
A Stochastic Quasi-Newton Method with
Nesterov’s Accelerated Gradient

S. Indrapriyadarsini1, Shahrzad Mahboubi2, Hiroshi Ninomiya2, and Hideki
Asai1 �

1 Shizuoka University, Hamamatsu, Shizuoka Pre., Japan
{s.indrapriyadarsini.17,asai.hideki}@shizuoka.ac.jp

2 Shonan Institute of Technology, Fujisawa, Kanagawa Pre., Japan
{18T2012@sit,ninomiya@info}.shonan-it.ac.jp

Abstract. Incorporating second order curvature information in gradient
based methods have shown to improve convergence drastically despite its
computational intensity. In this paper, we propose a stochastic (online)
quasi-Newton method with Nesterov’s accelerated gradient in both its
full and limited memory forms for solving large scale non-convex opti-
mization problems in neural networks. The performance of the proposed
algorithm is evaluated in Tensorflow on benchmark classification and re-
gression problems. The results show improved performance compared to
the classical second order oBFGS and oLBFGS methods and popular
first order stochastic methods such as SGD and Adam. The performance
with different momentum rates and batch sizes have also been illustrated.

Keywords: Neural networks · stochastic method · online training · Nes-
terov’s accelerated gradient · quasi-Newton method · limited memory ·
Tensorflow

1 Introduction

Neural networks have shown to be effective in innumerous real-world applica-
tions. Most of these applications require large neural network models with mas-
sive amounts of training data to achieve good accuracies and low errors. Neural
network optimization poses several challenges such as ill-conditioning, vanishing
and exploding gradients, choice of hyperparameters, etc. Thus choice of the op-
timization algorithm employed on the neural network model plays an important
role. It is expected that the neural network training imposes relatively lower
computational and memory demands, in which case a full-batch approach is not
suitable. Thus, in large scale optimization problems, a stochastic approach is
more desirable. Stochastic optimization algorithms use a small subset of data
(mini-batch) in its evaluations of the objective function. These methods are par-
ticularly of relevance in examples of a continuous stream of data, where the
partial data is to be modelled as it arrives. Since the stochastic or online meth-
ods operate on small subsamples of the data and its gradients, they significantly
reduce the computational and memory requirements.

2 S. Indrapriyadarsini et al.

1.1 Related Works

Gradient based algorithms are popularly used in training neural network models.
These algorithms can be broadly classified into first order and second order
methods [1]. Several works have been devoted to stochastic first-order methods
such as stochastic gradient descent (SGD) [2, 3] and its variance-reduced forms
[4–6], AdaGrad [7], RMSprop [8] and Adam [9]. First order methods are popular
due to its simplicity and optimal complexity. However, incorporating the second
order curvature information have shown to improve convergence. But one of the
major drawbacks in second order methods is its need for high computational
and memory resources. Thus several approximations have been proposed under
Newton [10, 11] and quasi-Newton [12] methods in order to make use of the
second order information while keeping the computational load minimal.

Unlike the first order methods, getting quasi-Newton methods to work in a
stochastic setting is challenging and has been an active area of research. The
oBFGS method [13] is one of the early stable stochastic quasi-Newton meth-
ods, in which the gradients are computed twice using the same sub-sample, to
ensure stability and scalability. Recently there has been a surge of interest in
designing efficient stochastic second order variants which are better suited for
large scale problems. [14] proposed a regularized stochastic BFGS method (RES)
that modifies the proximity condition of BFGS. [15] further analyzed the global
convergence properties of stochastic BFGS and proposed an online L-BFGS
method. [16] proposed a stochastic limited memory BFGS (SQN) through sub-
sampled Hessian vector products. [17] proposed a general framework for stochas-
tic quasi-Newton methods that assume noisy gradient information through first
order oracle (SFO) and extended it to a stochastic damped L-BFGS method
(SdLBFGS). This was further modified in [18] by reinitializing the Hessian ma-
trix at each iteration to improve convergence and normalizing the search di-
rection to improve stability. There are also several other studies on stochastic
quasi-Newton methods with variance reduction [19–21], sub-sampling [11,22] and
block updates [23]. Most of these methods have been proposed for solving convex
optimization problems, but training of neural networks for non-convex problems
have not been mentioned in their scopes. The focus of this paper is on training
neural networks for non-convex problems with methods similar to that of the
oBFGS in [13] and RES [14,15], as they are stochastic extensions of the classical
quasi-Newton method. Thus, the other sophisticated algorithms [11, 16–23] are
excluded from comparision in this paper and will be studied in future works.

In this paper, we introduce a novel stochastic quasi-Newton method that is
accelerated using Nesterov’s accelerated gradient. Acceleration of quasi-Newton
method with Nesterov’s accelerated gradient have shown to improve conver-
gence [24,25]. The proposed algorithm is a stochastic extension of the accelerated
methods in [24, 25] with changes similar to the oBFGS method. The proposed
method is also discussed both in its full and limited memory forms. The per-
formance of the proposed methods are evaluated on benchmark classification
and regression problems and compared with the conventional SGD, Adam and
o(L)BFGS methods.

