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Abstract. A great number of patents is filed everyday to the patent
offices worldwide. Each of these patents has to be labeled by domain
experts with one or many of thousands of categories. This process is not
only extremely expensive but also overwhelming for the experts, due to
the considerable increase of filed patents over the years and the increas-
ing complexity of the hierarchical categorization structure. Therefore, it
is critical to automate the manual classification process using a classifica-
tion model. In this paper, the automation of the task is carried out based
on recent advances in deep learning for NLP and compared to customized
approaches. Moreover, an extensive optimization analysis grants insights
about hyperparameter importance. Our optimized convolutional neural
network achieves a new state-of-the-art performance of 55.02% accuracy
on the public Wipo-Alpha dataset.

Keywords: Text classification · Deep learning · Patent classification ·
Hyperparameter optimization

1 Introduction

A patent is a document issued by a governmental office in order to protect the
rights of an invention from being produced, used, or sold, without the permission
of the inventor. For an invention to be patented, it has to fulfill three charac-
teristics; it has to be novel, it has to provide an improvement step of something
already available, and it has to be implementable by the industry.1

According to the Patent Technology Monitoring Team2, the number of patents
filed every year has increased from 417, 508 to 629, 647 between the years 2005
to 2015. It is important to assign each patent to its corresponding category in
order to be later reviewed by the suitable domain examiner, who can decide

1 https://www.epo.org/applying/basics.html (accessed June 20, 2019)
2 https://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm (accessed

June 20, 2019)
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whether the patent should be granted or not. However, automating this process
is complicated for different reasons.

As the focus of research changes over time, the patent categories change as
well. Some categories are merged into one category, new categories are added, or
even the definition of a category changes [11]. Furthermore, the label distribution
is highly imbalanced as patents tend to follow a Pareto-like distribution; i.e. 80%
of the patents fall into 20% of the categories [1, 9].

Another issue is the distribution of words in the patents [11]. Unique words
may be decisive in the patent classification process, but due to their rarity they
are often discarded at the preprocessing step. Moreover, patents usually contain
many scientific terms and to avoid plagiarism or to obfuscate relatedness the
statements are often described in a complicated manner. In conclusion, patents
are manifold, well-structured and long documents. The patent classification cat-
egories are large, complex, time-variant, and non-uniformly distributed hierar-
chies. Therefore, unlike other types of content which allows an easier categoriza-
tion, patent classification is an ambitious and challenging task.

There exist several publications about automatic hierarchical classification
of patents, mainly based on classical machine learning approaches like SVMs.
In combination with elaborate feature engineering they achieved state-of-the-art
results [11].

In recent years, the NLP community experienced major improvements in
text classification driven by the rise of neural network models like recurrent
neural nets (RNN) and convolutional neural nets (CNN). Yet, these models are
mainly applied on short text passages, e.g. sentiment analysis or question type
classification, not on large documents like patents [17].

This work compares recent approaches for text classification applied on the
patent classification task. We investigate the boundaries on how much a neu-
ral network can be improved with a variety of different word embeddings and
hyperparameter optimization. A detailed report of our optimization findings is
provided to guide other researchers.

The experimental results are based on two different datasets, a non-disclosed
collection of patents and a freely available dataset for comparison to previous
approaches and reproducibility [8]. Our optimized convolutional neural network
model achieves a new state-of-the-art performance improvement from 49.02%
[24] to 55.02% accuracy on the freely available dataset. Likewise, the CNN model
outperforms our baseline, a hierarchical SVM (cf. 3.4), from 58.72% to 65.43%
accuracy.

The rest of the paper is structured as follows. Section 2 provides related work
for patent classification and text classification based on neural networks. Section
3 describes the general task and the approach applied in this work. An empirical
study that illustrates our results is presented in Section 4. Section 5 concludes
with a summary.
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2 Related Work

Text classification, or document classification more specifically, are typical Natu-
ral Language Processing (NLP) tasks which deal with the automated assignment
of one or multiple pre-defined labels to a given text or document respectively.
Over the years, document classification has been applied to many different areas
to overcome error-prone and cumbersome manual labeling. Patent classification
is the task of assigning hierarchical single or multi-labels to patent documents.

There exist different classification hierarchies depending on the patent office
in which the patent is filed [11]. This work focuses on classification based on
International Patent Classification (IPC) and the Cooperative Patent Classifi-
cation (CPC) hierarchies, which are further described in Section 3.1.

