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Abstract. Since resource-constrained devices hardly benefit from the
trend towards ever-increasing neural network (NN) structures, there is
growing interest in designing more hardware-friendly NNs. In this paper,
we consider the training of NNs with discrete-valued weights and sign
activation functions that can be implemented more efficiently in terms
of inference speed, memory requirements, and power consumption. We
build on the framework of probabilistic forward propagations using the
local reparameterization trick, where instead of training a single set of
NN weights we rather train a distribution over these weights. Using this
approach, we can perform gradient-based learning by optimizing the con-
tinuous distribution parameters over discrete weights while at the same
time perform backpropagation through the sign activation. In our ex-
periments, we investigate the influence of the number of weights on the
classification performance on several benchmark datasets, and we show
that our method achieves state-of-the-art performance.

Keywords: resource-efficiency · deep learning · weight distributions.

1 Introduction

In recent years, deep neural networks (NNs) achieved unprecedented results in
many applications such as computer vision [17], speech recognition [10], and
machine translation [32], among others. These improved results, however, can
be largely attributed to the growing amount of available data and to increasing
hardware-capabilities as NNs are essentially known for decades. On the opposite
side, there is also a growing number of hardware-constrained embedded devices
that barely benefit from this trend in machine learning. Consequently, over the
past years an own research field has emerged that is concerned with developing
NN architectures that allow for fast and energy-efficient inference and require
little memory for the weights.

In this paper, we consider NNs with discrete-valued (ternary, quaternary,
quinary) weights and sign activation functions. While such weight representa-
tions offer an obvious reduction in memory requirements compared to the com-
monly used 32-bit floating-point representation, discrete weights and activations
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Fig. 1. (a) Overview of our method. We train distributions over discrete weights (left).
After training, a discrete-valued NN can be obtained by selecting the most probable
weights or sampling from these distributions. (b) The expectation in Equation (2) is
approximated by invoking a central limit approximation at the neurons and propagat-
ing the resulting Gaussians through the sign activations. This results in a loss function
that is differentiable with respect to the weight probabilities.

can also be exploited to speed up inference. For instance, when using ternary
weights {−1, 0, 1}, we can effectively get rid of multiplications.

However, there is one fundamental problem when learning discrete-valued
NNs. Real-valued NNs are commonly trained with gradient-based learning using
the backpropagation algorithm which is not feasible for discrete weights and/or
piecewise constant activation functions. Most of the research concerned with the
training of low-bit NNs can be divided into two categories. (i) Methods that
quantize the weights of a pre-trained real-valued NN in a more or less heuristic
post-processing step. (ii) Methods that perform “quantization aware” training
by employing the so called straight-through gradient estimator [1]. Such meth-
ods maintain a set of auxiliary real-valued weights wr that are quantized during
forward propagation using some zero-gradient quantization function to obtain
wq. During backpropagation the gradient of the zero-gradient quantization func-
tion is assumed to be non-zero and gradient updates are subsequently applied
to the auxiliary weights wr. Analogously, the same technique can be applied for
the sign activation by assuming that its derivative is non-zero. At test time, the
real-valued weights wr are ignored and only the quantized weights wq are kept.
Although these methods achieve impressive results in practice, they are theoret-
ically not well understood. Therefore, it is desired to develop methods that are
not based on quantization heuristics.

To this end, we adopt a probabilistic view of NNs by considering a distri-
bution q(W|ν) over the discrete weights [31, 28, 23]. We can then introduce an
expectation of the zero-gradient loss function over q to obtain a new loss func-
tion that is differentiable with respect to the distribution parameters ν. This
allows us to perform gradient-based learning over the distribution parameters ν.
After training has finished, a discrete-valued resource-efficient NN is obtained by
either sampling or taking the most probable weights from q, respectively. This
is illustrated in Figure 1(a).
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Compared to the most relevant previous work in [28, 23] which used binary
and ternary weights, we consider general discrete weights. These methods use a
parameterization for q that is tailored to binary and ternary weights and does
not easily generalize to more than three weights. Similarly, their initialization
method for q that is crucial to achieve competitive results does also not easily
generalize to more than three weights. We introduce a simpler parameterization
and initialization method that generalizes to arbitrary discrete weights. We intro-
duce a variance-aware approximation for max-pooling as opposed to the method
in [23] which effectively ignores the variance. In contrast to several other works
that require real-valued weights in the input and/or output layers [24, 36, 28],
we employ discrete weights in all layers. Our method achieves state-of-the-art
performance on several benchmark datasets. In our experiments, we show that
more weights typically result in better performance. We found a two-stage pro-
cedure, where we first train a NN using discrete weights only, and subsequently
also train with the sign activation function to mostly improve results compared
to training with discrete weights and the sign activation immediately.