A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 3

2 Background

min
w∈Rd

E(w) =
1

b

∑
p∈X

Ep(w), (1)

Training in neural networks is an iterative process in which the parameters
are updated in order to minimize an objective function. Given a mini-batch
X ⊆ Tr with samples (xp, dp)p∈X drawn at random from the training set Tr and
error function Ep(w;xp, dp) parameterized by a vector w ∈ Rd, the objective
function is defined as in (1) where b = |X|, is the batch size. In full batch,
X = Tr and b = n where n = |Tr|. In gradient based methods, the objective
function E(w) under consideration is minimized by the iterative formula (2)
where k is the iteration count and vk+1 is the update vector, which is defined
for each gradient algorithm.

wk+1 = wk + vk+1. (2)

In the following sections, we briefly discuss the full-batch BFGS quasi-Newton
method and full-batch Nesterov’s Accelerated quasi-Newton method in its full
and limited memory forms. We further extend to briefly discuss a stochastic
BFGS method.

Algorithm 1 BFGS Method

Require: ε and kmax

Initialize: wk ∈ Rd and Hk = I.
1: k ← 1
2: Calculate ∇E(wk)
3: while ||E(wk)|| > ε and k < kmax

do
4: gk ← −Hk∇E(wk)
5: Determine αk by line search
6: vk+1 ← αkgk

7: wk+1 ← wk + vk+1

8: Calculate ∇E(wk+1)
9: Update Hk+1 using (4)

10: k ← k + 1
11: end while

Algorithm 2 NAQ Method

Require: 0 < µ < 1, ε and kmax

Initialize: wk ∈ Rd, Hk = I and vk =
0.

1: k ← 1
2: while ||E(wk)|| > ε and k < kmax

do
3: Calculate ∇E(wk + µvk)

4: ĝk ← −Ĥk∇E(wk + µvk)
5: Determine αk by line search
6: vk+1 ← µvk + αkĝk

7: wk+1 ← wk + vk+1

8: Calculate ∇E(wk+1)

9: Update Ĥk using (9)
10: k ← k + 1
11: end while

2.1 BFGS quasi-Newton Method

Quasi-Newton methods utilize the gradient of the objective function to achieve
superlinear or quadratic convergence. The Broyden-Fletcher-Goldfarb-Shanon
(BFGS) algorithm is one of the most popular quasi-Newton methods for uncon-
strained optimization. The update vector of the quasi-Newton method is given
as

vk+1 = αkgk, (3)

4 S. Indrapriyadarsini et al.

where gk = −Hk∇E(wk) is the search direction. The hessian matrix Hk is sym-
metric positive definite and is iteratively approximated by the following BFGS
formula [26].

Hk+1 = (I− skyT
k /y

T
k sk)Hk(I− yksTk /y

T
k sk) + sksTk /y

T
k sk, (4)

where I denotes identity matrix,

sk = wk+1 −wk and yk = ∇E(wk+1)−∇E(wk). (5)

The BFGS quasi-Newton algorithm is shown in Algorithm 1.

Limited Memory BFGS (LBFGS): LBFGS is a variant of the BFGS quasi-
Newton method, designed for solving large-scale optimization problems. As the
scale of the neural network model increases, the O(d2) cost of storing and up-
dating the Hessian matrix Hk is expensive [13]. In the limited memory version,
the Hessian matrix is defined by applying m BFGS updates using only the last
m curvature pairs {sk,yk}. As a result, the computational cost is significantly
reduced and the storage cost is down to O(md) where d is the number of param-
eters and m is the memory size.

2.2 Nesterov’s Accelerated Quasi-Newton Method

Several modifications have been proposed to the quasi-Newton method to obtain
stronger convergence. The Nesterov’s Accelerated Quasi-Newton (NAQ) [24]
method achieves faster convergence compared to the standard quasi-Newton
methods by quadratic approximation of the objective function at wk +µvk and
by incorporating the Nesterov’s accelerated gradient∇E(wk+µvk) in its Hessian
update. The derivation of NAQ is briefly discussed as follows.

Let ∆w be the vector ∆w = w− (wk + µvk). The quadratic approximation
of the objective function at wk + µvk is defined as,

E(w) ' E(wk +µvk) +∇E(wk +µvk)T∆w +
1

2
∆wT∇2E(wk +µvk)∆w. (6)

The minimizer of this quadratic function is explicitly given by

∆w = −∇2E (wk + µvk)
−1∇E (wk + µvk) . (7)

Therefore the new iterate is defined as

wk+1 = (wk + µvk)−∇2E (wk + µvk)
−1∇E (wk + µvk) . (8)

This iteration is considered as Newton method with the momentum term µvk.
The inverse of Hessian ∇2E(wk + µvk) is approximated by the matrix Ĥk+1

using the update equation (9)

Ĥk+1 = (I− pkqT
k /q

T
k pk)Ĥk(I− qkpT

k /q
T
k pk) + pkpT

k /q
T
k pk, (9)

A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 5

Algorithm 3 Direction Update

Require: current gradient ∇E(θk), memory size m, curvature pair (σk−i, γk−i)
∀i = 1, 2, ...,min(k − 1,m) where σk is the difference of current and previous weight
vector and γk is the difference of current and previous gradient vector

1: ηk = −∇E(θk)
2: for i := 1, 2, ...,min(m, k − 1) do
3: βi = (σT

k−iηk)/(σT
k−iγk−i)

4: ηk = ηk − βiγk−i

5: end for
6: if k > 1 then
7: ηk = ηk(σT

k γk/γ
T
k γk)

