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Abstract. Classifiers can often output a score or a probability indicating
how sure they are about the predicted class. Classifier calibration methods
can map these into calibrated class probabilities, supporting cost-optimal
decision making. Isotonic calibration is the standard non-parametric cali-
bration method for binary classifiers, and it can be shown to yield the
most likely monotonic calibration map on the given data, where mono-
tonicity means that instances with higher predicted scores are more likely
to be positive. Another non-parametric method is ENIR (ensemble of
near-isotonic regression models) which allows for some non-monotonicity,
but adds a penalty for it. We first demonstrate that these two methods
tend to be over-confident and show that applying label smoothing im-
proves calibration of both methods in more than 90% of studied cases.
Unfortunately, label smoothing reduces confidence on the under-confident
predictions also, and it does not reduce the raggedness of isotonic cali-
bration. As the main contribution we propose a non-parametric Bayesian
isotonic calibration method which has the flexibility of isotonic calibra-
tion to fit maps of all monotonic shapes but it adds smoothness and
reduces over-confidence without requiring label smoothing. The method
introduces a prior over piecewise linear monotonic calibration maps and
uses a simple Monte Carlo sampling based approach to approximate the
posterior mean calibration map. Our experiments demonstrate that on av-
erage the proposed method results in better calibrated probabilities than
the state-of-the-art calibration methods, including isotonic calibration
and ENIR.

Keywords: Binary classification · Classifier calibration · Non-parametric
Bayesian.

1 Introduction

With the advances in artificial intelligence, classifiers are being incorporated into
more and more decision-making processes. Sometimes it is enough to base the
decisions only on the classifier’s predicted labels. However, more often decision
making benefits from knowing about how confident the classifier is in its prediction.
For instance, in a medical diagnostic setting a high-confidence predicted positive
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Fig. 1. Examples of calibration curves of the state-of-the-art calibration methods with
and without Platt correction.

might be fully trusted by the doctor, whereas for low-confidence predicted
positives the doctor might conduct additional tests. This usage requires the
diagnostic classifier to be well-calibrated and not over-confident, since errors
at high confidence levels are very costly. Most algorithms for learning binary
classifiers can provide some kind of scores interpretable as confidence levels. For
instance, in margin-based classifiers the distance from the decision boundary
reflects confidence. For decision-maker’s benefit it is useful if the confidence
scores can be related to the expected probability of error. This is achieved, if
the classifier outputs calibrated class probabilities [20]. The class probabilities in
binary classification are calibrated, if among all instances predicted to be positive
with probability p, the proportion of actual positives is also approximately p,
for any p ∈ [0, 1]. Such interpretability of predicted probabilities combined with
information about how much a false positive or a false negative would cost, allows
decision-makers to estimate the expected cost for each possible decision and to
follow the least costly option [5].

If the classifier outputs non-calibrated probabilities or confidence scores that
are not probabilities at all, then one can apply classifier calibration methods
to transform these outputs into the scale of calibrated probabilities. In case
of binary classification this transformation can be represented as a mapping
from real-valued output scores into probabilities to be positive, known as the
calibration map, see examples in Figure 1. There are two approaches to finding
these mappings: parametric and non-parametric. The best known parametric
and non-parametric calibration methods are logistic calibration (also known as
Platt scaling) [16] and isotonic calibration [21], respectively. Both methods model
calibration maps as non-strictly monotonically increasing, also called isotonic.
The reasoning behind this assumption is that if the classifier’s confidence in
the positive prediction increases then the probability to be positive should also
increase.
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Logistic calibration (also known as Platt scaling) fits a logistic sigmoid on the
training data [16]. This method has two parameters, one determining its centre
and another determining its slope at the centre. It can be implemented by applying
univariate logistic regression to predict the binary label (1 for positive and 0 for
negative) from the model output score. To reduce overfitting, Platt proposed
a correction to the procedure and instead of 1 and 0 use labels 1 − 1

N++2 and

0 + 1
N−+2 in fitting logistic regression [16], where N+ and N− are the numbers

of positives and negatives in the training data. This correction procedure is
essentially label smoothing [6] but with a particular fixed amount of smoothing.
We use notation ’Log’ and ’Log-Platt’ to refer to the uncorrected and corrected
method, respectively.