The remainder of the paper is structured as follows. Section 2 reviews the
most relevant work. In Section 3 we introduce our probabilistic neural network
framework. Section 4 presents an efficient approximation to the intractable ex-
pected loss function followed by model details in Section 5. We show results of
our model in Section 6 before we conclude in Section 7. Code related to the
paper is available online at https://github.com/wroth8/nn-discrete.

2 Related Work

In our literature review, we focus on work that is most related to this paper,
namely work that quantizes weights and/or activations. Most recent works con-
cerned with the training of low-precision NNs rely on the straight-through gradi-
ent estimator and introduce different quantizers [5, 11, 37, 24, 19, 2]. Soudry et al.
[31] used a Bayesian approach based on expectation propagation to obtain dis-
tributions over discrete weights. The work of Shayer et al. [28] is closely related
to our work, but they only consider binary and ternary NNs with full-precision
ReLU activations. Most related to our work is the work of Peters and Welling
[23]. They consider binary and ternary weights using sign activations. We extend
the work of [28, 23] to general discrete weights and introduce a variance-aware
approximation for max-pooling.

Beyond work focusing on low-bit NNs, there exist several orthogonal direc-
tions that facilitate resource-efficient inference. Weight pruning methods, i.e.,
setting a large portion of the weights to zero, can be utilized to reduce the
memory footprint and to improve inference speed [8, 21]. The work in [3, 33, 26]
introduces weight sharing to reduce the memory footprint. More global strategies
are concerned with special matrix structures that facilitate efficient inference [6,
7, 4]. There also exists work regarding efficient training of neural networks that
is not within the scope of this paper [36, 35].
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3 Neural Networks and Weight Distributions

A NN with L layers and weights W = (W1, . . . ,WL) defines a function f(x0; W)
by repeatedly computing a linear transformation al = Wlxl−1 followed by a
non-linear activation function xl = φl(al). The linear function is either a gen-
eral matrix-vector multiplication or a convolution operation.1 For layers l =
1, . . . , L − 1, typical choices for the non-linear activation function φl(a) are the
ReLU activation max(0, a), tanh(a), or, in the context of resource-efficient NNs,
sign(a) = I(a ≥ 0)− I(a < 0), where I is the indicator function. In this paper we
consider classification problems where the task is to assign an input x0 to one of
C classes. For classification, the activation function φL at the output is the soft-
max function xLi = exp(aLi )/

∑C
j=1 exp(aLj ). An input x0 is classified according

to c = arg maxj x
L
j . Note that the computationally expensive softmax does not

change the maximum of its inputs, and, therefore, computing the softmax is not
required to determine the predicted class label.

Let D = {(x0
1, t1), . . . , (x0

N , tN )} be a dataset of N input-target pairs and let
yn = xLn = f(x0

n; W) be the NN output for the nth sample. The weights W are
typically obtained by performing gradient descent on a loss function

L(W;D) =
1

N

N∑

n=1

l(f(x0
n; W), tn) + λr(W), (1)

where l(yn, tn) penalizes the weights W if the nth sample is misclassified, r is a
regularizer that favors simpler models to enforce generalization, and λ > 0 is a
tunable hyperparameter.

However, when considering weights from a discrete set, gradient-based learn-
ing cannot be applied. Moreover, the sign activation function results in a gradient
that is zero almost everywhere, rendering backpropagation not usable. In this
paper, we employ weight distributions to solve both of these problems at the
same time. Instead of a single set of NN weights W, we consider a distribution
q(W|ν) over the discrete weights, where ν are the parameters governing the
distribution q. By redefining (1) using an expectation with respect to q, i.e.,

Lprob(ν;D) =
1

N

N∑

n=1

Eq(W|ν)
[
l(f(x0

n; W), tn)
]

+ λr(ν), (2)

we obtain a differentiable function with respect to the parameters ν of q. In
principle, this allows us to perform gradient-based learning over the distribution
parameters ν, and subsequently to determine the discrete-valued weights by
either sampling or selecting the most probable weights from q, respectively.2

However, the expectation in (2) is essentially a sum over exponentially many
terms which is generally intractable. In Section 4 we show how the gradient of
(2) can be approximated.