8: end if
9: for i : k −min(m, (k − 1)), . . . , k − 1, k do

10: τ = (γT
i ηk)/(γT

i σi)
11: ηk = ηk − (βi − τ)σi

12: end for
13: return ηk

where

pk = wk+1 − (wk + µvk) and qk = ∇E(wk+1)−∇E(wk + µvk). (10)

(9) is derived from the secant condition qk = (Ĥk+1)−1pk and the rank-2 updat-
ing formula [24]. It is proved that the Hessian matrix Ĥk+1 updated by (9) is a
positive definite symmetric matrix given Ĥk is initialized to identity matrix [24].
Therefore, the update vector of NAQ can be written as:

vk+1 = µvk + αkĝk, (11)

where ĝk = −Ĥk∇E(wk + µvk) is the search direction. The NAQ algorithm is
given in Algorithm 2. Note that the gradient is computed twice in one iteration.
This increases the computational cost compared to the BFGS quasi-Newton
method. However, due to acceleration by the momentum and Nesterov’s gradient
term, NAQ is faster in convergence compared to BFGS.

Limited Memory NAQ (LNAQ) Similar to LBFGS method, LNAQ [25]
is the limited memory variant of NAQ that uses the last m curvature pairs
{pk,qk}. In the limited-memory form note that the curvature pairs that are
used incorporate the momemtum and Nesterov’s accelerated gradient term, thus
accelerating LBFGS. Implementation of LNAQ algorithm can be realized by
omitting steps 4 and 9 of Algorithm 2 and determining the search direction ĝk

using the two-loop recursion [26] shown in Algorithm 3. The last m vectors of
pk and qk are stored and used in the direction update.

2.3 Stochastic BFGS quasi-Newton Method (oBFGS)

The online BFGS method proposed by Schraudolph et al in [13] is a fast and scal-
able stochastic quasi-Newton method suitable for convex functions. The changes

6 S. Indrapriyadarsini et al.

proposed to the BFGS method in [13] to work well in a stochastic setting are
discussed as follows. The line search is replaced with a gain schedule such as

αk = τ/(τ + k) · α0, (12)

where α0, τ > 0 provided the Hessian matrix is positive definite, thus restricting
to convex optimization problems. Since line search is eliminated, the first pa-
rameter update is scaled by a small value. Further, to improve the performance
of oBFGS, the step size is divided by an analytically determined constant c. An
important modification is the computation of yk, the difference of the last two
gradients is computed on the same sub-sample Xk [13, 14] as given below,

yk = ∇E(wk+1, Xk)−∇E(wk, Xk). (13)

This however doubles the cost of gradient computation per iteration but is shown
to outperform natural gradient descent for all batch sizes [13]. The oBFGS al-
gorithm is shown in Algorithm 4. In this paper, we introduce direction normal-
ization as shown in step 5, details of which are discussed in the next section.

Stochastic Limited Memory BFGS (oLBFGS) [13] further extends the
oBFGS method to limited memory form by determining the search direction
gk using the two-loop recursion (Algorithm 3). The Hessian update is omitted
and instead the last m curvature pairs sk and yk are stored. This brings down
the computation complexity to 2bd+ 6md where b is the batch size, d is the
number of parameters, and m is the memory size. To improve the performance
by averaging sampling noise step 7 of Algorithm 3 is replaced by (14) where σk
is sk and γk is yk.

ηk =


εηk if k = 1,

ηk
min(k,m)

min(k,m)∑
i=1

σT
k−iγk−i

γTk−iγk−i
otherwise.

(14)

3 Proposed Algorithm - oNAQ and oLNAQ

The oBFGS method proposed in [13] computes the gradient of a sub-sample
minibatch Xk twice in one iteration. This is comparable with the inherent na-
ture of NAQ which also computes the gradient twice in one iteration. Thus
by applying suitable modifications to the original NAQ algorithm, we achieve
a stochastic version of the Nesterov’s Accelerated Quasi-Newton method. The
proposed modifications for a stochastic NAQ method is discussed below in its
full and limited memory forms.

3.1 Stochastic NAQ (oNAQ)

The NAQ algorithm computes two gradients, ∇E(wk +µvk) and ∇E(wk+1) to
calculate qk as shown in (10). On the other hand, the oBFGS method proposed

A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 7

in [13] computes the gradient ∇E(wk, Xk) and ∇E(wk+1, Xk) to calculate yk

as shown in (13). Therefore, oNAQ can be realised by changing steps 3 and
8 of Algorithm 2 to calculate ∇E(wk + µvk, Xk) and ∇E(wk+1, Xk). Thus in
oNAQ, the qk vector is given by (15) where λpk is used to guarantee numerical
stability [27–29].

qk = ∇E(wk+1, Xk)−∇E(wk + µvk, Xk) + λpk, (15)

Further, unlike in full batch methods, the updates in stochastic methods
have high variance resulting in the objective function to fluctuate heavily. This
is due to the updates being performed based on small sub-samples of data. This
can be seen more prominently in case of the limited memory version where the
updates are based only on m recent curvature pairs. Thus in order to improve
the stability of the algorithm, we introduce direction normalization as

ĝk = ĝk/||ĝk||2, (16)

where ||ĝk||2 is the l2 norm of the search direction ĝk. Normalizing the search
direction at each iteration ensures that the algorithm does not move too far
away from the current objective [18]. Fig.1 illustrates the effect of direction nor-
malization on oBFGS and the proposed oNAQ method. The solid lines indicate
the moving average. As seen from the figure, direction normalization improves
the performance of both oBFGS and oNAQ. Therefore, in this paper we include
direction normalization for oBFGS also.

