
Shrinkage Estimators for Uplift Regression

Krzysztof Rudaś1,2 � and Szymon Jaroszewicz2

1 Warsaw University of Technology,
2 Institute of Computer Science, Polish Academy of Sciences

Abstract. Uplift modeling is an approach to machine learning which
allows for predicting the net effect of an action (with respect to not
taking the action). To achieve this, the training population is divided
into two parts: the treatment group, which is subjected to the action,
and the control group, on which the action is not taken. Our task is to
construct a model which will predict the difference between outcomes in
the treatment and control groups conditional on individual objects’ fea-
tures. When the group assignment is random, the model admits a causal
interpretation. When we assume linear responses in both groups, the
simplest way of estimating the net effect of the action on an individual is
to build two separate linear ordinary least squares (OLS) regressions on
the treatment and control groups and compute the difference between
their predictions. In classical linear models improvements in accuracy
can be achieved through the use of so called shrinkage estimators such
as the well known James-Stein estimator, which has a provably lower
mean squared error than the OLS estimator. In this paper we investi-
gate the use of shrinkage estimators in the uplift modeling problem. Un-
fortunately direct generalization of the James-Stein estimator does not
lead to improved predictions, nor does shrinking treatment and control
models separately. Therefore, we propose a new uplift shrinkage method
where estimators in the treatment and control groups are shrunk jointly
so as to minimize the error in the predicted net effect of the action. We
prove that the proposed estimator does indeed improve on the double
regression estimator.

1 Introduction

Selecting observations which should become targets for an action, such as a
marketing campaign or a medical treatment, is a problem of growing importance
in machine learning. Typically, the first step is to predict the effect of the action
(response) using a model built on a sample of individuals subjected to the action.
A new observation is classified as suitable for the action if the predicted response
is above a certain threshold. Unfortunately this approach is not correct because
the response that would have been observed had the action not been taken is
ignored.

To clarify the problem, let us give a simple example. Suppose that we are
owners of a shop which sells chocolate bars. In order to increase the sales of this
product we give discounts to customers. Consider two cases. The first customer
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would have spent $100 on chocolate after receiving the discount and $95 in a
situation when it was not given to him. The second one will spend $50 and
$10, respectively. When we base our predictions only on a sample of customers
subjected to the action (i.e. given the discount), we will prefer the first customer,
but when we compare the amounts of money spent in cases of receiving and not
receiving the discount, we will be disposed to send it to the second customer.

Clearly, the proper way to select targets for an action is to consider the
difference between yT , the response in case the individual is subjected to the
action (treated) and yC , the response when the individual is not subjected to
the action (control). Unfortunately these two pieces of information are never
available to us simultaneously. Once we send the discount we cannot ‘unsend’ it.
This is known as the Fundamental Problem of Causal Inference [28].

Uplift modeling offers a solution to this problem based on dividing the pop-
ulation into two parts: treatment: subjected to the action and control on which
the action is not taken. This second group is used as background thanks to which
it is possible to partition the treatment response into a sum of two terms. The
first is the response, which would have been observed if the treated objects were,
instead, in the control group. The second is the additional effect observed only
in the treatment group: the effect of the action. Based on this partition it is pos-
sible to construct a model predicting the desired difference between responses in
the treatment and control groups [22].

Let us now introduce the notation used throughout the paper. We begin by
describing the classical ordinary least squares regression. Only facts needed in
the remaining part of the paper are given, full exposition can be found e.g. in [2].
We will assume that the predictor variables are arranged in an n× p matrix X
and the responses are given in an n-dimensional vector y. We assume that y is
related to X through a linear equation

y = Xβ + ε,

where β is an unknown coefficient vector and ε is a random noise vector with
the usual assumptions that E εi = 0, Var εi = σ2 and the components of ε are
independent of each other. Moreover, we will make the assumption that the
matrix X is fixed, which is frequently made in regression literature [2]. Our goal
is to find an estimator of β which, on new test data Xtest, ytest, achieves the
lowest possible mean squared error

MSE(β̂) = E ‖ytest −Xtestβ̂‖2, (1)

where β̂ is some estimator of β, and the expectation is taken over εtest and
β̂. The most popular estimator is the Ordinary Least Squares (OLS) estimator
obtained by minimizing the training set MSE ‖y −Xβ̂‖2, given by

β̂ = (X ′X)−1X ′y, (2)

where ′ denotes matrix transpose. In the rest of the paper β̂ without additional
subscripts will always denote the OLS estimator. It is well known that β̂ is
unbiased, E β̂ = β, and its covariance matrix is σ2(X ′X)−1 [2].
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Let us now move to the case of regression in uplift modeling which is based
on two training sets: treatment and control. We will adopt the convention that
quantities related to the treatment group are denoted with superscript T , quan-
tities related to the control group with a superscript C, and quantities related to
the uplift itself with superscript U . Thus, in our context we will have two training
sets XT , yT and XC , yC . Additionally denote X = [XT ′|XC ′]′, y = [yT

′|yC ′]′,
i.e. the dataset obtained by concatenating treatment and control data records.