Logistic calibration can be derived from first principles if assuming that the
model output scores on the positives and negatives are both Gaussian distributed,
with the same variance but different means. If the model outputs scores that
are already probabilities but still require calibration, then it is more natural
to use beta distributions instead of Gaussians, because beta distributions have
support over the range [0, 1]. Following this reasoning, the paper [8] derived
the Beta calibration method [8]. Beta calibration is a parametric family with
3 parameters, allowing a larger variety of shapes for the calibration map than
logistic calibration. The family contains reverse sigmoidal functions and also the
identity map, allowing the method to return the probabilities unchanged if the
model is already calibrated, a property that logistic calibration does not have.

Isotonic calibration is a non-parametric method, not constrained by the shapes
within a particular parametric family. It uses PAV (pool adjacent violators)
algorithm to learn a calibration map which is optimal on the training data, in
the sense that no other monotonic calibration map yields a lower squared error
between the resulting calibrated probabilities and actual binary labels [21]. As
optimality is determined on the scores present in the training instances, the
values of the calibration map on other scores are not determined: these gaps are
filled in by linear interpolation or by extension into a piecewise constant function.

Ensemble of near isotonic regression (ENIR), is a calibration method that
is based on and is shown to improve isotonic calibration [10]. It drops the
monotonicity constraint, which makes sense in cases where the ROC curve of
the classifier is non-convex. ENIR makes multiple calls to the near isotonic
regression algorithm [18] which introduces a penalty for non-monotonicity into
the loss measure. Each call is with a different value for penalty and the results
are averaged with weights to obtain the final calibration function.

Finally, there are several non-parametric methods using binning, either by
fixed width, fixed size, or more advanced methods, such as BBQ [12] and ABB
[11]. However, these methods have been shown in [10] to be inferior to ENIR, so
we will not consider them further in this paper.

It has been shown in [14] that logistic calibration outperforms isotonic cali-
bration on smaller datasets and vice versa on larger datasets. This is because
non-parametric methods overfit on smaller data whereas parametric methods
have less tendency to overfit. At the same time, when enough data is provided
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for calibration, non-parametric methods can learn many different shapes while
parametric methods are restricted to their parametric families. These statements
will become one of the basis for constructing our experiments and interpreting
the results.

In the following Section 2 we introduce proper losses as evaluation measures
for calibration. In Section 3 we demonstrate that the existing non-parametric
calibration methods are over-confident and propose to use Platt’s correction,
reducing log-loss and squared error in more than 90% of our studied cases. In
Section 4 we propose our main contribution, a new non-parametric Bayesian
isotonic calibration method. In Section 5 we perform experiments on synthetic
and real data to demonstrate that on average, the new method performs either
best or tied with best for all considered calibration set sizes and loss measures.
Finally, Section 6 concludes and discusses future work.

2 Evaluation of Calibration

Following the definition of calibrated probabilities one needs to check whether
among all instances with the same predicted probability p the actual proportion
of positives is also close to p. However, for methods outputting a continuous
scale of probabilities in [0, 1] there is hardly any hope to find multiple instances
with exactly the same predicted probability p. One way to evaluate calibration
methods is to introduce bins around p and compare p to the empirical proportion
of positives in the bins, as done by measures such as ECE (expected calibration
error) [7]. Such methods ignore the differences of predictions within each bin,
and therefore measure calibration to a limited granularity.

However, there is an alternative to this: proper losses (also called proper
scoring rules). Proper losses are minimized if the calibration method achieves
perfectly calibrated probabilities, due to the decomposition into calibration loss
and refinement loss [3, 9]. Since refinement loss cannot decrease during calibration,
any reduction in overall loss must be due to the reduction in calibration loss.

The best known proper losses are log-loss (a.k.a. cross-entropy) and Brier
score (a.k.a. squared error), which are standard evaluation measures of class
probability estimators [14]. If the instance is positive and the model predicts it to
be positive with probability p̂, then log-loss (LL) penalizes it with loss − ln p̂ and
Brier score (BS) with loss (1− p̂)2. If the instance is negative, then the losses are
− ln(1− p̂) and p̂2, respectively. Both these losses are non-negative and minimized
if the prediction is correct and with full confidence, i.e., p̂ = 1 for positives and
p̂ = 0 for negatives. However, these measures behave differently with respect to
over- and under-confidence. Brier score is symmetric in the sense that over- and
under-estimating the calibrated probability to be positive by the same amount
results in the same loss according to Brier score. In contrast, log-loss is highly
sensitive to over-confidence, particularly at the high confidence cases. As an
extreme case, full confidence in the wrong prediction yields infinite log-loss. Even
if this happens only with one instance in the test set, the overall loss on the
whole test set is still infinite due to averaging. Exactly this can happen often
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Fig. 2. Percentage of 153 dataset-model pairs where Platt correction improves over the
uncorrected calibration method for Brier score (BS) and log-loss (LL).

with isotonic calibration and ENIR, whenever the lowest score in the training
set has a negative class and/or highest score has positive class. While penalized
infinitely by log-loss, any other proper loss would also penalize this.