The next proposed modification is with respect to the step size. In full batch
methods, the step size or the learning rate is usually determined by line search
methods satisfying either Armijo or Wolfe conditions. However, in stochastic
methods, line searches are not quite effective since search conditions apply global
validity. This cannot be assumed when using small local sub-samples [13]. Several
studies show that line search methods does not necessarily ensure global conver-
gence and have proposed methods that eliminate line search [27–29]. Moreover,
determining step size using line search methods involves additional function com-
putations until the search conditions such as the Armijo or Wolfe condition is
satisfied. Hence we determine the step size using a simple learning rate schedule.
Common learning rate schedules are polynomial decays and exponential decay
functions. In this paper, we determine the step size using a polynomial decay
schedule [30]

αk = α0/
√
k, (17)

where α0 is usually set to 1. If the step size is too large, which is the case in
the initial iterations, the learning can become unstable. This is stabilized by
direction normalization. A comparison of common learning rate schedules are
illustrated in Fig. 2

The proposed stochastic NAQ algorithm is shown in Algorithm 5. Note that
the gradient is computed twice in one iteration, thus making the computational
cost same as that of the stochastic BFGS (oBFGS) proposed in [13].

8 S. Indrapriyadarsini et al.

Algorithm 4 oBFGS Method

Require: minibatch Xk, kmax and
λ ≥ 0,

Initialize: wk ∈ Rd, Hk = εI and
vk = 0

1: k ← 1
2: while k < kmax do
3: ∇E1 ← ∇E(wk, Xk)
4: gk ← −Hk∇E(wk, Xk)
5: gk = gk/||gk||2
6: Determine αk using (12)
7: vk+1 ← αkgk

8: wk+1 ← wk + vk+1

9: ∇E2 ← ∇E(wk+1, Xk)
10: sk ← wk+1 −wk

11: yk ← ∇E2 −∇E1 + λsk
12: Update Hk using (4)
13: k ← k + 1
14: end while

Algorithm 5 Proposed oNAQ
Method

Require: minibatch Xk, 0 < µ < 1
and kmax

Initialize: wk ∈ Rd, Ĥk = εI and
vk = 0

1: k ← 1
2: while k < kmax do
3: ∇E1 ← ∇E(wk + µvk, Xk)
4: ĝk ← −Ĥk∇E(wk + µvk, Xk)
5: ĝk = ĝk/||ĝk||2
6: Determine αk using (17)
7: vk+1 ← µvk + αkĝk

8: wk+1 ← wk + vk+1

9: ∇E2 ← ∇E(wk+1, Xk)
10: pk ← wk+1 − (wk + µvk)
11: qk ← ∇E2 −∇E1 + λpk

12: Update Ĥk using (9)
13: k ← k + 1
14: end while

0 200 400 600 800
Iterations

10 4

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

oNAQ
oNAQ_woDN
oBFGS
oBFGS_woDN

oNAQ
oNAQ_woDN
oBFGS
oBFGS_woDN

Fig. 1: Effect of direction
normalization on 8x8 MNIST with b

= 64 and µ = 0.8.

0 250 500 750 1000 1250 1500 1750
Iterations

10 5

10 4

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

1/k
1/ k
exp(-k)

1/k
1/ k
exp(-k)

Fig. 2: Comparison of αk schedules
on 8x8 MNIST with b = 64 and

µ = 0.8.

3.2 Stochastic Limited-Memory NAQ (oLNAQ)

Stochastic LNAQ can be realized by making modifications to Algorithm 5 similar
to LNAQ. The search direction ĝk in step 4 is determined by Algorithm 3.
oLNAQ like LNAQ uses the last m curvature pairs {pk,qk} to estimate the
Hessian matrix instead of storing and computing on a dxd matrix. Therefore, the

A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 9

implementation of oLNAQ does not require initializing or updating the Hessian
matrix. Hence step 12 of Algorithm 5 is replaced by storing the last m curvature
pairs {pk,qk}. Finally, in order to average out the sampling noise in the last m
steps, we replace step 7 of Algorithm 3 by eq. (14) where σk is pk and γk is qk.
Note that an additional 2md evaluations are required to compute (14). However
the overall computation cost of oLNAQ is much lesser than that of oNAQ and
the same as oLBFGS.

4 Simulation Results

We illustrate the performance of the proposed stochastic methods oNAQ and
oLNAQ on four benchmark datasets - two classification and two regression
problems. For the classification problem we use the 8x8 MNIST and 28x28
MNIST datasets and for the regression problem we use the Wine Quality [31] and
CASP [32] datasets. We evaluate the performance of the classification tasks on
a multi-layer neural network (MLNN) and a simple convolution neural network
(CNN). The algorithms oNAQ, oBFGS, oLNAQ and oLBFGS are implemented
in Tensorflow using the ScipyOptimizerInterface class. Details of the simulation
are given in Table 1.

4.1 Multi-Layer Neural Networks - Classification Problem

We evaluate the performance of the proposed algorithms for classification of
handwritten digits using the 8x8 MNIST [33] and 28x28 MNIST dataset [34].
We consider a simple MLNN with two hidden layers. ReLU activation function
and softmax cross-entropy loss function is used. Each layer except the output
layer is batch normalized.