In this paper we will make an assumption (frequently made in statistical
literature when linear models are considered), that responses in both groups are
linear:

yC = XCβC + εC ,

yT = XTβT + εT = XTβC +XTβU + εT .

The additional effect observed in the treatment group, XTβU , is the quantity of
interest and our goal, therefore, is to find an estimator of βU . The easiest way to
obtain such an estimator is to construct separate Ordinary Least Squares (OLS)
estimators of βT and βC on treatment and control groups respectively, and to
calculate the difference between them:

β̂Ud = β̂T − β̂C . (3)

This estimator is called the double regression estimator [9]. It is easy to show
that the estimator is an unbiased estimator of βU [9].

In classical regression analysis there are several ways of lowering the predic-
tive error of the ordinary least squares model by reducing its variance at the
expense of introducing bias [2]. One class of such estimators are shrinkage esti-
mators which scale the ordinary least squares estimate β̂ by a factor α < 1. The
best known of such estimators is the James-Stein estimator [27]. Another choice
is a class of shrinkage estimators based on minimizing predictive MSE [19].

The goal of this paper is to find shrinkage estimators for uplift regression,
whose accuracy is better than that of the double regression estimator. We may
shrink the treatment and control coefficients separately obtaining the following
general form of uplift shrinkage estimator

β̂UαT ,αC = αT β̂T − αC β̂C .

with an appropriate choice of αT and αC .
We introduce two types of such estimators, the first following the James-Stein

approach, the second the MSE minimization approach. For each type we again
introduce to sub-types: one in which treatment and control shrinkage factors
αT and αC are found independently of each other (these are essentially double
shrinkage models) and another which in shrinkage factors are estimated jointly
in order to produce the best possible estimates of βU . We demonstrate experi-
mentally that MSE minimization based shrinkage with joint optimization of αT
and αC gives the best uplift shrinkage estimator. We also formally prove that
under certain assumptions it dominates the double regression estimator β̂Ud .
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1.1 Literature overview

We will now review the literature on uplift modeling. Literature related to shrink-
age estimators will be discussed in Section 2.

Uplift modeling is a part of broader field of causal discovery and we will
begin by positioning it within this field. The goal of causal discovery is not
predicting future outcomes, but, instead, modeling the effects of interventions
which directly change the values of some variables [20]. One can distinguish
two general approaches to causal discovery: one based on purely observational
data [20,26] and another one, in which the action being analyzed has actively
been applied to a subgroup of the individuals.

Only the second approach is relevant to this paper. Large amount of related
research has been conducted in the social sciences. However, their main research
focus is on the cases where treatment assignment is nonrandom or biased [7,5].
Examples of methods used are propensity score matching or weighting by in-
verse probability of treatment [7,5]. Unfortunately, the success of those method
depends on untestable assumptions such as ‘no unmeasured confounders’. Only
random treatment assignment guarantees that the causal effect is correctly iden-
tified. Most of those methods use double regression and do not try to improve the
estimator itself. Uplift modeling differs from those methods since it is focused on
obtaining the best possible estimate of an action’s effect based on a randomized
trial.

Most uplift modeling publications concern the problem of classification. The
first published methods were based on decision trees [22,24]. They used modified
splitting criteria to maximize difference in responses between the two groups.
Similar methods have been devised under the name of estimating heteroge-
nous treatment effects [1,8]. Later works extend these methods to ensembles
of trees [4,25]. Work on linear uplift models includes approaches based on class
variable transformation [15,10,11] used with logistic regression and approaches
based on Support Vector Machines [13,29,14]. These methods can be used only
with classification problems. Uplift regression methods were proposed in [9]. The
paper also contained a theoretical analysis comparing several regression models.

The paper is organized as follows. In Section 2 we discuss shrinkage estimators
used in classical linear regression. In Section 3 we derive four uplift shrinkage
estimators and prove that, under certain assumptions, one of them dominates
the double regression model. In Section 4 we evaluate the proposed estimators
on two real-life datasets and conclude in Section 5.

2 Shrinkage estimators for linear regression

We now present a short review of shrinkage estimators for classical ordinary least
squares models which is sufficient for understanding the results in Section 3.