1 A convolution can be cast as a matrix-vector multiplication.
2 We only consider distributions q where sampling and maximization is easy.
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3.1 Discrete Neural Networks

Let DD = {w1, . . . , wD} be a discrete set of weight values with w1 < . . . <
wD. In this paper we consider discrete weights with D ∈ {3, 4, 5}, i.e., ternary,
quaternary, and quinary weights. The choice of the particular weights wd is
arbitrary and we restrict ourselves to equidistributed weights with constant δw =
wd+1 − wd. In particular, we have D3 = {−1, 0, 1}, D4 = {−1,− 1

3 ,
1
3 , 1}, and

D5 = {−1,− 1
2 , 0,

1
2 , 1}. We use the sign activation function which implies that

the scale of the discrete weight set becomes irrelevant as either the sign stays
unaffected or batch normalization [12] compensates for the change in scale.

For the weight distribution q, we assume independence among the weights
which is commonly referred to as the mean-field assumption in the variational
inference framework. This implies that q factorizes into a product of factors
q(w|νw) for each weight w ∈ W. Each of these factors is a probability mass
function (pmf) over D values. We elaborate more on the parameterization of the
pmf over discrete weights in Section 5.2.

3.2 Relation to Variational Inference

The presented work is closely related to the Bayesian variational inference frame-
work. For a Bayesian treatment of NNs, we assume a prior distribution p(W)
over the weights and interpret the NN output after the softmax as likelihood
p(D|W) to obtain a posterior p(W|D) ∝ p(D|W)p(W) over the weights. As the
induced posterior p(W|D) is generally intractable, the aim of variational infer-
ence is to approximate it by a simpler distribution q(W|ν) by minimizing the
negative evidence lower bound

Lelbo(ν;D) =

N∑

n=1

Eq(W|ν)[− log p(tn|xn,W)] + KL(q(W|ν)||p(W)). (3)

Equation (3) is proportional to (2) for l(yn, tn) being the cross-entropy loss, r(ν)
being the KL-divergence, and λ = 1/N . The main difference to variational infer-
ence is our motivation to use distributions in order to obtain a gradient-based
learning scheme for discrete-valued NNs with discrete activation functions. Vari-
ational inference is typically used to approximate expectations over the posterior
p(W|D) and to obtain well calibrated uncertainty estimates for NN predictions.

4 Approximation of the Expected Loss

The expected loss in (2) is given by

Eq(W|ν)
[
l(f(x0

n; W), tn)
]

=
∑

W1

· · ·
∑

WL

q(W|ν) l(f(x0
n; W), tn). (4)

Equation (4) contains a sum over exponentially many terms and is generally
intractable. Nevertheless, we adopt a practical approximation based on the cen-
tral limit theorem that has been widely used in the literature [31, 9, 25, 28, 23].
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As each neuron computes a sum over many random variables, we can apply the
central limit theorem and approximate the neuron distribution by a Gaussian
N (a1i |µa1i , σ

2
a1i

) where µa1i =
∑
j E[w1

i,j ] x
0
j and σ2

a1i
=
∑
j V[w1

i,j ] (x0j )
2. The bi-

nary distribution after the sign function is obtained by q(x1i = 1) = Φ(µa1i /σa1i )
where Φ denotes the cumulative distribution function (cdf) of a zero-mean unit-
variance Gaussian.3 This is illustrated in Figure 1(b). This approach transfers
the weight distributions q(W1) to distributions over the inputs of the next layer
q(x1

n), i.e.,

Eq(W|ν)
[
l(f(x0

n; W), tn)
]
≈
∑

W2

· · ·
∑

WL

∑

x1
n

q(W>1|ν) q(x1
n) l(f(x1

n; W>1), tn),

(5)

where W>1 = (W2, . . . ,WL). In principle, we can iterate this procedure up
to the output layer where it remains to compute the expected loss function
l(yn, tn) with respect to a Gaussian. However, there are two disadvantages with
this approach. (i) For the following layers, the inputs x are random variables
rather than fixed values which requires, assuming independence, to compute
σ2
ali

=
∑
j V[wli,j ] E[xl−1j ]2 + E[wli,j ]

2 V[xl−1j ] + V[wli,j ] V[xl−1j ]. This boils down

to computing three linear transformations for the variances σ2
a1i

rather than just

one as for the first layer which is impractical. (ii) Since x1 is not observed, the
neurons in the next layer x2 are not independent and, thus, we are effectively
introducing an unreasonable independence assumption.