Table 1: Details of the Simulation - MLNN.

8x8 MNIST 28x28 MNIST Wine Quality CASP

task classification classification regression regression
input 8x8 28x28 11 9

MLNN structure 64-20-10-10 784-100-50-10 11-10-4-1 9-10-6-1
parameters (d) 1,620 84,060 169 173

train set 1,198 55,000 3,918 36,584
test set 599 10,000 980 9,146

classes/output 10 10 1 1
momentum (µ) 0.8 0.85 0.95 0.95
batch size (b) 64 64/128 32/64 64/128
memory (m) 4 4 4 4

10 S. Indrapriyadarsini et al.

0 10 20 30 40 50 60 70 80
Epochs

10 5

10 4

10 3

10 2

10 1

100
Tr

ai
n

Lo
ss

SGD
oNAQ(=0.8)
oBFGS

Adam
oLNAQ(=0.8)
oLBFGS

SGD
oNAQ(=0.8)
oBFGS

Adam
oLNAQ(=0.8)
oLBFGS

10 20 30 40 50 60 70 80
Epochs

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y

SGD
oNAQ(=0.8)
oBFGS

Adam
oLNAQ(=0.8)
oLBFGS

SGD
oNAQ(=0.8)
oBFGS

Adam
oLNAQ(=0.8)
oLBFGS

Fig. 3: Comparision of train loss and test accuracy versus number of epochs
required for convergence of 8x8 MNIST data with a maximum of 80 epochs.

Results on 8x8 MNIST Dataset We evaluate the performance of oNAQ
and oLNAQ on a reduced version of the MNIST dataset in which each sample
is an 8x8 image representing a handwritten digit [33]. Fig. 3 shows the number
of epochs required to converge to a train loss of < 10−3 and its corresponding
test accuracy for a batch size b = 64. The maximum number of epochs is set
to 80. As seen from the figure, it is clear that oNAQ and oLNAQ require fewer
epochs compared to oBFGS, oLBFGS, Adam and SGD. In terms of compuation
time, o(L)BFGS and o(L)NAQ require longer time compared to the first order
methods. This is due to the Hessian computation and twice gradient calculation.
Further, the oBFGS and oNAQ per iteration time difference compared to first
order methods is much larger than that of the limited memory algorithms with
memory m = 4. This can be seen from Fig. 4 which shows the comparison of
train loss and test accuracy versus time for 80 epochs. It can be observed that for
the same time, the second order methods perform significantly better compared
to the first order methods, thus confirming that the extra time taken by the
second order methods does not adversely affect its performance. Thus, in the
subsequent sections we compare the train loss and test accuracy versus time to
evaluate the performance of the proposed method.

Results on 28x28 MNIST Dataset Next, we evaluate the performance of
the proposed algorithm on the standard 28x28 pixel MNIST dataset [34]. Due to
system constraints and large number of parameters, we illustrate the performace
of only the limited memory methods. Fig.5 shows the results of oLNAQ on the
28x28 MNIST dataset for batch size b = 64 and b = 128. The results indicate
that oLNAQ clearly outperforms oLBFGS and SGD for even small batch sizes.
On comparing with Adam, oLNAQ is in close competition with Adam for small
batch sizes such as b = 64 and performs better for larger batch sizes such as
b = 128.

A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 11

0 25 50 75 100 125 150 175 200
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

SGD
oNAQ(=0.8)
oBFGS

Adam
oLNAQ(=0.8)
oLBFGS

SGD
oNAQ(=0.8)
oBFGS

Adam
oLNAQ(=0.8)
oLBFGS

0 25 50 75 100 125 150 175 200
Time (s)

86

88

90

92

94

96

Te
st

 A
cc

ur
ac

y

SGD
oNAQ(=0.8)
oBFGS

Adam
oLNAQ(=0.8)
oLBFGS

SGD
oNAQ(=0.8)
oBFGS

Adam
oLNAQ(=0.8)
oLBFGS

Fig. 4: Comparison of train loss and test accuracy over time on 8x8 MNIST (80
epochs).

0 200 400 600 800 1000
Time (s)

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

oLNAQ(=0.85)
oLBFGS
Adam
SGD

oLNAQ(=0.85)
oLBFGS
Adam
SGD

200 400 600 800 1000
Time (s)

96.0

96.5

97.0

97.5

98.0
Te

st
 A

cc
ur

ac
y

oLNAQ(=0.85)
oLBFGS
Adam
SGD

oLNAQ(=0.85)
oLBFGS
Adam
SGD

0 100 200 300 400
Time (s)

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

oLNAQ(=0.85)
oLBFGS

Adam
SGD

oLNAQ(=0.85)
oLBFGS

Adam
SGD

0 50 100 150 200 250 300 350 400
Time (s)

92

93

94

95

96

97

98

Te
st

 A
cc

ur
ac

y

SGD
Adam

oLNAQ(=0.85)
oLBFGS

SGD
Adam

oLNAQ(=0.85)
oLBFGS

Fig. 5: Results on 28x28 MNIST for b = 64 (top) and b = 128 (bottom).