3 Simple Improvement of Existing Methods

This motivates our first contribution: a simple improvement of isotonic calibration
and ENIR. On these calibration methods we propose to use the same correction
procedure as Platt used for logistic calibration. This means that isotonic calibra-
tion and ENIR should also be applied after replacing the class labels 1 and 0
by 1− 1

N++2 and 0 + 1
N−+2 , respectively, where N+ and N− are the numbers of

positives and negatives in the training data.
We have evaluated this simple modification on 459 = 9× 17× 3 calibration

tasks, obtained by training 9 different models on 17 datasets and in each using
either 100, 1000 or 3000 instances for learning the calibration map (see details
about the experimental setup in Section 5.2). In 458 cases out of 459 log-loss was
reduced when starting to use Platt’s correction on isotonic calibration (Figure 2
top left, where the 459 cases are split between calibration sizes 100, 300, and
1000). The benefit is also obvious for Brier score, with improvement in 92% of the
cases (424 out of 459). For reference, Figure 2 also shows the impact of Platt’s
correction on logistic and beta calibration methods. For logistic calibration the
results confirm the benefit of Platt’s correction, as expected. For beta calibration
the correction turns out to be useful only for log-loss, and not for Brier score
(improvement in ¡50% of cases).

Isotonic calibration can suffer infinite log-loss due to over-confidence on
instances at either end of the ranking by score. To understand the effect of Platt’s
correction on over- and under-confidence a bit better, we performed the following
analysis. We considered the first and last 2.5% of the instances according to
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Fig. 3. Proportion of under- and over-confidence for 9 calibration methods on 153
data-model pairs over 3 different calibration data sizes.

the ranking by score. We say that a calibration method is over-confident on the
last 2.5% instances, if the average calibrated probability on these instances is
closer to 1 than the actual proportion of positives. Otherwise, we call it under-
confident. Note that here we do not have a zone of being calibrated between
over- and under-confidence, because we are interested in seeing the changes
in over- and under-confidence after Platt correction. Similarly, we say that a
calibration method is over-confident on the first 2.5% instances, if the average
calibrated probability according to this method on these instances is closer to 0
than the actual proportion of positives (because here the model is over-confident
in predicting the negative class).

Figure 3 shows the proportions of cases where the calibration method is over-
confident at both ends (over-over), under-confident at both ends (under-under)
or over-confident at one end and under-confident at the other (over-under). As
expected, Platt correction reduces the proportion of over-over and increases
the proportion of under-under. Overall, the balance between over- and under-
confidence varies significantly across different methods. Interestingly, the most
equal proportions of over- and under-confidence are shown by Bayes-Iso (non-
parametric Bayesian isotonic calibration), which we will next motivate and
present.

4 Proposed Method

Even though Platt correction helps to overcome some issues regarding over-
confidence, there is no clear justification behind it. In case of fully separable
training data where all negative instances have lower scores than positives it can
be thought of as performing Laplace smoothing, which is a standard method
to estimating class proportions, e.g. within a leaf of a decision tree. Laplace
smoothing has a Bayesian interpretation, but this interpretation does not seem
to apply to the Platt correction method. Our goal is to propose a fully Bayesian
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non-parametric calibration method which would perform well on both smaller
and larger datasets, as opposed to current non-parametric methods which are
outperformed by parametric methods on smaller datasets.

Suppose we have a fixed scoring classifier and we need to learn a calibra-

tion map ĉal from N training instances, given the (uncalibrated) scores str =
(s1, . . . , sN ) predicted by the classifier and the actual labels ytr = (y1, . . . , yN ).
The calibration map would be evaluated by drawing a random test instance X,
applying the classifier to obtain its score S = classifier(X), and then testing

the calibrated probability C = ĉal(S) against the actual class Y with respect
to a loss measure l by calculating l(C,Y). If the loss measure is a proper loss,
then the expected loss would be minimized by the perfect calibration map cal
defined as cal(S) = E[Y|S]. This result follows from the fact that Bregman diver-
gences are minimized at the conditional expectation [1] and the proper losses are
Bregman divergences where one of the inputs has been restricted to be binary
[17]. Note that the perfectly calibrated probabilities cal(S) are different from the
Bayes-optimal probability estimator E[Y|X].