To avoid these problems, we adopt the local reparameterization trick [15,
28, 23]. Since the reparameterized distribution is discrete, we apply the Gumbel
softmax approximation [13, 20]. The reparameterization trick transforms the dis-
tribution into an observed value that eliminates the before mentioned problems
at the cost of introducing a small bias due to the Gumbel softmax approxima-
tion. We iterate this scheme up to the output layer where we approximate the
expectation of the loss function again by applying the local reparameterization
trick at the output activations. Note that due to the zero derivative of the sign
activation, the reparameterization trick cannot be applied before the sign acti-
vation function. This implies that we have to propagate distributions through
max-pooling and batch normalization [12] which is not straightforward and could
otherwise be circumvented by simply reparameterizing before these operations.

The question arises whether we can expect the most probable discrete weights
to perform well if we perform well in expectation? In our probabilistic forward
propagation, the loss function essentially only depends on the means Eq[w] and
the variances Vq[w]. Using discrete weights with d1 = −1 and dD = 1, we can
represent any mean in the interval [−1, 1]. However, we can only achieve low
variance if the expectation is close to a weight in D. Therefore, our approach
can be seen as a way of parameterizing expectations and constrained variances,

3 Given finite integer-valued summands, the activation distribution could also be com-
puted exactly in sub-exponential time by convolving the probabilities. However, this
would be impractical for gradient-based learning.
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respectively. As we require small variances to obtain a small expected loss –
in fact a point mass would be optimal – optimization favors expectations that
are closer to values in D. Consequently, also the most probable weights in q are
expected to perform well.

However, there is one caveat when applying this scheme to convolutional
layers that was not mentioned in the works of [28, 23]. As weights in our frame-
work are not observed and a single weight in convolutional layers is used in
the computation of many activations, these activations actually become depen-
dent. However, when applying the local reparameterization trick, we effectively
assume independence among the activations which would be equivalent to sam-
pling different weights for each activation. This could be avoided by sampling the
weights directly using the Gumbel softmax approximation at the possible cost of
increased variance [15]. Note that this problem does not arise in fully-connected
layers as weights are not shared among neurons.

4.1 Approximation of the Maximum Function

Many CNN architectures involve a max-pooling operation where feature maps
are downscaled by only passing the maximum of several spatially neighboring
activations to the next layer. To this end, we approximate the maximum of two
Gaussians by another Gaussian by moment-matching. Let µ1, µ2 and σ2

1 , σ2
2 be

the means and the variances of two independent Gaussians. Then the mean µmax
and the variance σ2

max of the maximum of these Gaussians is given by [30]

µmax = µ1Φ(β) + µ2Φ(−β) + αφ(β) and (6)

σ2
max = (σ2

1 + µ2
1)Φ(β) + (σ2

2 + µ2
2)Φ(−β) + (µ1 + µ2)αφ(β)− µ2

max, (7)

where φ and Φ are the pdf and the cdf of a zero-mean unit-variance Gaussian
and

α =
√
σ2
1 + σ2

2 and β =
µ1 − µ2

α
. (8)

This scheme can be iteratively applied to approximate the maximum of sev-
eral Gaussians. As long as the number of Gaussians is relatively small – CNNs
typically involve 2×2 max-pooling – this scheme results in a fairly efficient ap-
proximation for max-pooling. In particular, we first approximate the maximum
of the two upper and the two lower activations by a Gaussian, respectively, and
then we approximate the maximum of these two Gaussians by another Gaus-
sian. This is in contrast to the method proposed in [23] where max-pooling is
approximated by selecting the mean and the variance of the activation whose
mean is maximal, which effectively ignores the variance in the process.