2.1 James-Stein estimator

The famous James-Stein estimator has been presented in early 60s [27]. The
authors proved that it allows for obtaining estimates with lower mean squared
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error than maximum likelihood based methods, which came as a shock to the
statistical community. More specifically, let Z ∼ N(µ, I) be a p-dimensional
random vector whose mean µ is to be estimated based on a single sample z.
The best unbiased estimator is µ̂ = z. However, it can be proven [27] that the
estimator

µ̂JS1 =

(
1− (p− 2)

||µ̂||2

)
µ̂ (4)

has a lower mean squared error E ‖µ̂JS1−µ‖2 ≤ E ‖µ̂−µ‖2. The biggest gain is
achieved for µ = 0 and decreases when the norm of µ becomes large. To mitigate
this effect, a modified shrinkage estimator was proposed by Efron [18]:

µ̂JS2 =

(
1− (p− 3)

||µ̂− µ̂||2

)
(µ̂− µ̂) + µ̂, (5)

where µ̂ = ( 1n
∑p
i=1 µ̂i)(1, . . . , 1)

′ is a column vector with each coordinate equal
to the mean of µ̂’s coordinates.

The James-Stein estimator can be directly applied to the OLS estimator
of regression coefficients β̂, after taking into account their covariance matrix
σ2(X ′X)−1 [3, Chapter 7]:

β̂JS1 =

(
1− (p− 2)

β̂′(σ2(X ′X)−1)−1β̂

)
β̂. (6)

If σ2 is unknown, we can substitute the usual estimate σ̂2 = r′r
n−p , where r is

the vector of residuals. It can be shown that β̂JS1 has smaller predictive error
than the standard OLS estimator [3, Chapter 7]. Adapting the trick given in
Equation 5 we get yet another estimator

β̂JS2 =

(
1− (p− 3)

(β̂ − β̂)′(σ2(X ′X)−1)−1(β̂ − β̂)

)
(β̂ − β̂) + β̂, (7)

where β̂ is defined analogously to µ̂ above. This form will be used to obtain a
shrinked uplift regression estimator.

2.2 Shrinkage estimators based on optimizing predictive MSE

In [19] Ohtani gives an overview of another family of shrinkage estimators which
improve on the OLS estimator. Their form is similar to the James-Stein estima-
tor, but the shrinkage parameter is now obtained by minimizing the predictive
mean squared error. Such estimators were first described in [6]. In our paper we
use the following shrinkage factor proposed in [23]

α =
β′(X ′X)β

β′(X ′X)β + σ2
. (8)
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Notice that it depends on the unknown true coefficient vector β and error vari-
ance σ2. Using the standard practice [19] of substituting OLS estimates β̂ and
σ̂2 = r′r

n−p (where r is the residual vector) we obtain an operational estimator

β̂SMSE =
β̂′(X ′X)β̂

β̂′(X ′X)β̂ + r′r
n−p

β̂, (9)

where SMSE stands for Shrinkage based on minimizing MSE. In [12] the MSE
of this estimator was computed and sufficient conditions for it to dominate the
OLS estimator were provided.

3 Shrinkage estimators for uplift regression

In this section we present the main contribution of this paper: shrinkage estima-
tors for uplift regression. We begin by deriving James-Stein style estimators and
later derive versions based on minimizing predictive MSE.

3.1 James-Stein uplift estimators

The most obvious approach to obtaining a shrinked uplift estimator is to use
two separate James-Stein estimators in Equation 3, in place of OLS estimators
β̂T and β̂C . We obtain the following uplift shrinkage estimator

β̂UJSd = β̂TJS2 − β̂CJS2. (10)

The d in the subscript indicates a ‘double’ model. This approach is fairly trivial
and one is bound to ask whether it is possible to obtain a better estimator by
directly shrinking the estimator β̂Ud given by 3. To this end we need to estimate
the variance of β̂Ud and apply it to Equation 7.

We note that β̂Ud is the difference of two independent random vectors, so the
variance of β̂Ud is the sum of variances of β̂T and β̂C

Var β̂Ud = σT
2
(XT ′XT )−1 + σC

2
(XC ′XC)−1.

Substituting the usual estimators of σT 2 and σC2 in the expression above and
using it in Equation 7 we obtain following estimator:

β̂UJS =
(p− 3)

(β̂Ud − β̂Ud )′V −1(β̂Ud − β̂Ud )
(β̂Ud − β̂Ud ) + β̂Ud , (11)

where V = rT
′
rT

nT−p (X
T ′XT )−1 + rC

′
rC

nC−p (X
C ′XC)−1, rT , rC are OLS residuals in,

respectively, treatment and control groups, and β̂Ud = ( 1n
∑p
i=1(β̂

U
d )i)(1, . . . , 1)

′.