Isotonic calibration aims to find calibrated probability estimates ĉ = (ĉ1, . . . , ĉN )
at the sorted scores s1 ≤ · · · ≤ sN present in the training data, where ĉ must
belong to the space IN of all real-valued vectors of length N constrained with
isotonicity 0 ≤ ĉ1 ≤ · · · ≤ ĉN ≤ 1. This discrete calibration map can then

be extended to ĉal as a piecewise constant calibration map, or linear interpo-
lation could be used to fill in the gaps between training scores. Since proper
losses are minimized at the conditional expectation [1, 17], it is easy to show

that due to pooling the isotonic calibration ĉaliso is minimizing any proper
loss l on the training data. This means that ĉiso = arg minĉ∈IN L(ĉ,ytr) where

L(ĉ,ytr) =
∑N

i=1 l(ĉi, y
tr
i ).

4.1 Non-parametric Bayesian Isotonic Calibration

Inspired by isotonic calibration, we aim to estimate the calibration map on the
predicted scores present in the training data, and elsewhere we would use linear
interpolation. While standard isotonic finds the monotonic calibration map which
minimises the loss on the training data (in the spirit of maximum likelihood), we
aim to minimise the expected loss on future test data (in the spirit of maximum
a posteriori). However, to avoid having to define a prior over all possible isotonic
calibration maps from R to [0, 1], we narrow the aim to minimise the expected
loss on only those future test data which contain the same scores as our training
data. Due to this we only need to define the prior over the N scores present in
the training data. As actual test labels are not available during training, then the
expected loss on future test data can never be known in practice, but can still be
estimated based on the training data. To derive such an estimator, we will reason
about the test labels and introduce notation for them. To avoid confusion with
the actual test labels, we will be using the term hypothetical labels from now on.
These hypothetical labels will only be used notationally, for deriving the methods,
and these are not needed for running the proposed calibration algorithm.
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Following the Bayesian paradigm we assume that the perfect calibration
map C = (C1, . . . ,CN ) was drawn from IN according to some prior distribution
that we will specify in Section 4.2. We assume that both the training labels
Ytr = (Ytr

1 , . . . ,Ytr
N ) and hypothetical labels Yhyp = (Yhyp

1 , . . . ,Yhyp
N ) were drawn

independently according to the probabilities C, that is Ytr
i ,Yhyp

i ∼ Bernoulli(Ci)
for i = 1, . . . , N . We define non-parametric Bayesian isotonic calibration as
follows:

ĉBayes−iso = arg min
ĉ∈IN

E
[
L(ĉ,Yhyp) | Ytr = ytr

]
(1)

where L(ĉ,y) =
∑N

i=1 l(ĉi, yi).
The following Theorem 1 will form the basis for calculating this conditional

expectation numerically. It proves that the conditional expectation of Eq.(1) can
be calculated as a ratio of two unconditional expectations involving the calibration
map C and its likelihood under the observed training data, P(Ytr = ytr | C).
This result can be thought of as Bayesian model averaging: models are sampled
from the model prior and averaged weighting by their likelihoods.

Theorem 1. Let C, Ytr and Yhyp be random vectors of length N as defined
above. Suppose we observe Ytr = ytr, then for ĉBayes−iso as defined in Eq.(1)
the following holds:

ĉBayes−iso =
E
[
C · P(Ytr = ytr | C)

]
E
[
P(Ytr = ytr | C)

] (2)

where P(Ytr = ytr | C) =

N∏
i=1

ytr
i =1

Ci

N∏
i=1

ytr
i =0

(1− Ci) (3)

Proof. Since proper losses are minimized at the conditional expectation [1, 17],

we have ĉBayes−iso = E
[
Yhyp | Ytr = ytr

]
. According to the law of iterated

expectations this is equal to E
[
E
[
Yhyp | C

]
| Ytr = ytr

]
which simplifies into

E
[
C | Ytr = ytr

]
as the components in random binary vector Yhyp have been

drawn according to probabilities in random vector C. From the definition of
conditional expectation and Bayes formula we get:

E
[
C | Ytr = ytr

]
=

∫
C fC|Ytr (C,ytr) dC =∫

C
P(Ytr= ytr|C)fC(C)

P(Ytr= ytr)
dC =

E
[
C P(Ytr= ytr|C)

]
P(Ytr= ytr)

Eq.(2) follows from this using the law of iterated expectations and the fact that
for binary variables the expectations are probabilities. Finally, the calculation of
likelihood in Eq.(3) is straightforward, due to independence of the components
within the binary vector.
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Our proposed non-parametric Bayesian isotonic calibration maps can be
calculated by drawing many isotonic calibration maps from the prior distribution,
calculating their likelihoods according to the training labels, and using these as
weights in averaging all the sampled maps into one final result as is described
in Algorithm 1. The algorithm returns a calibration map that is constructed
from pairs of scores and calibrated probabilities, which are joined by linear
interpolation as in isotonic calibration, to make predictions over all possible
scores. Algorithm description mentions bounds which will be explained in Section
4.3. The time complexity of this algorithm is O(sn) where n is the size of cali-
bration data and s is the number of candidate maps to be sampled from the prior.