5 Model Details

A basic convolutional block is depicted in Figure 2. We typically start with
dropout, followed by a convolution layer. Motivated by [24], we perform the
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Dropout Conv Max-Pool BatchNorm Sign Reparam

Fig. 2. The convolutional block used in this paper. Max-pooling is not always present.

pooling operation (if present) right after the convolutional layer to avoid infor-
mation loss. Afterwards we perform batch normalization as described in Section
5.1, followed by computing the pmf after the sign function, and finally performing
the local reparameterization trick using the Gumbel softmax approximation.

We do not perform batch normalization in the final layer. Instead we intro-
duce a real-valued bias and divide the output activations by the square root of
the number of incoming neurons. This normalization step is crucial for train-
ing as otherwise the output softmax would be saturated in most cases as the
output activations are typically large due to the discreteness of the weights and
inputs from the previous layer, respectively. Moreover, we found dropout in our
experiments to be particularly helpful as it improved performance considerably.
Dropout was performed by randomly setting both the neuron’s mean and its
variance to zero in order to completely remove its influence.

5.1 Batch Normalization

As briefly mentioned in Section 4, we are required to generalize batch normaliza-
tion to distributions. Batch normalization is particularly important when using
sign activations to avoid excessive information loss [24]. We use the method pro-
posed in [23] to normalize distributions to approximately having zero-mean and
unit-variance. The mini-batch statistics for NB samples are computed as

µi,bn =
1

NB

NB∑

n=1

µan,i
and σ2

i,bn =
1

NB − 1

NB∑

n=1

σ2
an,i

+ (µan,i
− µi,bn)2. (9)

Subsequently, batch normalization is computed as

µai ←
µai − µi,bn

σi,bn
γi + βi and σ2

ai ←
σ2
ai

σ2
i,bn

γ2i , (10)

where βi and γi are the learnable batch normalization parameters. For predic-
tions, it is important to compute the batch statistics using the discrete NN as
the batch statistics computed during training might differ significantly. Using
batch statistics computed during training resulted in severe fluctuations in the
validation errors. However, this implies that estimating the training set statis-
tics using exponential moving averages4 during training, as is commonly done in
practice, is not applicable anymore, and we have to compute a separate forward
pass using the discrete NN to obtain these statistics. We estimate the training

4 µnew
i,tr ← ξbnµi,bn + (1− ξbn)µold

i,tr for ξbn ∈ (0, 1), and similarly for σ2
i,tr.
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set statistics using an exponential moving average over the whole training set
after each epoch and right before computing the validation error. Note that
batch normalization, although introducing real-valued variables, requires only a
marginal computational overhead at test time [34].

5.2 Parameterization and Initialization of q

Shayer et al. [28] introduced a parameterization for ternary distributions based
on two probabilities, q(w = 0) and q(w = 1|w 6= 0), which is not easily generaliz-
able to distributions over more than three weights. In this work, we parameterize
distributions over D values using unconstrained unnormalized log-probabilities
(logits) νdw for d ∈ {1, . . . , D}. The normalized probabilities q(w|νw) can be re-
covered by applying the softmax function to the logits νw. This straightforward
parameterization allows to select the dth weight by setting νdw > νd

′

w for d′ 6= d.
Due to the sum-to-one constraint of probabilities, we can reduce the number of
parameters in ν by fixing an arbitrary logit, e.g., ν1w = 0. However, we refrain to
do so as it is more natural to increase a probability explicitly by increasing its
corresponding logit rather than indirectly by reducing all other logits.

Moreover, Shayer et al. [28] introduced an initialization method for the dis-
tribution parameters ν by matching the expectation Eq[w] to the real weights
w̃ of a pre-trained network. In our experiments, we found such an initialization
scheme to be crucial as starting from randomly initialized logits one usually gets
stuck in a bad local minimum. However, their initialization method also does not
generalize easily to more than three weights, especially since matching the ex-
pectation Eq[w] = w̃ is already an underconstrained problem for D = 3. Hence,
we propose to use the following initialization scheme to approximately match
the expectations which we found to be at least as effective as Shayer et al.’s
approach for ternary weights. Let w1 < . . . < wD be the set of discrete weights.
Furthermore, let qmin be a minimal probability that is required to avoid zero
probabilities. The maximum probability is then given by qmax = 1−(D−1)qmin
and we define δq = qmax − qmin. Given a real-valued weight w̃, we initialize q as

q(w = wj) =





qmin + δq
w̃−wj−1

wj−wj−1
wj−1 < w̃ ≤ wj

qmin + δq
wj+1−w̃
wj+1−wj

wj < w̃ ≤ wj+1

qmax (j = 1 ∧ w̃ < w1) ∨ (j = D ∧ w̃ > wD)

qmin otherwise.