Shrinkage Estimators for Uplift Regression 7

3.2 MSE minimizing uplift estimators

We may also adapt the MSE-minimizing variant of shrinkage estimators [19] to
the uplift modeling problem. The first approach is to use the shrinkage estimator
given in Equation 9 separately for βT and βC and construct a double uplift
estimator:

β̂USMSEd = β̂TSMSE − β̂CSMSE . (12)

The d in the subscript indicates a ‘double’ model.
Another possibility is to estimate αT , αC jointly such that the mean squared

prediction error is minimized. This is an entirely new method and the main
contribution of this paper. Recall from Section 1 that the general shrinked double
uplift estimator is

β̂UαT ,αC = αT (XT ′XT )−1XT ′yT − αC(XC ′XC)−1XC ′yC ,

where αT and αC are the shrinkage factors. Since there is no explicit value of
‘uplift response’ which can be observed we will define the analogue of the MSE
as E ‖Xtestβ

U −Xtestβ̂
U
αT ,αC‖2 where βU is the true parameter vector, Xtest is

some test data, and the expectation is taken over β̂UαT ,αC . We have

E ‖Xtestβ
U −Xtestβ̂

U
αT ,αC‖2

= ETr
{
(βU − β̂UαT ,αC )

′X ′testXtest(β
U − β̂UαT ,αC )

}
= ETr

{
(X ′testXtest)(β

U − β̂UαT ,αC )(β
U − β̂UαT ,αC )

′
}

= Tr
{
(X ′testXtest)

(
Var β̂UαT ,αC + (βU − E β̂UαT ,αC )(β

U − E β̂UαT ,αC )
′
)}

= (E β̂UαT ,αC − βU )′(X ′testXtest)(E β̂
U
αT ,αC − βU )

+ Tr
{
(X ′testXtest)

(
(αT )2 Var β̂T + (αC)2 Var β̂C

)}
, (13)

where E β̂UαT ,αC = αTβT − αCβC , the second equality is obtained by changing
the multiplication order within the trace, and the third follows from the bias-
variance decomposition. Variance of β̂UαT ,αC can be decomposed since it is the
sum of two independent components. Differentiating with respect to αT and
equating to zero we get

0 = 2αTβT
′
(X ′testXtest)β

T − 2αCβT
′
(X ′testXtest)β

C

− 2βT
′
(X ′testXtest)β

U + 2αT Tr((X ′testXtest)Var(β̂T )).

Analogously for αC we obtain

0 = 2αCβC
′
(X ′testXtest)β

C − 2αTβT
′
(X ′testXtest)β

C

+ 2βC
′
(X ′testXtest)β

U + 2αC Tr((X ′testXtest)Var(β̂C)).
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Denote W = X ′testXtest. We can write the above system of equations for αT and
αC in matrix form[
βT
′
WβT +Tr(W Var(β̂T )) −βT ′WβC

−βC ′WβT βC
′
WβC +Tr(W Var(β̂C))

] [
αT

αC

]
=

[
βT
′
WβU

−βC ′WβU

]
.

Unfortunately we don’t know true values of βT and βC so we have to re-
place them with their OLS estimators. Moreover, we cannot also use the test
dataset while constructing the estimator. Therefore, in accordance with the
fixed X assumption (see Section 1) we take Xtest = X. Finally, we denote
V T = (σ̂T )2(X ′X)(XT ′XT )−1 and V C = (σ̂C)2(X ′X)(XC ′XC)−1 to obtain an
operational system of equations[

β̂T
′
X ′Xβ̂T +TrV T −β̂T

′
X ′Xβ̂C

−β̂C
′
X ′Xβ̂T β̂C

′
X ′Xβ̂C +TrV C

] [
α̂T

α̂C

]
=

[
β̂T
′
X ′Xβ̂Ud

−β̂C
′
X ′Xβ̂Ud

]
. (14)

Finally we are ready to define our shrinkage uplift regression estimator:

Definition 1 Assume that β̂T and β̂C are OLS regression estimators built re-
spectively on the treatment and control groups. Denote by α̂T and α̂C the solu-
tions to the system of Equations 14. Then the estimator

β̂USMSE = α̂T β̂T − α̂C β̂C

is called the uplift MSE-minimizing estimator.

Because the unknown values of βT , βC , σT , σC have been replaced with their
estimators, we have no guarantee that β̂USMSE minimizes the predictive mean
squared error. However, under additional assumptions we are able to prove the
following theorem.