Data: scores, labels, nrSamples
Result: calibration map
1. Calculate lower and upper bounds from labels
2. Generate nrSamples sample maps from prior with bounds
3. Evaluate the likelihood of each sample according to labels as shown in
Eq.(3)

4. Calculate weighted average of sampled maps using likelihoods as
weights

5. Compose the calibration map by joining the scores and the weighted
average of the sample maps by linear interpolation

Algorithm 1: Bayes-Iso algorithm.

4.2 Selecting the Prior over Isotonic Maps

To fully specify our calibration method we must specify the prior distribution
over the calibration maps in space IN . It is crucial to choose a prior which
assigns a reasonably high probability density to all calibration maps that we
deem reasonable, otherwise the method would never output such maps, even if
made likely by the data.

One possible simple prior can be defined as sampling N independent values
uniformly from [0, 1] and sorting them to obtain an isotonic calibration map
belonging to IN . However, this prior is highly concentrated around the calibration
map where the values C1, . . . ,CN are equally spaced, represented as the diagonal
in Figure 4A. Note that in this figure the X-axis represents relative ranks of
scores rather than absolute scores coming out from the classifier. Concentration
of probability mass around the diagonal implies that any calibration map that
is not around the diagonal would be almost impossible to learn. However, in
practice the true calibration map can be far from the diagonal, particularly if
the classes are imbalanced.

Therefore, we need a prior that covers the space of all isotonic calibration
maps more broadly. We have considered the existing priors on Bayesian isotonic
regression (not restricted to output in the range [0, 1]) [13] but these do not
adapt easily to our situation or do not provide broad coverage of the space of all
isotonic calibration maps. Our proposed solution to achieve broad coverage is
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straightforward - while drawing a calibration map from our prior we first pick
uniformly randomly a point in the 2-dimensional space of Figure 4 and then start
to construct a map that goes through this chosen point. Note that we use the
discrete uniform distribution for X-axis (because these are ranks 1, . . . , N) and
continuous uniform distribution for Y-axis (because these are probabilities). In
the next steps we apply the same procedure recursively, while ensuring isotonicity.
This means that we next choose the second point uniformly randomly to the
left and below from the first point and the third point uniformly randomly
to the right and above from the first point. For example, if the first point is
(x1, y1), then the second point (x2, y2) is chosen by sampling x2 uniformly from
{1, 2, . . . , x1 − 1}, and y2 uniformly from [0, y1]. Similarly, (x3, y3) is chosen by
sampling x3 uniformly from {x1 + 1, x1 + 2, . . . , N}, and y3 uniformly from [y1, 1].
This procedure recursively delves into all ranges between existing points, until
all points 1, . . . , N on the X-axis have been chosen. Figure 4B shows a random
sample of 200 calibration maps drawn from this prior for N = 100. Note that we
have renormalised the X-axis to be from 0 to 1 instead of from 1 to 100.

Fig. 4. Examples of 200 sampled curves of size 100. (A) Samples from a bad prior. (B)
Samples from our defined prior. (C) Samples from our defined prior using bounds.

4.3 Practically Efficient Sampling from Prior

Having defined the prior we have fully specified our non-parametric Bayesian
isotonic calibration method. However, straightforward implementation of this
would result in poor performance. The reason is that the space of isotonic
calibration maps IN is vast and maps with the highest likelihoods are hardly
ever found when randomly sampling from the prior. As a result, the estimation
of E

[
C · P(Ytr = ytr | C)

]
would mostly be based on maps C with low likelihood

and numerically dominated by very few maps with higher likelihood, resulting
in a high variance estimate that would not be precise enough. If we can avoid
sampling maps that have near-zero likelihoods, then the estimate stabilises, while
still being a good approximation of the true posterior mean map. Therefore,
we propose a method to use training data to obtain a lower and upper bound
and to sample only those calibration maps that are fully between them. This
does change our prior and in this sense is not purely Bayesian, but in practice
it provides a reasonably good estimate of the posterior mean with the original
prior.