(11)

This scheme is illustrated in Figure 3(a). However, weight magnitudes might
differ across layers which Shayer et al. [28] addressed by dividing the weights in
each layer by their standard deviation before applying (11). We propose the fol-
lowing scheme which distributes probabilities more uniformly across the discrete
weights in order to benefit from the increased expressiveness when using a larger
D. Let Φle(w) = 1/|Wl|∑w̃∈Wl I[w̃ ≤ w] be the empirical cdf of the weights in

layer l. We compute w̃l ← Φle(w̃
l) such that the weights cover the unit interval
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with equal spacing while keeping the relative order of the weights, essentially
removing the scale. Then we shift and scale the weights w̃ to cover the interval
[w1− δw/2, wD + δw/2], followed by assigning the probabilities to q according to
(11). This ensures that each discrete weight is initially selected equally often as
the most likely weight in q. We propose to use this scheme for the positive and
the negative weights separately such that the signs of the weights are preserved.

6 Experiments

We performed classification experiments on several datasets that are described
in Section 6.1. We optimized (2) using ADAM [14], and we report the test
classification error of the epoch resulting in the best validation classification
error. All results for discrete-valued NNs are reported using the most probable
model from q. We selected l(yn, tn) to be the cross-entropy loss, r(ν) to be the
squared `2-norm over the logits [28], and λ = 10−10. Penalizing large logits can be
seen as enforcing a uniform pmf and therefore increasing entropy and variance.
As stated in [28], this rather helps to obtain better Gaussian approximations
using the central limit theorem rather than to reduce overfitting. After each
gradient update we clip the logits to the range [−5, 5]. We set the initial step size
to 10−2 for the logits and to 10−3 for all other parameters (batch normalization,
bias in the final layer). We use the following plateau learning rate reduction
scheme: The learning rate is kept for at least τ1 epochs and after τ1 epochs we
multiply the learning rate by 1/2 if the validation error has not improved within
the last τ2 epochs. The parameters τ1 and τ2, as well as some other dataset-
depending settings can be found in Section 6.1. We selected qmax = 0.95, the
Gumbel softmax temperature τg = 1, and ξbn = 0.1.

6.1 Datasets

MNIST The MNIST dataset [18] contains grayscale images of size 28×28 pixels
showing handwritten digits from 0-9. The training set contains 60,000 images
and the test set contains 10,000 images. We split the training set into a training
set of 50,000 training images and 10,000 validation images. We normalize the
pixels to be in the range [−1, 1]. We considered two scenarios for the MNIST
dataset: (i) A permutation-invariant (PI) setting where each pixel is treated as
independent feature without taking pixel locality into account, i.e., we do not
use a CNN. For this setting we use the fully-connected architecture

FC1200− FC1200− FC10,

where FC1200 denotes a fully-connected layer with 1200 output neurons. We
refer to this setting as MNIST (PI). (ii) We keep the image structure and use
CNNs with the architecture

32C5− P2− 64C5− P2− FC512− FC10,
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Fig. 3. (a) Our initialization method for quinary weight distributions based on pre-
trained real-valued weights w̃. (b) Test classification error [%] over number of epochs on
Cifar-10 for ternary weights using different initialization methods for q. For randomly
initialized probabilities, we either sampled real-valued weights w̃ ∼ N (0, 1) (Gauss)
or randomly assigned equidistributed values in the interval [−1.5, 1.5] randomly to the
weights w̃ (equidistr.) before applying the method described in (a).

where 32C5 means that 5×5 filter kernels are applied and 32 output feature maps
are generated, and P2 means that 2×2 max-pooling is applied. We trained both
architectures for 500 epochs using mini-batches of 100 samples with τ1 = 50 and
τ2 = 10. We used dropout probabilities (0.1, 0.2, 0.3) for MNIST (PI) and (0,
0.2, 0.3, 0) for the CNN setting, respectively, where the first entry corresponds
to the input layer and the following entries correspond to the subsequent layers.