Theorem 1 Assume that the matrices XT and XC are orthogonal, i.e. XT ′XT =
XC ′XC = I. Assume further, that the error vectors εT , εC are independent and
normally distributed as N(0, I), i.e. assume that σT = σC = 1. Then for p > 6

E ‖XβU −Xβ̂USMSE‖2 6 E ‖XβU −Xβ̂Ud ‖2.

The proof of the theorem can be found in the Appendix. Additionally the sup-
plementary material contains a symbolic computation script verifying the more
technical sections of the proof.

The theorem says that under orthogonal design the uplift MSE-minimizing
estimator given in Definition 1 has a lower expected prediction error than the
double estimator given in Equation 3. The requirement for an orthogonal design
is restrictive but we were not able to prove the theorem in a more general setting.
Even with this assumption, the proof is long and fairly technical. For more
general settings we resort to experimental verification in Section 4.
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4 Experiments

In this section we present an experimental evaluation of the proposed shrinkage
estimators. Before presenting the results we will describe two real life datasets
used in the study, as well as the testing methodology we adopted.

4.1 Descriptions of datasets

The first dataset we consider is the well known Lalonde dataset [21] describing
the effects of a job training program which addressed a population of low skilled
adults. A randomly selected sample of the population was invited to take part
in a job training program. Their income in the third year after randomization is
the target variable. Our goal is to build a model predicting whether the program
will be effective for a given individual. There are a total of 185 treatment records
and 260 controls.

The second dataset we use is the IHDP dataset [16]. The dataset describes
the results of a program whose target groups were low birth weight infants. A
randomly selected subset of them received additional support such as home visits
and access to a child development center. We want to identify infants for whose
IQ (the target variable used in the study) increased because of the intervention
program. There are 377 treatment and 608 control cases.

4.2 Methodology

The biggest problem in evaluating uplift models is that we never observe yTi
and yCi simultaneously and, thus, do not know the true value of the quantity
we want to predict yTi − yCi . Therefore we are forced to make the comparison
on larger groups. Here we will estimate the so called Average Treatment Effect
on the Treated (ATT) [5,7] using two methods: one based on predictions of a
model with coefficients β̂U , the other based on true outcomes using a so called
difference-in-means estimator [5]. Both quantities are given, respectively, by the
following equations

ATTmodel(β̂
U ) =

1

nT

nT∑
i=1

Xiβ̂
U , ATTmeans =

1

nT

nT∑
i=1

yTi −
1

nC

nC∑
i=1

yCi .

The difference-in-means estimator will play the role of ground truth. We define
the absolute error in ATT estimation of a model with coefficients β̂U as

ErrATT (β̂U ) = |ATTmodel(β̂U )−ATTmeans|.

Model comparison will be based on their ErrATTs.
Each dataset was split into a training and testing part. Splitting was done

separately in the treatment and control groups, 70% of cases assigned to the
training set and the remaining cases to the test set. We repeat this procedure
1000 times and aggregate the results. To compare estimators β̂U1 and β̂U2 we will
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Fig. 1. Differences between errors in ATT estimation for pairs of models for the Lalonde
dataset. Each boxplot summarizes the distribution of differences for a pair of mod-
els over 1000 train/test splits. For example, the first chart compares the proposed
uplift MSE-minimizing shrinkage estimator β̂U

SMSE against all other estimators. The
mean/median lines on the negative side indicate the model in figure title performs
better

compute the difference ErrATT (β̂U1 ) − ErrATT (β̂U2 ) for each simulation and
display the differences using box plots in order to better visualize how often
an by what margin each model is better. We found this approach to give more
meaningful results than simply comparing mean prediction errors.

4.3 Results

Our experiments involve five different estimators: the double regression estimator
β̂Ud given in Equation 3, two double shrinkage estimators: the double James-Stein
estimator β̂UJSd and the double MSE minimizing shrinkage estimator β̂USMSE

given, respectively, in Equations 10 and 12, and finally the two direct uplift
shrinkage estimators: β̂UJS given in Equation 11 and β̂USMSEd given in Definition 1.
In the figures the estimators are denoted with just their subscripts, e.g. SMSEd
instead of β̂USMSEd, except for β̂

U
d denoted by double for easier readability.

Results on the Lalonde dataset are shown in Figure 1. The first chart on the
figure compares the proposed uplift MSE-minimizing estimator will all remaining
estimators. It can be seen that the estimator outperforms all others: the original
double regression and all three other shrinkage estimators. The improvement can
be seen both in the mean and in the median of differences between ErrATT ’s
which are negative. The difference is not huge, but it is consistent, so there is
little argument for not using the shrinkage estimator. Moreover, the results are
statistically significant (notches in the box plot denote a confidence interval for
the median).