The task has already been discussed and evaluated with most approved doc-
ument classification approaches in several publications. Gomez et al. [11] con-
ducted a comprehensive survey which highlights the challenges of the task and
summarizes previous results. In the following, the focus will be shifted towards
more recent advances in the field, which are driven by the advent of deep neural
nets. In the scope of this work, a hierarchical Support Vector Machine, a cus-
tomized approach that has been performing very well on the task [10], will serve
as a baseline (cf. 3.4).

Early improvements in text classification with deep learning started with the
Dynamic Convolutional Neural Networks (DCNN) method [17]. The authors
first adopted Convolutional Neural Networks (CNNs), a model well-received in
the computer vision domain, to the field of NLP. Following this work, Yoon Kim
created another CNN architecture [18]. The main improvement was to embed
the input words using pre-trained word embeddings [21] before passing them
into the neural network. Moreover, Kim’s CNN, as the author named it, uses a
single stage of wide parallel convolutions instead of several stacked convolutions
on top of each other.

Zhang created a network which works on character-level instead of word-
level [30]. Therefore, it does not require any pre-knowledge of the words. Fol-
lowing the success of very deep networks in the field of computer vision such as
ResNet [26] and DenseNet [14], one character is read at a time and then fed to
convolution and max-pooling layers. Shortly after, Conneau et al. suggested a
network to further increase the depth [5] by introducing shortcut links, another
idea introduced in ResNet [26].

Many researchers discovered that the combination of CNN and RNN archi-
tecture is beneficial, leading to better results. This is due to the different advan-
tages of CNNs and RNNs [27]. The convolutional network has the advantage of
extracting higher-level features that are invariant to local translation. On the
other hand, a recurrent network is able to capture long-term dependencies. Xiao
et al. created an architecture named ConvRec [27], which extends Kim’s CNN
with a BiLSTM between the convolutional layers and the classification layer.

Kowsari et al. introduced an architecture, consisting of two networks, which
is able to use hierarchical features of labels [19]. One network predicts the first
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level of the label and passes it on to the second network which predicts the full
label.

Yang et al. applied attention mechanisms on document classification [28].
The idea is that the contribution or importance of word in a text can vary based
on the context. As a consequence, when classifying text, not all words should be
weighted the same. Therefore, an attention layer is built on top of a bi-directional
gated recurrent unit (GRU) [3] in order to highlight words at positions with high
impact on the label.

Howard et al. created ULMFiT [13], which employs transfer learning. Instead
of using word embeddings, a language model is used to represent words. After-
wards, the model is finetuned and the output layers are adjusted to fit the need
of the classification task.

Recent trends employing pre-trained language models and context awareness
include ELMo [23] and BERT [6]. Bidirectional Encoder Representations from
Transformers (BERT) achieves state-of-the-art performance on eleven natural
language processing tasks by adding an output layer on top of the pre-trained
language model. The language model is trained by masking words in sentences
and learning to predict these masked words from their context.

There are only few publications discussing patent classification using deep
learning especially with freely available methods or datasets for comparison.
Risch et al. solve the same task using an RNN and self-trained word embed-
dings in RNN-patent [24]. Likewise, Grawe et al. use LSTM with Word2Vec
embeddings to classify patents [12]. However, in their work they only consider
50 different categories.

3 Patent Classification

3.1 Patents and Codes

Patents can be understood as rights granted to inventors that allow them to take
legal actions against anyone using their invention without permission. According
to Gomez et al. [11], patents are usually organized in the following structure:

– Title: Patent’s name.
– Bibliographical data: Contains the ID number of the patent, the names

of the inventor and the applicant, and the citations to other patents and
documents.

– Abstract: A brief overview or description of the patent.
– Description: A more in-depth explanation of the invention.
– Claims: Legal distinction of the patent and its application fields.

A patent classification system is a hierarchical system used for categoriz-
ing patents into different classes, in which patents discussing similar topics are
grouped together under the same label.

There exist several patent classification schemes that patent offices abide by.
Two popular schemes are the International Patent Classification scheme (IPC)
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and the Cooperative Patent Classification scheme (CPC) which are used in this
paper. The classification hierarchy is divided into sections, then classes, sub-
classes, main groups and finally subgroups. Table 1 shows how the hierarchical
structure of the G06K9/6296 label is broken down.

One patent may have more than one label assigned to it, as it can cover
different topics at the same time. However, in the scope of this work, the classi-
fication is treated as single label task, i.e. only the most important CPC code is
considered.

Table 1. Breakdown of the G06K9/6296 label using the CPC scheme.