Non-parametric Bayesian Isotonic Calibration 11

Our algorithm is inspired by calibration methods that use binning. Let us
consider a bin of B consecutive instances with labels yj+1, yj+2, . . . , yj+B within
a full ranked list of N training instances. If the proportion of positives in this bin
is p, then this can be used as an estimate for the average calibrated probability
within this bin, that is C = 1

B

∑B
i=1 Cj+i ≈ p. However, since the calibration is

isotonic, we know that Cj+1 ≤ C ≤ Cj+B . Hence, we can use p as an approximate
upper bound for Cj+1 and an approximate lower bound for Cj+B. Taking into
account that the estimation of the proportion of positives has variance in the order
of 1/

√
B, we use in practice the bounds Cj+1 ≤ p+1/

√
B and Cj+B ≥ p−1/

√
B.

The above shows how a bin can be used to set bounds for the lower and
upper end of the bin. In order to obtain bounds for the calibrated probability
at a given test instance we apply the above reasoning on the bins of size B to
the left and to the right of this instance within the ranking. If the considered
instance is close to one end of the full ranking, then of course the size of the bin
towards that end would necessarily be smaller. In the experiments we used the
bin size B = N/10. The advantage of a larger bin is that p can be approximated
more precisely, but at the same time the average is taken over a region where the
calibrated probability within the ranking is varying more, so there is a tradeoff
in selecting the size of B.

This method results in non-monotonic bounds: for si < si+1 the lower bound
at si could be higher than at si+1. In such cases we extended the lower bound to
monotonicity, that is si would adopt the lower bound from si+1. Symmetrically,
the same can happen with upper bounds: for si < si+1 the upper bound at si
could be higher than at si+1. In this case we raise the upper bound of si+1 to
match the upper bound of si. By ensuring monotonicity this way the bounds can
only become wider, lower bounds can only be lowered and upper bounds raised.

One possibility to apply the bounds on the sampling is to perform rejection
sampling - the drawn calibration maps which fall out of bounds would be discarded.
However, this can make the sampling very slow, as with tight bounds most of
the maps would be discarded. Fortunately, it is easy to modify our prior slightly
to be easily directly sampled from between the bounds. After drawing the X-axis
value from the discrete uniform distribution we draw the Y-axis value from the
uniform distribution between the bounds, rather than between 0 and 1. Similarly,
we can at each step sample along the X-axis first, and then sample along the
Y-axis uniformly, constrained between the bounds. An example of sampling from
between bounds can be seen in Figure 4C. Note that the bounds shown are
learned from the actual training labels in an example dataset, which is why they
are not symmetric. They are shown to illustrate the idea, in reality the bounds
will be always different for different datasets.

5 Experiments

We start the experiments with a case study on a synthetic dataset, in order to
demonstrate empirically how our proposed Bayesian isotonic calibration converges
to the true perfect calibration map as the dataset size increases, outperforming
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all state-of-the-art calibration methods. More precisely, we will demonstrate
how Bayes-Iso works in the setting that it is designed for. This is followed by a
large-scale study on real datasets, illustrating which calibration methods work
well when calibration data size is changed. We will see that based on average
ranks over all dataset-model pairs Bayes-Iso performs either best or tied with
best for all considered training set sizes and loss measures.

5.1 Experiments on Synthetic Data

Bayes-Iso is designed to be better whenever the true calibration function is
not in the families of parametric methods. In such cases parametric methods
perform poorly due to model mismatch and the existing non-parametric methods
due to over-confidence. We will demonstrate this effect on a synthetic dataset.
We have generated a dataset where the calibration map does not belong to
the logistic and beta calibration map families, because in case of parametric
shapes it would be clear that parametric methods would be the best choice.
According to our generative model the classes are balanced, and a hypothetical
scoring classifier is generating scores that are on actual negatives distributed as
Beta(1, 3), and on positives as a balanced mixture of Beta(1.5, 3) and Beta(30, 3).
The perfect calibration map is shown in Figure 5 with a red dashed line and
on our generated test data with 100000 instances results with ideal log-loss of
0.1620 and Brier score of 0.4741. Table 1 shows how close to the ideal each of
the calibration methods reaches on training set sizes 100 and 3000 (on size 1000
methods ranked identically to 3000, not shown). Results were averaged over 10
replicate experiments. Note that according to the results in Section 3, we applied
Platt correction on all reference methods, except for beta calibration with Brier
score. Bayes-Iso algorithm used 10000 samples to estimate the calibration map.