Cifar-10 and Cifar-100 The Cifar-10 dataset [16] contains 32×32 pixel RGB
images showing objects from ten different categories. The dataset is split into
50,000 training images and 10,000 test images. We split the training set into
45,000 training images and 5,000 validation images. The pixels are again nor-
malized to be in the range [−1, 1]. For training, we perform data augmentation
by shifting the images randomly by up to four pixels in each direction, and we
randomly flip images along the vertical axis similar as in [28]. Cifar-100 is sim-
ilar to Cifar-10 except that the task is to assign an image to one of 100 object
categories. As the image sizes and the training and test set sizes are equal, we
perform the same preprocessing steps as described above. For both datasets, we
use the VGG-inspired [29] CNN architecture

2×128C3− P2− 2×256C3− P2− 2×512C3− P2− FC1024− FC10/100,

where 2×128C3 denotes two consecutive 128C3 blocks. We trained for 300 epochs
using mini-batches of 100 samples with τ1 = 30 and τ2 = 10. We used dropout
probabilities (0, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4, 0) for both datasets.
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Table 1. Classification errors [%] of various NN models. Real+Tanh is the baseline
that was used to initialize the discrete NNs. For discrete NNs, we conducted each
experiment five times and report the means and standard deviations, respectively.

Dataset Real+Tanh Ternary+Sign Quaternary+Sign Quinary+Sign

MNIST (PI) 1.030 1.350 ± 0.058 1.326 ± 0.012 1.334 ± 0.027
MNIST 0.560 0.712 ± 0.040 0.652 ± 0.020 0.654 ± 0.040
Cifar-10 7.620 9.508 ± 0.289 9.494 ± 0.210 9.078 ± 0.218
Cifar-100 30.150 33.550 ± 0.161 33.534 ± 0.400 33.026 ± 0.231
SVHN 2.259 2.618 ± 0.047 2.631 ± 0.051 2.605 ± 0.045

SVHN The SVHN dataset [22] contains 32×32 pixel RGB images showing parts
of pictures containing house numbers that need to be classified to the digits 0-9.
The dataset is split into 604,388 training images and 26,032 test images. We
follow the procedure of [27] to split the training set into 598,388 training images
and 6,000 validation images. Once again, we normalize pixels to be in the range
[−1, 1]. Since the dataset is quite large, we do not perform data augmentation.
We use the same CNN architecture as for the Cifar datasets except that we only
use half the number of feature maps in the convolutional layers, i.e.,

2×64C3− P2− 2×128C3− P2− 2×256C3− P2− FC1024− FC10.

Since SVHN is quite large, we performed only 100 epochs of training using mini-
batches of 250 samples with τ1 = 15 and τ2 = 5. We used the same dropout
probabilities as for the Cifar datasets.

6.2 Classification Results

In the first experiment, we used pre-trained real-valued NNs with tanh activation
to initialize the discrete NNs with sign activation function as shown in Section
5.2. The results are shown in Table 1. The performance gap compared to the
real-valued NN tends to become smaller as more weights are used. There is a
consistent improvement of quinary weights over ternary weights. Quaternary
weights improve on four datasets compared to ternary weights whereas they
achieve worse performance than quinary weights on the more challenging Cifar
and SVHN datasets. We attribute the mixed behavior of quaternary weights to
the missing zero-weight that might be important.

In the next experiment, we performed an intermediate step where we first
only discretized the weights and kept the tanh activation. In a next step, we used
this NN as initial model to train a NN with discrete weights and sign activation.
The results of these experiments are shown in Table 2. When only the weights
are discretized and tanh is kept, the performance gap compared to real-valued
NNs in Table 1 is less severe than when discretizing both the weights and the
activations. The only exception is on MNIST (PI) where the gap is similar to the
gap when in addition the sign activation is used. Interestingly, the performance
on Cifar-100 improves compared to real-valued NNs, indicating a regularizing
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Table 2. Classification errors [%] of various NN models. The first three models were
initialized with Real+Tanh from Table 1. The last three models were initialized with
the corresponding discrete-weight model with tanh activation. For discrete NNs with
sign activation, we conducted each experiment five times and report the means and
standard deviations, respectively.