The second chart shows the performance of another proposed estimator, the
James-Stein version of uplift estimator β̂UJS . Here, a different story can be seen.
The performance is practically identical to that of the classical double regression
and double James-Stein estimator; the boxplots have in fact collapsed at zero.
There is an improvement in the median of error difference over β̂USMSEd but it
disappears when one looks at the mean: one cannot expect practical gains from
using this estimator.
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Fig. 2. Differences between errors in ATT estimation for pairs of models for the IHDP
dataset. Each boxplot summarizes the distribution of differences for a pair of mod-
els over 1000 train/test splits. For example, the first chart compares the proposed
uplift MSE-minimizing shrinkage estimator β̂U

SMSE against all other estimators. The
mean/median lines on the negative side indicate the model in figure title performs
better

The two remaining double shrinked estimators performed similarly and charts
comparing them to all other models are not shown. For completeness we compare
the unshrinked double regression with all shrinkage estimator in the third chart
of Figure 1. It can be seen that only the estimator given in Definition 1 dominates
it.

The results for the IHDP dataset are shown in Figure 2. All conclusions
drawn from the Lalonde dataset are essentially replicated also on IHDP, giving
the results more credibility.

5 Conclusions and future work

We have proposed four different shrinkage estimators for uplift regression prob-
lem. One of them successfully and consistently reduced prediction error on two
real life datasets. The estimator was different from others in that it jointly opti-
mized the treatment and control shrinkage factors such that good uplift predic-
tions are obtained.

The three other estimators did not bring improvement over the classical dou-
ble regression model. One concludes, that simply applying shrinkage to treatment
and control models separately is not enough to obtain a good uplift shrinkage
estimator. Neither is applying the James-Stein approach directly the estimated
uplift coefficients as is done in the β̂UJS estimator.

Future work will address the problem of adapting shrinkage methods to other
uplift regression estimators such as those proposed in [9]. The task is challenging
since the finite sample variance of those estimators is not known.
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A Proof of Theorem 1

Since large parts of the proof require lengthy derivations, the supplementary
material contains a Python script which verifies certain equations symbolically
using the Sympy [17] package.

From assumptions we have XT ′XT = XC ′XC = I, implying X ′X = 2I.
Taking this into account we can simplify the system of equations (14) to[

β̂T
′
β̂T + p −β̂T

′
β̂C

−β̂C
′
β̂T β̂C

′
β̂C + p

] [
α̂T

α̂C

]
=

[
β̂T
′
β̂U

−β̂C
′
β̂U

]
. (15)

Denote bTT = β̂T
′
β̂T , bCC = β̂C

′
β̂C and bTC = β̂T

′
β̂C . Denoting further A =[

bTT + p −bTC
−bTC bCC + p

]
and B =

[
bTT − bTC
bCC − bTC

]
the system of equations simplifies

further to:

A

[
α̂T

α̂C

]
= B. (16)

As a result, denoting K = 1
(bTT+p)(bCC+p)−(bTC)2

, we obtain:

[
α̂T

α̂C

]
= A−1B = K

[
bCC + p bTC

bTC bTT + p

] [
bTT − bTC
bCC − bTC

]
.
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Equivalently we can write the parameters (verified in the supplementary mate-
rial) as

α̂T = K
(
bCCbTT − (bTC)2 + pbTT − pbTC

)
= 1− pK

(
bCC + bTC + p

)
α̂C = K

(
bCCbTT − (bTC)2 + pbCC − pbTC

)
= 1− pK

(
bTT + bTC + p

)
(17)

The predictive MSE of the double model is

E(β̂Ud − βU )′(β̂Ud − βU ) = 2p. (18)

To see this, note that the estimator is unbiased and, under the assumptions of
the theorem, Var β̂T = Var β̂C = I. Apply the trace in (13) to get the result.
Now we will calculate the predictive MSE of new shrinked and prove that it is
less than 2p. It is easy to see that

E(β̂USMSE − βU )′(β̂USMSE − βU ) = E(β̂USMSE − β̂Ud )′(β̂USMSE − β̂Ud )

− E(β̂Ud − βU )′(β̂Ud − βU ) + 2E(β̂USMSE − βU )′(β̂Ud − βU ). (19)

Denote:
β̂Ts = p

(
bCC + bTC + p

)
β̂T ,

β̂Cs = p
(
bTT + bTC + p

)
β̂C .