Results in Table 1 show that Bayes-Iso gets very close to the ideal, winning over
all other methods. Even though the true calibration map is not in the parametric
family, Beta calibration gets close enough shape to be the second best on the
smallest dataset. This example demonstrates that existing parametric methods

Table 1. Average Brier score and log-loss on synthetic datasets of sizes 100 and 3000.
Beta calibration is used for Brier score and Beta-Platt for log-loss. Numbers in subscript
show the ranking of the scores.

Method BS100 LL100 BS3000 LL3000

Ideal .1621 .4741 .1621 .4741

Bayes-Iso .16551 .48781 .16251 .47531

ENIR-Platt .16833 .50293 .16272 .47782

Iso-Platt .16854 .50364 .16273 .47793

Beta(-Platt) .16722 .48952 .16604 .48624

Log-Platt .17205 .51125 .17215 .50975
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Fig. 5. 10 calibration maps learned on 10 replicate synthetic datasets of size 1000 for
six different calibration methods (blue). True underlying calibration map (red).

are often better than non-parametric ones on smaller datasets, because they don’t
overfit to small data as easily. Bayes-Iso on the other hand is less-confident than
other non-parametric methods and works well also on small datasets. On bigger
datasets non-parametric methods dominate over parametric ones as expected,
and Bayes-Iso shows the best results. Figure 5 demonstrates the variance of all
considered calibration methods across the 10 replicate experiments on training
set size 1000. We can see that for size 1000 parametric methods clearly cannot
learn the true calibration function whereas non-parametric methods can.

Since Bayes-Iso is a non-deterministic method its results can vary on the same
dataset across different runs. Figure 6 shows results on 10 runs on exactly the
same dataset on each of the 3 data sizes, complemented with bounds as learned
within the Bayes-Iso method. The figure demonstrates that each of the runs
results in a high-quality calibration map with very low variance across runs. But
we can also notice that the larger the calibration data, the more differences the
learned maps start to have. This is expected as we need more and more sampling
to converge with Bayes-Iso in case of larger data.

5.2 Experimental Setup on Real Data

The methods are evaluated on the following 17 datasets from OpenML [19]:
SEA(50), BNG(breast-w), BNG(sonar), BNG(heart-statlog), 2dplanes, house 16H,
cal housing, houses, house 8L, fried, letter, BNG(spectf test), BNG(Australian),
BNG(SPECTF), skin-segmentation, creditcard, numerai28.6. These were selected
as datasets with a binary target variable, no missing values, at most 100 numerical
features, and the number of instances between 20000 and 1 million.

Performance of calibration methods is known to vary with dataset size [14].
We decided that we can see size-related effects best if we fix particular sizes
(100, 1000 and 3000) for the fold on which we apply the calibration method. To
make the losses on different sizes directly comparable we further chose to keep
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Fig. 6. 10 calibration maps for different sized data learned with Bayes-Iso on the same
dataset (blue). Green lines show the lower and upper bounds for sampling, red line
shows the true underlying calibration map.

the classifier and the test set constant. We achieved all this by first randomly
downsampling all datasets to the same size of 20000 instances, and then running
5-fold nested cross validation. In the internal 5-fold cross-validation we use 4 folds
to train the model and 1 fold to calibrate. This 1 internal fold was big enough
(3200) to allow randomly sampling calibration datasets of required 3 sizes. The
goodness of the calibration maps are evaluated on the outer fold, that we call the
test fold, which is of size 4000. To make experiments run faster we have trained
the classification models on 3000 out of the 12800 instances of the 4 internal
folds. This choice certainly makes the models weaker but still allows to achieve
our objective of comparing calibration methods. The classification models were
trained with 9 different learning algorithms, selected from among the same as
used in the large-scale comparisons in [14] and [2]: decision tree (DT), naive bayes
(NB), support vector machine (SVM), random forest (RF), logistic regression
(LR), K-nearest neighbors (KNN), boosted trees (ADA), bagged trees (BAG-DT)
and artificial neural networks (ANN). The implementations for these algorithms
were taken from the scikit-learn package [15] using the default parameters, except
for the decision tree, for which we used minimum leaf size of 10.

Overall, we trained a classifier for each of the 17×9×5×5 = 3825 combinations
of 17 datasets, 9 classifier learning algorithms, 5 external and 5 internal cross-
validation folds. For each trained classifier we learned 3 × 9 = 27 calibration
maps resulting from 3 dataset sizes and 9 calibration algorithms (logistic, beta,
isotonic calibration and ENIR with and without Platt correction, and Bayes-Iso).