Dataset Ternary+Tanh Quaternary+Tanh Quinary+Tanh Ternary+Sign Quaternary+Sign Quinary+Sign

MNIST (PI) 1.310 1.300 1.280 1.352 ± 0.053 1.292 ± 0.031 1.298 ± 0.040
MNIST 0.570 0.560 0.620 0.736 ± 0.037 0.678 ± 0.042 0.736 ± 0.039
Cifar-10 7.770 7.810 8.030 9.174 ± 0.139 9.246 ± 0.251 9.080 ± 0.246
Cifar-100 29.770 29.840 29.120 33.608 ± 0.199 33.236 ± 0.265 32.910 ± 0.196
SVHN 2.328 2.324 2.362 2.574 ± 0.086 2.591 ± 0.081 2.532 ± 0.056
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Fig. 4. (a) Test classification error [%] on Cifar-10 obtained by using two different real-
valued NNs for the initial parameters of q. Init Model 1 uses less dropout and achieves
7.05% test error whereas Init Model 2 achieves 7.62% test error. However, Init Model
2 results in a better discrete-valued NN. (b) Test classification error [%] on Cifar-10 by
estimating the training set batch statistics using an exponential moving average once
during training and once using the discrete-valued NN.

effect similar as in [37]. These findings are in line with other papers that have
shown little performance degradation when the real-valued activation function
is kept and only the weights are discretized [37, 28].

Next, we compare the corresponding values of discrete-valued NNs with sign
activation from Table 1 and 2. Except on MNIST where results do not improve,
the performance using a pre-trained discrete-valued NN with tanh activation for
initialization improves in nine out of twelve cases on the other datasets, showing
that a two stage training procedure is mostly beneficial.

We also compare our model with [11, 24, 36, 23] as their quantization is similar
to ours. Hubara et al. [11] use binary weights and sign activations, albeit using
larger architectures. They report two results and achieve on average 1.18±0.22%
on MNIST (PI), 10.775±0.625% on Cifar-10, and 2.66±0.135 on SVHN. XNOR-
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Net [24] uses real-valued data-dependent scale factors to perform a binary con-
volution. Using the same structure as [11], they achieve 10.17% on Cifar-10.
DoReFa-Net [36] achieves 2.9% on SVHN using binary weights and binary 0-1
activations. The work in [23] is closest to ours and achieves 0.74% on MNIST
and 10.30% on Cifar-10 using ternary weights and sign activations.

6.3 Ablation Study

In this Section, we investigate the influence of the initialization of q, dropout, and
batch normalization on Cifar-10. Figure 3(b) compares our initialization method
for q described in Section 5.2 to random initialization strategies. Our method
converges faster than the random strategies and achieves almost 4% less absolute
classification error than the random strategies which seem to get stuck in bad
local minima. This highlights the importance of a proper initialization strategy
for the training of weight distributions as the loss surface being optimized seems
to be substantially more delicate than that of a conventional real-valued NN.

This raises the question if it might pay off to put more effort into the train-
ing of the real-valued NN serving for initialization. To answer this question, we
optimized several dropout rates for the initial real-valued NN with tanh activa-
tion, keeping all the other hyperparameters the same. This resulted in dropout
rates (0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1. 0.1) achieving a test error of 7.05% – an
almost 0.6% absolute improvement compared to the result in Table 1. However,
when using this model to initialize q, we achieved inferior performance for the
discrete-valued NN with sign activation as can be seen in Figure 4(a).

As mentioned in Section 5.1, computing exponential moving averages during
training to estimate the training set statistics required at test time could lead
to severely different statistics as those obtained using the discrete-valued NN.
To verify this, we performed two runs that only differ in the estimation of the
training set statistics. This is shown in Figure 4(b). The performance deteriorates
heavily and especially in the beginning there are substantial fluctuations.

7 Conclusion

In this paper, we have generalized previous work on discrete weight distributions
to arbitrary discrete weights. To this end, we introduced simpler schemes for
weight parameterization and weight initialization, respectively. We introduced a
Gaussian approximation for max-pooling that takes the variance into account.
Our method achieves state-of-the-art performance on several image classification
datasets using discrete weights in all layers. We found weight initialization using
a pre-trained real-valued NN crucial in order to obtain reasonable performances.
However, it remains unclear what properties of a pre-trained NN make it a good
choice for an initial model since we observed that a better performing real-valued
NN does not necessarily result in a better performing discrete-valued NN.
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