4.2 Convolution Neural Network - Classification Task

We study the performance of the proposed algorithm on a simple convolution
neural network (CNN) with two convolution layers followed by a fully connected
layer. We use sigmoid activation functions and softmax cross-entropy error func-
tion. We evaluate the performance of oNAQ using the 8x8 MNIST dataset with

12 S. Indrapriyadarsini et al.

a batch size of 64 and µ = 0.8 and number of parameters d = 778. The CNN ar-
chitecture comprises of two convolution layers of 3 and 5 5x5 filters respectively,
each followed by 2x2 max pooling layer with stride 2. The convolution layers are
followed by a fully connected layer with 10 hidden neurons. Fig. 6 shows the CNN
results of 8x8 MNIST. Calculation of the gradient twice per iteration increases
the time per iteration when compared to the first order methods. However this is
compensated well since the overall performance of the algorithm is much better
compared to Adam and SGD. Also the number of epochs required to converge
to low error and high accuracies is much lesser than the other algorithms. In
other words, the same accuracy or error can be achieved with lesser amount of
training data. Further, we evaluate the performance of oLNAQ using the 28x28
MNIST dataset with batch size b = 128,m = 4 and d = 260, 068. The CNN ar-
chitecture is similar to that as described above except that the fully connected
layer has 100 hidden neurons. Fig.7 shows the results of oLNAQ on the simple
CNN. The CNN results show similar performance as that of the results on multi-
layer neural network where oLNAQ outperforms SGD and oBFGS. Comparing
with Adam, oLNAQ is much faster in the first few epochs and becomes closely
competitive to Adam as the number of epochs increases.

4.3 Multi-layer Neural Network - Regression Problem

We further extend to study the performance of the proposed stochastic meth-
ods on regression problems. For this task, we choose two benchmark datasets -
prediction of white wine quality [31] and CASP [32] dataset. We evaluate the
performance of oNAQ and oLNAQ on multi-layer neural network as shown in
Table 1. Sigmoid activation function and mean squared error (MSE) function
is used. Each layer except the output layer is batch normalized. Both datasets
were z-normalized to have zero mean and unit variance.

Results on Wine Quality Dataset We evaluate the performance of oNAQ
and oLNAQ on the Wine Quality [31] dataset to predict the quality of the white
wine on a scale of 3 to 9 based on 11 physiochemical test values. We split the
dataset in 80-20 % for train and test set. For the regression problems, oNAQ with
smaller values of momemtum µ = 0.8 and µ = 0.85 show similar performance
as that of oBFGS. Larger values of momentum resulted in better performance.
Hence we choose a value of µ = 0.95 which shows faster convergence compared
to the other methods. Further comparing the performance for different batch
sizes, we observe that for smaller batch sizes such as b = 32, oNAQ is close
in performance with Adam and oLNAQ is initially fast and gradually becomes
close to Adam. For bigger batch sizes such as b = 64, oNAQ and oLNAQ are
faster in convergence initially. Over time, oLNAQ continues to result in lower
error while oNAQ gradually becomes close to Adam. Fig. 8 shows the root mean
squared error (RMSE) versus time for batch sizes b = 32 and b = 64.

Results on CASP Dataset The next regression problem under consideration
is the CASP (Critical Assessment of protein Structure Prediction) dataset from

A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 13

0 10 20 30 40 50 60
Time (s)

100

Tr
ai

n
Lo

ss

SGD
Adam

oBFGS
oNAQ(=0.8)

SGD
Adam

oBFGS
oNAQ(=0.8)

0 10 20 30 40 50 60
Time (s)

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

SGD
Adam
oBFGS
oNAQ(=0.8)

SGD
Adam
oBFGS
oNAQ(=0.8)

Fig. 6: Convolution Neural Network results on 8x8 MNIST with b = 64.

0 1000 2000 3000 4000
Time (s)

10 1

100

101

Tr
ai

n
Lo

ss

oLNAQ(=0.85)
oLBFGS
Adam
SGD

oLNAQ(=0.85)
oLBFGS
Adam
SGD

0 1000 2000 3000 4000
Time (s)

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

oLNAQ(=0.85)
oLBFGS
Adam
SGD

oLNAQ(=0.85)
oLBFGS
Adam
SGD

Fig. 7: CNN Results on 28x28 MNIST with b = 128.

0 10 20 30 40 50 60
Time (s)

0.76

0.78

0.80

0.82

0.84

0.86

RM
SE

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

0 10 20 30 40 50 60
Time (s)

0.76

0.78

0.80

0.82

0.84

0.86

RM
SE

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

Fig. 8: Results of Wine Quality Dataset for b = 32 (left) and b = 64 (right).

[32]. It gives the physicochemical properties of protein tertiary structure. We split
the dataset in 80-20% for train and test set. Similar to the wine quality problem,
a momentum of µ = 0.95 was fixed. Fig. 9 shows the root mean squared error
(RMSE) versus time for batch sizes b = 64 and b = 128. For both batch sizes,

14 S. Indrapriyadarsini et al.

0 50 100 150 200 250 300
Time (s)

0.72

0.74

0.76

0.78

0.80

0.82

RM
SE

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

0 50 100 150 200 250 300
Time (s)

0.72

0.74

0.76

0.78

0.80

0.82

RM
SE

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

Fig. 9: Results of CASP Dataset for batch size b = 64 (left) and b = 128 (right).

