



Meta-Learning for Black-box Optimization 9

penalty is 0. The real-valued penalty captures the cumulative extent of violation
as well. Further, similar to normalizing yt, we also normalize pt incrementally
and use p̃t as an additional input to the RNN, such that:

ht+1 = fo(ht,xt, ỹt, p̃t;θ). (8)

Further, whenever pt > 0, i.e. when one or more of the domain constraints are
violated for the proposed query, we set yt = yt−1 rather than actually getting a
response from the black-box. This is useful in practice: for example, when trying
to optimize a complex dynamical system, getting a response from the system for
such a query is not possible as it can be catastrophic.

2. During training, an additional domain constraint loss LD is considered
that penalizes the optimizer if it proposes a query that does not satisfy one or
more of the domain constraints.

LD =
1

C

∑
fg∈F

T∑
t=2

pt. (9)

The overall loss is then given by:

L = LR + λLD, (10)

where λ controls how strictly the constraints on the domain of parameters should
be enforced; higher λ implies stricter adherence to constraints. It is worth noting
that the above formulation of incorporating domain constraints does not put any
restriction on the number of constraints C nor on the nature of constraints in the
sense that the constraints can be linear or non-linear in nature. Further, complex
non-linear constraints based on domain knowledge can also be incorporated in
a similar fashion during training, e.g. as used in [13, 19]. Apart from optimizing
(in our case, maximizing) fg, the optimizer is also being simultaneously trained
to minimize fp.

Example of penalty function. Consider simple limit constraints on the input
parameters such that the domain of the function fg is given by Θ = [xmin,xmax],
then we have:

fp(xt) =

d∑
j=1

(
ReLU(xjt − xjmax) + ReLU(xjmin − x

j
t )
)
, (11)

where xjt denotes the j-th dimension of xt where xjmin and xjmax are the j-th
elements of xmin and xmax, respectively.

5 Experimental Evaluation

We conduct experiments to evaluate the following: i. regret loss (LR) versus OI
loss (LOI), ii. effect of including incremental normalization during training, and
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iii. ability of RNN-Opt trained with domain constraints using L (Eq. 10) to
generate more feasible queries and leverage feedback to quickly adapt in case it
proposes queries violating domain constraints.

For the unconstrained setting, we test RNN-Opt on i) standard benchmark
functions for d = 2 and d = 6, and ii) 1280 synthetically generated GMM-DF
functions (refer Appendix A) not seen during training. We choose the benchmark
functions such as Goldstein, Rosenbrock, and Rastrigin (and the simple spherical
function) that are known to be challenging for standard optimization methods.
None of these functions were used for training any of the optimizers.

We use regret rt = yopt − maxi≤t yi to measure the performance of any
optimizer after t iterations, i.e. after proposing t queries. Lower values of rt
indicate superior optimizer performance. We test all the optimizers under limited
budget setting such that T = 10 × d. For each test function, the first query
is randomly sampled from U(−4.0, 4.0), and we report average regret rt over
1280 random initializations. For synthetically generated GMM-DF functions, we
report average regret over 1280 functions with one random initialization for each.

All RNN-based optimizers (refer Table 1) were trained for 8000 iterations
using Adam optimizer [16] with an initial learning rate of 0.005. The network
consists of two hidden layers with the number of LSTM units in each layer
being chosen from {80, 120, 160} using a hold-out validation set of 1280 GMM-
DF. Another set of 1280 randomly generated functions constitute the GMM-DF
test set. An initial code base2 developed using Tensorflow [1] was adapted to
implement our algorithm. We used a batch size of 128, i.e. 128 randomly-sampled
functions (refer Equation 12) are processed in one mini-batch for updating the
parameters of LSTM.

Table 1. Variants of trained optimizers considered. Each row corresponds to a method.
Y/N denote whether a feature (incremental normalization or domain constraint) was
considered (Y) or not (N) during training or inference in a particular method.