We used existing packages for Beta calibration and ENIR, and modified
scikit-learn implementation for logistic calibration (to switch off Platt correction).
Other methods were implemented from scratch. 1

5.3 Experiment Results on Real Data

First, we evaluated Bayes-Iso against other non-parametric methods (that are
Platt corrected). Table 2 shows the percentage of dataset-model pairs where

1 Code with implementations of the algorithms and experiments on real data is available
at https://github.com/mlkruup/bayesiso.



Non-parametric Bayesian Isotonic Calibration 15

Bayes-Iso outperformed both Iso-Platt and ENIR-Platt, across different sizes
of calibration datasets. Bayes-Iso was the best non-parametric method on the
majority of cases, in particular on smaller sizes. This is expected as isotonic
calibration and ENIR are known to be overfitting on smaller datasets but more
suitable on larger ones, where they become more competitive to Bayes-Iso.

Increase in dataset size leads to Bayes-Iso sampling the space of isotonic
maps more sparsely, and more often a single map dominates all others within
the sample, in the sense that its likelihood is higher than all others summed up.
This can be used as an indicator flag of potential poor performance. The column
3000 LH in Table 2 shows results where the flagged cases (27% of all cases) have
been eliminated. The improvement from 56% and 59% in column 3000 to 71%
and 73% in column 3000 LH means that there is a big potential in improving our
method further by more efficient bounds and more sampling. It is also comforting
that Bayes-Iso can itself flag cases of potential instability.

Secondly, we wanted to compare all state-of-the-art calibration methods,
including the parametric ones, to Bayes-Iso. We have an initial hypothesis that
Bayes-Iso should perform well both on larger and smaller datasets whereas
parametric methods work better on smaller and other non-parametric methods
on larger datasets. We demonstrate this in a large-scale comparison against all
considered calibration methods. We performed Friedman test with post hoc
analysis on average ranks [4] of models ordered by log-loss and Brier score. The
results are illustrated as critical difference diagrams in Figure 7. We can see that
Bayes-Iso performs either best or tied with the best, based on the average ranks
across all dataset-model pairs. This holds true for all sizes of the calibration set
(100, 1000, 3000) and both loss measures (BS, LL). This supports our hypothesis
about the behaviour of the methods with respect to the calibration set sizes.

It is not easy to give recommendations for the most suitable calibration
method for different models since good performance for a calibration method is
more dependent on the dataset size and how a particular model is performing on
a dataset. Factors like calibration data size, goodness of the model, distribution
of scores in the classes, class distribution, shape of the true calibration map are
probably more important factors and most likely have joint effects when deciding
on the best method to use. We have found some examples about how these
factors affect the performance of Bayes-Iso. One discovered case is when we have
a small dataset and a model with very high accuracy. In this case Bayes-Iso is too

Table 2. Percentage of improved dataset-model pairs where Bayes-Iso improved on
other non-parametric methods.

Size 100 1000 3000 3000 LH

BS 86% 79% 56% 71%
LL 92% 84% 59% 73%
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Fig. 7. Critical difference diagrams based on ranks of methods over 153 dataset-model
pairs over different calibration dataset sizes and losses.

under-confident when compared to ENIR-Platt and Iso-Platt. The reason could
be that since the model is very good then even with small dataset for calibration
it is beneficial to have high confidence predictions. Because of the joint effects
of the formerly mentioned factors, these patterns are difficult to identify and
interpret. Extensive experiments left for future work could give us more insight
into these effects and help us identify situations where one or another calibration
method is the most suitable.

6 Conclusions

For decision-making purposes it is important that the classifiers were well-
calibrated. Parametric calibration methods work well on small datasets, but
on bigger datasets the parametric assumption often does not hold and non-
parametric methods perform better. In this work we have first demonstrated that
existing non-parametric calibration methods produce over-confident predictions.
We have discovered that the same correction method that was used in logistic
calibration by Platt can be used for reducing over-confidence in isotonic calibration
and ENIR, reducing log-loss and Brier score in more than 90% of our studied cases.
Our main contribution is a novel non-parametric Bayesian isotonic calibration
(Bayes-Iso). Bayes-Iso has the flexibility of isotonic calibration to fit maps of
all monotonic shapes but it additionally provides smoothness and reduces over-
confidence without requiring a separate correction procedure. When comparing
against the state-of-the-art methods on 153 calibration tasks Bayes-Iso works
either best or tied with the best depending on the size of the calibration dataset.
The current version of Bayes-Iso experiences instability when scaling up to learn a
calibration map from many more than 3000 instances. As future work we envision
ways to make Bayes-Iso scale up to much larger sizes, as the calibration map
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could easily be learned in bins of 1000 consecutively ranked instances and later
merged into a single calibration map.
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