0.7 0.75 0.8 0.85 0.9 0.95
Momentum ()

5

10

15

20

25

30

Ep
oc

hs
 R

eq
ui

re
d

8x8 MNIST (b=64)
28x28 MNIST (b=128)
8x8 MNIST (b=64)
28x28 MNIST (b=128)

Fig. 10: No. of epochs required to con-
verge for different values of µ with
m = 4 for oLNAQ classification prob-
lems.

0.7 0.75 0.8 0.85 0.9 0.95
Momentum ()

20

40

60

80

100

Ep
oc

hs
 R

eq
ui

re
d

Wine Quality (b=64)
CASP Dataset (b=128)
Wine Quality (b=64)
CASP Dataset (b=128)

Fig. 11: No. of epochs required to
converge for different values of µ
with m = 4 for oLNAQ regression
problems.

oNAQ in initially fast and becomes close to Adam and shows better performance
compared to oBFGS and oLBFGS. On the other hand, we observe that oLNAQ
consistently shows decrease in error and outperforms the other algorithms for
both batch sizes.

4.4 Discussions on choice of parameters

The momentum term µ is a hyperparameter with a value in the range 0 < µ < 1
and is usually chosen closer to 1 [24, 35]. The performance for different values
of the momentum term have been studied for all the four problem sets in this
paper. Fig. 10 and Fig. 11 show the number of epochs required for convergence for
different values of µ for the classification and regression datasets respectively. For
the limited memory schemes, a memory size of m = 4 showed optimum results for
all the four problem datasets with different batch sizes. Larger memory sizes also
show good performance. However considering computational efficiency, memory

A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 15

Table 2: Summary of Computational Cost and Storage.

Algorithm Computational Cost Storage

fu
ll

b
a
tc

h BFGS nd+ d2 + ζnd d2

NAQ 2nd+ d2 + ζnd d2

LBFGS nd+ 4md+ 2d+ ζnd 2md
LNAQ 2nd+ 4md+ 2d+ ζnd 2md

o
n
li
n
e

oBFGS 2bd+ d2 d2

oNAQ 2bd+ d2 d2

oLBFGS 2bd+ 6md 2md
oLNAQ 2bd+ 6md 2md

size is usually maintained smaller than the batch size. Since the computation
cost is 2bd+ 6md, if b ≈ m the computation cost would increase to 8bd. Hence a
smaller memory is desired. Memory sizes less than m = 4 does not perform well
for small batch sizes and hence m = 4 was chosen.

4.5 Computation and Storage Cost

The summary of the computational cost and storage for full batch and stochastic
(online) methods are illustrated in Table 2. The cost of function and gradient
evaluations can be considered to be nd, where n is the number of training samples
involved and d is the number of parameters. The Nesterov’s Accelerated quasi-
Newton (NAQ) method computes the gradient twice per iteration compared to
the BFGS quasi-Newton method which computes the gradient only once per
iteration. Thus NAQ has an additional nd computation cost. In both BFGS and
NAQ algorithms, the step length is determined by line search methods which
involves ζ function evaluations until the search condition is satisfied. In the
limited memory forms the Hessian update is approximated using the two-loop
recursion scheme, which requires 4md+ 2d multiplications. In the stochastic set-
ting, both oBFGS and oNAQ compute the gradient twice per iteration, making
the compuational cost the same in both. Both methods do not use line search
and due to smaller number of training samples (minibatch) in each iteration,
the computational cost is smaller compared to full batch. Further, in stochastic
limited memory methods, an additional 2md evaluations are required to com-
pute the search direction as given (14). In stochastic methods the computational
complexity is reduced significantly due to smaller batch sizes (b < n).

5 Conclusion

In this paper we have introduced a stochastic quasi-Newton method with Nes-
terov’s accelerated gradient. The proposed algorithm is shown to be efficient

16 S. Indrapriyadarsini et al.

compared to the state of the art algorithms such Adam and classical quasi-
Newton methods. From the results presented above, we can conclude that the
proposed o(L)NAQ methods clearly outperforms the conventional o(L)BFGS
methods with both having the same computation and storage costs. However
the computation time taken by oBFGS and oNAQ are much higher compared
to the first order methods due to Hessian computation. On the other hand, we
observe that the per iteration computation of Adam, oLBFGS and oLNAQ are
comparable. By tuning the momentum parameter µ, oLNAQ is seen to perform
better and faster compared to Adam. Hence we can conclude that with an appro-
priate value of µ, oLNAQ can achieve better results. Further, the limited memory
form of the proposed algorithm can efficiently reduce the memory requirements
and computational cost while incorporating second order curvature information.
Another observation is that the proposed oNAQ and oLNAQ methods signifi-
cantly accelerates the training especially in the first few epochs when compared
to both, first order Adam and second order o(L)BFGS method. Several stud-
ies propose pretrained models. oNAQ and oLNAQ can possibly be suitable for
pretraining. Also, the computational speeds of oNAQ could be improved further
by approximations which we leave for future work. Further studying the per-
formance of the proposed algorithm on bigger problem sets, including that of
convex problems and on popular NN architectures such as AlexNet, LeNet and
ResNet could test the limits of the algorithm. Furthermore, theoretical analysis
of the convergence properties of the proposed algorithms will also be studied in
future works.