Method Loss γ Inc. Norm. Domain Const. (DC)

Training Inference Training Inference

RNN-OI LOI 1.0 N Y N N

RNN-Opt-Basic LR 0.98 N Y N N

RNN-Opt LR 0.98 Y Y N N

RNN-Opt-P LR 0.98 Y Y N Y

RNN-Opt-DC LR + λLD 0.98 Y Y Y Y

5.1 Observations

We make the following key observations for unconstrained optimization setting:

2 https://github.com/lightingghost/chemopt



Meta-Learning for Black-box Optimization 11

1. RNN-Opt is able to optimize black-box functions not seen during
training, and hence, generalize. We compare RNN-Opt with RNN-OI and
two standard black-box optimization algorithms CMA-ES [8] and Nelder-Mead
[20]. RNN-OI uses xt, yt, and ht to get the next hidden state ht+1, which is then
used to get xt+1 (as in Eq 4), such that ht+1 = fo(ht,xt, yt;θ), with OI loss as
given in Eq. 7. From Fig. 4 (a)-(i), we observe that RNN-Opt outperforms all the
baselines considered on most functions considered while being at least as good
as the baselines in few remaining cases. Except for the simple convex spherical
function, RNN-based optimizers outperform CMA-ES and Nelder-Mead under
limited budget, i.e. with T = 20 for d = 2 and T = 60 for d = 6. We observe that
trained optimizers outperform CMA-ES and Nelder-Mead for higher-dimensional
cases (d = 6 here, as also observed in [5, 29]).
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Fig. 4. (a)-(i) RNN-Opt versus CMA-ES, Nelder-Mead and RNN-OI for benchmark
functions for d = 2 and d = 6. (j)-(k) Regret loss versus OI Loss with varying discount
factor γ mentioned in brackets in the legend. (Lower regret is better.)

2. Regret-based loss is better than the OI loss. We compare RNN-Opt-
Basic with RNN-OI (refer Table 1) where RNN-Opt-Basic differs from RNN-OI
only in the loss function (and the discount factor, as discussed in next point).
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For fair comparison with RNN-OI, RNN-Opt-Basic does not include incremental
normalization during training. From Fig. 4 (j)-(k), we observe that RNN-Opt-
Basic (with γ = 0.98) performs better than RNN-OI during initial steps for d = 2
(while being comparable eventually) and across all steps for d = 6, proving the
advantage of using regret loss over OI loss.

3. Significance of discount factor when using regret-based loss ver-
sus OI loss. From Fig. 4 (j)-(k), we also observe that the results of RNN-Opt
and RNN-OI are sensitive to the discount factor γ (refer Eqs. 6 and 7). γ < 1
works better for RNN-Opt while γ = 1 (i.e. no discount) works better for RNN-
OI. This can be explained as follows: the queries proposed initially (small t) are
expected to be far from yopt due to random initialization, and therefore, have
high initial regret. Hence, components of the loss term for smaller t should be
given lower weightage in the regret-based loss. On the other hand, during later
steps (close to T ), we would like the regret to be as low as possible, and hence
a higher importance should be given to the corresponding terms in the regret-
based loss. In contrast, RNN-OI is trained to keep improving irrespective of yopt,
and hence giving equal importance to the contribution of each step to the OI
loss works best.

4. Incremental normalization during training and inference to opti-
mize functions with diverse range of values. We compare RNN-Opt-Basic
and RNN-Opt, where RNN-Opt uses incremental normalization of inputs during
training as well as testing (as described in Section 4.1) while RNN-Opt-Basic
uses incremental normalization only during testing (refer Table 1). From Fig.
5, we observe that RNN-Opt performs significantly better than RNN-Opt-Basic
proving the advantage of incorporating incremental normalization during train-
ing. Note that since most of the functions considered have large range of values,
incremental normalization is by-default enabled for all RNN-based optimizers
during testing to obtain meaningful results, as illustrated earlier in Fig. 2, espe-
cially for functions with large range, e.g. Rosenbrock.
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Fig. 5. Regret plots showing effect of incremental normalization in RNN-Opt. Similar
results are observed for all functions. We omit them here for brevity.
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5.2 RNN-Opt with Domain Constraints

To train RNN-Opt-DC, we generate synthetic functions with random limit con-
straints as explained in Section 4.2. The limits of the search space are set as
[xopt − ∆x,xopt + ∆x] where ∆xj (j-th component of ∆x) is sampled from
U(τ1, τ2) (we use τ1 = 1.0, τ2 = 2.0 during training).

We use λ = 0.2 for RNN-Opt-DC. As a baseline, we use RNN-Opt with minor
variation during inference time (with no change in training procedure) where,
instead of passing ỹt as input to the RNN, we pass ỹt−p̃t so as to capture penalty
feedback. We call this baseline approach as RNN-Opt-P (refer Table 1). While
RNN-Opt-DC is explicitly trained to minimize penalty pt explicitly, RNN-Opt-
P captures the requirement of trying to maximize yt under a soft-constraint of
minimizing pt only during inference time.