Then the first term of (19) is (verified in the supplementary material)

E(β̂USMSE − β̂Ud )′(β̂USMSE − β̂Ud )

= E((α̂T − 1)β̂T − (α̂C − 1)β̂C)′((α̂T − 1)β̂T − (α̂C − 1)β̂C)

= K2 E
(
β̂Ts − β̂Cs

)′ (
β̂Ts − β̂Cs

)
(20)

= K2 E
(
p4(bTT − 2bTC + bCC)

+p2
(
bTT bCC − bTC2

) (
(bTT + 2bTC + bCC) + 4p

))
. (21)

Now we will concentrate on third term of (19):

2E(β̂USMSE − βU )′(β̂Ud − βU ) = 2E(α̂T β̂T − βT )′(β̂T − βT ) (22)

+ 2E(α̂C β̂C − βC)′(β̂C − βC) (23)

− 2E(α̂T β̂T − βT )′(β̂C − βC)− 2E(α̂C β̂C − βC)′(β̂T − βT ). (24)

We will first look at 2E(α̂T β̂T − βT )′(β̂T − βT ) following the classical proof for
James-Stein estimator

2E(β̂T − βT )′(α̂T β̂T − βT ) = 2

p∑
i=1

E(β̂Ti − βTi )(α̂T β̂Ti − βTi )

= 2

p∑
i=1

∫
..

∫
(β̂Ti − βTi )(α̂T β̂Ti − βTi )f(β̂T )dβ̂Ti , dβ̂T1 ...dβ̂Tp
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where f(β̂T ) is density function of distribution of β̂T , which, by assumptions is
multivariate normal N(βT , I). Using integration by parts (derivatives calculated
w.r.t. β̂i) with

u = α̂T β̂Ti − βTi dv = (β̂Ti − βTi )
exp

(
− 1

2

∑p
j=1

(
β̂Tj − βTj

)2)
2π

p
2

dβ̂Ti

du =
d

dβ̂Ti
(α̂T β̂Ti − βTi )dβ̂Ti v = −

exp

(
− 1

2

∑p
j=1

(
β̂Tj − βTj

)2)
2π

p
2

we obtain:∫
...

∫
(β̂Ti − βTi )(α̂T β̂Ti − βTi )f(β̂T )dβ̂Ti dβ̂T1 ...dβ̂Tp

=

∫
...

∫
(β̂Ti − βTi )(α̂T β̂Ti − βTi )

1

2π
p
2

exp

−1

2

p∑
j=1

(
β̂Tj − βTj

)2 dβ̂Ti dβ̂
T
1 ...dβ̂

T
p

=

∫ ...

∫
−
(
α̂T β̂Ti − βTi

) exp

(
− 1

2

∑p
j=1

(
β̂Tj − βTj

)2)
2π

p
2


∞

−∞

dβ̂T1 ...dβ̂
T
p

+

∫
...

∫
d

dβ̂Ti
(α̂T β̂Ti − βTi )

exp

(
− 1

2

∑p
j=1

(
β̂Tj − βTj

)2)
2π

p
2

dβ̂Ti dβ̂
T
1 ...dβ̂

T
p .

First term in last expression is 0, due to exponential decrease of normal density.
Finally we obtain:

=

∫
...

∫
f(β̂T )

d

dβ̂Ti
(α̂T β̂Ti − βTi )dβ̂Ti dβ̂T1 ...dβ̂Tp .

Repeating the above process for i = 1, . . . , p we get

2E(α̂T β̂T − βT )′(β̂T − βT ) = 2E

p∑
i=1

d

dβ̂Ti
(α̂T β̂Ti − βTi ) = 2pα̂T + 2β̂T

′ dα̂T

dβ̂T
.

For the third term of (24) we obtain:

2E(α̂T β̂T − βT )′(β̂C − βC) = 2E

p∑
i=1

d

dβ̂Ci
(α̂T β̂Ti − βTi ) = 2β̂T

′ dα̂T

dβ̂C
,
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where the last factor is the vector derivative of a scalar. The remaining two terms
are analogous. Combining the expressions and using the chain rule we obtain:

E(α̂T β̂T − βT )′(β̂T − βT )− E(α̂C β̂C − βC)′(β̂T − βT )

=
[
p | 0

] [α̂T
α̂C

]
+
[
β̂T
′
| −β̂C

′
] [ dα̂T

dβ̂T

dα̂C

dβ̂T

]

=
[
p | 0

] [α̂T
α̂C

]
+
[
β̂T
′
| −β̂C

′
] dα̂T

d bTT
d bTT

dβ̂T
+ dα̂T

d bTC
d bTC

dβ̂T
+ dα̂T

d bCC
d bCC

dβ̂T

dα̂C

d bTT
d bTT

dβ̂T
+ dα̂C

bTC
d bTC

dβ̂T
+ dα̂C

d bCC
d bCC

dβ̂T


=
[
p | 0

] [α̂T
α̂C

]
+ 2

[
bTT | −bTC

] [ dα̂T

d bTT

dα̂C

d bTT

]
+
[
bTC | −bCC

] [ dα̂T

d bTC

dα̂C

d bTC

]