References

1. Haykin, S.: Neural Networks and Learning Machines. 3rd edn. Pearson Prentice
Hall, (2009)

2. Bottou, L., Cun, Y.L.: Large scale online learning. In: Advances in neural infor-
mation processing systems. (2004) 217–224

3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Proceedings of COMPSTAT’2010. Springer (2010) 177–186

4. Robbins, H., Monro, S.: A stochastic approximation method. The annals of math-
ematical statistics (1951) 400–407

5. Peng, X., Li, L., Wang, F.Y.: Accelerating minibatch stochastic gradient descent
using typicality sampling. arXiv preprint arXiv:1903.04192 (2019)

6. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive
variance reduction. In: Advances in neural information processing systems. (2013)
315–323

7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12(Jul) (2011)
2121–2159

8. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop, coursera: Neural networks for
machine learning. University of Toronto, Technical Report (2012)

9. Kingma, D.P., Ba, J.: Adam : A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Martens, J.: Deep learning via hessian-free optimization. In: ICML. Volume 27.
(2010) 735–742

A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient 17

11. Roosta-Khorasani, F., Mahoney, M.W.: Sub-sampled newton methods i: globally
convergent algorithms. arXiv preprint arXiv:1601.04737 (2016)

12. Dennis, Jr, J.E., Moré, J.J.: Quasi-newton methods, motivation and theory. SIAM
review 19(1) (1977) 46–89

13. Schraudolph, N.N., Yu, J., Günter, S.: A stochastic quasi-newton method for online
convex optimization. In: Artificial Intelligence and Statistics. (2007) 436–443

14. Mokhtari, A., Ribeiro, A.: Res: Regularized stochastic bfgs algorithm. IEEE
Transactions on Signal Processing 62(23) (2014) 6089–6104

15. Mokhtari, A., Ribeiro, A.: Global convergence of online limited memory bfgs. The
Journal of Machine Learning Research 16(1) (2015) 3151–3181

16. Byrd, R.H., Hansen, S.L., Nocedal, J., Singer, Y.: A stochastic quasi-newton
method for large-scale optimization. SIAM Journal on Optimization 26(2) (2016)
1008–1031

17. Wang, X., Ma, S., Goldfarb, D., Liu, W.: Stochastic quasi-newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization 27(2) (2017)
927–956

18. Li, Y., Liu, H.: Implementation of stochastic quasi-newton’s method in pytorch.
arXiv preprint arXiv:1805.02338 (2018)

19. Lucchi, A., McWilliams, B., Hofmann, T.: A variance reduced stochastic newton
method. arXiv preprint arXiv:1503.08316 (2015)

20. Moritz, P., Nishihara, R., Jordan, M.: A linearly-convergent stochastic l-bfgs al-
gorithm. In: Artificial Intelligence and Statistics. (2016) 249–258

21. Bollapragada, R., Mudigere, D., Nocedal, J., Shi, H.J.M., Tang, P.T.P.: A progres-
sive batching l-bfgs method for machine learning. arXiv preprint arXiv:1802.05374
(2018)

22. Byrd, R.H., Chin, G.M., Neveitt, W., Nocedal, J.: On the use of stochastic hes-
sian information in optimization methods for machine learning. SIAM Journal on
Optimization 21(3) (2011) 977–995

23. Gower, R., Goldfarb, D., Richtárik, P.: Stochastic block bfgs: Squeezing more
curvature out of data. In: International Conference on Machine Learning. (2016)
1869–1878

24. Ninomiya, H.: A novel quasi-newton-based optimization for neural network training
incorporating nesterov’s accelerated gradient. Nonlinear Theory and Its Applica-
tions, IEICE 8(4) (2017) 289–301

25. Mahboubi, S., Ninomiya, H.: A novel training algorithm based on limited-memory
quasi-newton method with nesterov’s accelerated gradient in neural networks and
its application to highly-nonlinear modeling of microwave circuit. IARIA Interna-
tional Journal on Advances in Software 11(3-4) (2018) 323–334

26. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations
Research. Springer, second edition (2006)

27. Zhang, L.: A globally convergent bfgs method for nonconvex minimization without
line searches. Optimization Methods and Software 20(6) (2005) 737–747

28. Dai, Y.H.: Convergence properties of the bfgs algoritm. SIAM Journal on Opti-
mization 13(3) (2002) 693–701

29. Indrapriyadarsini, S., Mahboubi, S., Ninomiya, H., Asai, H.: Implementation of a
modified nesterov’s accelerated quasi-newton method on tensorflow. In: 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA),
IEEE (2018) 1147–1154

30. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proceedings of the 20th International Conference on Machine Learning
(ICML-03). (2003) 928–936

18 S. Indrapriyadarsini et al.

31. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine pref-
erences by data mining from physicochemical properties. Decision Support Sys-
tems 47(4) (2009) 547–553 https://archive.ics.uci.edu/ml/datasets/wine+

quality

32. Rana, P.: Physicochemical properties of protein tertiary structure data set.
UCI Machine Learning Repository (2013) https://archive.ics.uci.edu/ml/

datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure

33. Alpaydin, E., Kaynak, C.: Optical recognition of handwritten digits data set.
UCI Machine Learning Repository (1998) https://archive.ics.uci.edu/ml/

datasets/optical+recognition+of+handwritten+digits

34. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. AT&T Labs
[Online] Available: http://yann.lecun.com/exdb/mnist (2010)

35. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initial-
ization and momentum in deep learning. ICML (3) 28(1139-1147) (2013) 5