We use the standard quadratic (disk) constraint used to evaluate constrained
optimization approaches, i.e. ||x||22 ≤ τ×d (we use τ = {0.5, 1.0, 2.0}) for Rosen-
brock function. For GMM-DF, we generate random limit constraints on each
dimension around the global optima, s.t. the optimal solution is still the same
as the one without constraints, while the feasible search space varies randomly
across functions. Limits of the domain is [xopt − ∆x,xopt + ∆x], where ∆xj

(j-th component of ∆x) is sampled from U(τ1, τ2) (we use τ1 = {0.5, 1.0, 1.5},
τ2 = {1.5, 2.0, 2.5}). We also consider two instances of (anonymized) non-linear
surrogate model for a real-world industrial process built by subject-matter ex-
perts with six controllable input parameters (d = 6) as black-box functions,
referred to as Industrial-1 and Industrial-2 in Fig. 6. This process imposes limit
constraints on all six parameters guided by domain-knowledge. The ground-truth
optimal value for these functions was obtained by querying the surrogate model
200k times via grid search. The regret results are averaged over runs assuming
diverse environmental conditions.

RNN-Opt-DC and RNN-Opt-P are not guaranteed to propose feasible queries
at all steps because of the soft constraints during training and/or inference.
Therefore, despite training the optimizers for T steps we unroll the RNNs up to
a maximum of 5T steps and take the first T proposed queries that are feasible, i.e.
satisfy domain constraints. For functions where optimizer is not able to propose
T feasible queries in 5T steps, we replicate the regret corresponding to best
solution for remaining steps. As shown in Fig. 6, we observe that RNN-Opt
with domain constraints, namely, RNN-Opt-DC is able to effectively
use explicit penalty feedback, and at least as good as RNN-Opt-P in
all cases. As expected, we also observe that the performance of both optimizers
degrades with increasing values of τ or τ2−τ1 as the search space to be explored
by the optimizer increases.

6 Conclusion and Future Work

Learning optimization algorithms under the meta-learning paradigm is an area
of active research. In this work, we have shown that using regret directly as a loss
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Fig. 6. Regret plots comparing RNN-Opt-DC (DC) and RNN-Opt-P (P). The entries
in the brackets denote values for (τ1, τ2) for GMM-DF, and τ for Rosenbrock.

for training optimizers using recurrent neural networks is possible, and that it
yields better optimizers than those obtained using observed-improvement based
loss. We have proposed useful extensions of practical importance to optimization
algorithms for black-box optimization that allow dealing with diverse range of
function values and handle domain constraints more effectively. One shortcoming
of this approach is that a different optimizer needs to be trained for varying
number of input parameters. In future, we plan to extend this work to train
optimizers that can ingest input with varying and high number of parameters,
e.g. by first proposing a change in a latent space and then estimating changes in
actual input space as in [22, 27]. Further, training optimizers for multi-objective
optimization can be a useful extension.

A Generating Diverse Non-Convex Synthetic Functions

We generate synthetic non-convex continuous functions fg defined over Θ ⊆ Rd
via a Gaussian Mixture Model density function (GMM-DF, similar to [29]):

fg(xt) =

N∑
i=1

ci

(2π)
k
2 |Σi|

1
2

exp(−1

2
(xt − µi)

TΣ−1i (xt − µi)). (12)

In this work, we used GMM-DF instead of Gaussian Processes used in [5] for
ease of implementation and faster response time to queries: Functions obtained
in this manner are often non-convex and have multiple local minima/maxima.
Sample plots for functions obtained over 2-D input space are shown in Fig. 7.
We use ci ∼ N (0, 0.2), µi ∼ U(−2.0, 2.0) and Σi ∼ TruncatedN (0.9, 0.9/5) for
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Fig. 7. Sample synthetic GMM density functions for d = 2.

d = 2, µi ∼ U(−3.0, 3.0) and Σi ∼ TruncatedN (3.0, 3.0/5) for d = 6 in our
experiments (all covariance matrices are diagonal).

For any function fg, we use an estimated value ŷopt = maxi fg(µi) (i =
1, 2, . . . , N) instead of yopt. This assumes that the global maximum of the func-
tion is at the mean of one of the N Gaussian components. We validate this
assumption by obtaining better estimates of the ground truth for yopt via grid
search over randomly sampled 0.2M query points over the domain of fg. For 10k
randomly sampled GMM-DF functions, we obtained an average error of 0.03
with standard deviation of 0.02 in estimating yopt, suggesting that the assump-
tion is reasonable, and in practice, approximate values of yopt suffice to estimate
the regret values for supervision. However, in general, yopt can also be obtained
using gradient descent on fg.
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