=
[
p | 0

]
A−1B + 2

[
bTT | −bTC

] dA−1B
d bTT

+
[
bTC | −bCC

] dA−1B
d bTC

. (25)

Analogously we obtain:

E(α̂C β̂C − βC)′(β̂C − βC)− E(α̂T β̂T − βT )′(β̂C − βC)

=
[
0 | p

]
A−1B + 2

[
−bTC | bCC

] dA−1B
d bCC

+
[
−bTT | bTC

] dA−1B
d bTC

. (26)

Combining (25) and (26) we obtain (verified in the supplementary material):

2E(β̂USMSE − βU )′(β̂Ud − βU ) = 2
[
p | p

]
A−1B

− 2K

[
3bTT bCC − 3

(
bTC

)2
+ 2bTT p+ bCCp− bTCp

3bTT bCC − 3
(
bTC

)2
+ 2bCCp+ bTT p− bTCp

] (
A−1B − 1

)
(27)

= 2p(α̂T + α̂C)− 2(2α̂T + 1)α̂T − 2(2α̂C + 1)α̂C − 4Kp2

= 4p+ 2(p− 3)(α̂T − 1 + α̂C − 1)− 4Kp2 − 4(α̂T − 1)2 − 4(α̂C − 1)2, (28)

where 1 = (1, 1)′. Now we have calculated each term of (19). Now we will
combine (28) and (18).

2E(β̂USMSE − βU )′(β̂Ud − βU )− E(β̂Ud − βU )′(β̂Ud − βU )

= 2p− EK2

(
1

K

(
2p(p− 3)

(
bTT + 2bTC + bCC

)
− 4p2(p− 2)

)
−4
((
pbTT + pbTC + p2

)2
+
(
pbCC + pbTC + p2

)2))
. (29)
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Combining further (29) with (21) we obtain the following expression for (19)
(verified in the supplementary material):

E(β̂USMSE − βU )′(β̂USMSE − βU ) = 2p− (30)

EK2

(
p(p− 6)(bTT + 2bTC + bCC)

(
bTT bCC − bTC2

)
(31)

+2p2(p− 3)(bTT + 2bTC + bCC)
(
bTT + bCC

)
(32)

+2p3(p− 3)(bTT + 2bTC + bCC) (33)

−8p2
(
bTT bCC − bTC2

)
(34)

+4p3(p− 2)
(
bTT + bCC + p

)
(35)

+4p2
(
bTT + bTC + p

)2
+ 4p2

(
bCC + bTC + p

)2
(36)

− p4(bTT − 2bTC + bCC)

)
. (37)

We see that (31) is greater than or equal to 0 when p > 6 and (33) when p > 3.
Now combining (35) and (37) for p > 4 we get:

4p3(p− 2)
(
bTT + bCC + p

)
− p4(bTT − 2bTC + bCC)

= 2p3(p− 4)
(
bTT + bCC + p

)
+ 2p4

(
bTT + bCC + p

)
− p4(bTT − 2bTC + bCC)

> 2p3(p− 4)
(
bTT + bCC + p

)
+ 2p4

(
bTT + bCC + p

)
− 2p4(bTT + bCC)

= 2p3(p− 4)
(
bTT + bCC + p

)
+ 2p5 > 0,

where the first inequality follows from bTT − 2bTC + bCC 6 2(bTT + bCC).
Now, combining (32), (34) and (36), we obtain (verified in the supplementary

material):

−K2
(
2p2(p− 3)(bTT + 2bTC + bCC)

(
bTT + bCC

)
− 8p2(bTT bCC − bTC2

)

+4p2
(
bTT + bTC + p

)2
+ 4p2

(
bCC + bTC + p

)2)
= K2

(
−2p2(p− 5)(bTT + 2bTC + bCC)

(
bTT + bCC

)
(38)

−
(
8p2(bTT + bTC)2 + 8p2(bCC + bTC)2

)
(39)

−
(
8p3(bTT + 2bTC + bCC) + p

))
(40)

We can observe that (39) and (40) are always non positive and (38) is negative
when p > 5. So the whole expression above is also negative when p > 5. So, the
only positive term in (30)–(37) is 2p proving that predictive error of the shrinked
estimator is lower than that of double regression (equal to 2p) for p > 6.