Structure Label Description

Section G Physics
Class G06 Computing; Calculating; Counting
Subclass G06K Recognition of data; Presentation of data; Record careers
Main group G06K9/62 Methods or arrangements for recognition using electronic

means
Subgroup G06K9/6296 Graphical models, e.g. Bayesian networks

3.2 Preprocessing

This subsection describes the applied preprocessing steps for all the experiments.
Firstly, the patent title, abstract, description, and claims are concatenated to-
gether into a single text. As the types of CNNs used in this work require a
constant sized input length, the texts are truncated to 1500 words. This maxi-
mum sequence length was identified empirically in previous evaluations. Shorter
sequences are padded using white spaces. Furthermore, the text is normalized
by lower-casing, removing all non-alphabetic characters and reducing all multi-
spaces to a single white space. To split the text into words, the default Keras
tokenizer3 is used. Finally, only the 20, 000 most frequent words are considered.

3.3 Word Embeddings

A word embedding describes a mapping that translates single words or phrases
taken from a vocabulary into an n-dimensional real-valued vector space. It is
usually the rationale to find a representation which preserves syntactic and se-
mantic attributes and can be passed on to a machine learning algorithm.

The choice of an effective word embedding depends on a large variety of
parameters, e.g. the model itself, embedding size, the corpora used for training
or the action taken for unknown words. Many standardized and well-described

3 https://keras.io/preprocessing/text/ (accessed June 20, 2019)
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word embeddings, trained on different corpora, can be found online. Among
these, the three most popular models (GloVe [22], Word2Vec [21] and FastText
[2]) are tested based on different embedding sizes.

3.4 Applied Methods

In the experiments of this work, we compare several approaches ranging from
classical SVM to very recently published neural networks. Two methods are
described in more detail in the following. We apply a hierarchical SVM model as
a strong baseline and Kim’s CNN as a neural network for further optimization.

Hierarchical SVM These models proved to be successful in production en-
vironments. They provide a good trade-off between training speed, prediction
speed, accuracy, and memory footprint. The hierarchical structure, in form of a
tree, is aligned to the CPC scheme. Each node of the tree consists of a single-
label classifier implemented by several one-vs-all linear SVMs. In order to avoid
some ambiguities in the CPC codes and to improve the accuracy, the first two
levels have been merged, i.e. the first node in the hierarchical model classifies
labels like G06 (cf. Table 1). The final prediction of the model is determined
using a greedy search on the product of the softmax confidences of each node in
the tree path. The features of the single SVMs consist of a bag-of-stems of the
first 2000 characters of each section. The features are weighted using logarith-
mic frequencies with redundancy [20] and L2-normalized. Overall, hSVM scales
considerably better in terms of amount of labels compared to non-hierarchical
SVMs and is therefore applied especially for the large dataset (cf. 4.1).

Yoon Kim’s CNN A recap of Kim’s CNN is presented in this section as it is
the most used method in this work. The preprocessed text is fed to Kim’s CNN
through an embedding lookup, which converts word IDs to vectors represented
in a highdimensional vector space. Afterwards, one or more 1-D convolutional
layers are applied on top of the embedding layer. These convolutional layers
may have different sizes and the convolutional filters are typically named re-
gions. Furthermore, each of these regions have filters with different weights. A
max-over-time pooling is then applied to the output of the convolutional layers.
Thereafter, the output of all the layers is concatenated and fed to a softmax in
order to obtain a probability distribution over the label classes.

3.5 Optimization and Assumptions

Hyperparameter Optimization Neural network parameters can be divided
into two types, the normal and the hyperparameters. Normal parameters, such
as weights and biases, are changed during training. Hyperparameters, such as
learning rate and batch size, are set before the training begins. Hyperparam-
eter optimization describes the process of tuning these parameters by running
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different configurations in order to choose the optimal one. Hyperparameter op-
timization techniques range from simple random search to more sophisticated,
efficient methods such as Bayesian Optimization (BO). In this work, BOHB, a
state-of-the-art hyperparameter optimization technique by Falkner et al. [7], is
used to tune the parameters. It combines the best of two worlds leveraging the
strong performance of BO while maintaining the speed of hyperband (HB).

Assumptions Three main assumptions are set up to limit the computing time
to a feasible maximum when comparing different models with different parameter
configurations.

First, all default hyperparameters are comparable, i.e. if model x is better
than model y based on the default settings, x will remain better than y, when
tuning the parameters of both models.

Second, if model x performs better than model y on a subset, then x will
remain better than y on the whole dataset.

Third, improvements made on a subset have the same effect on the whole
dataset, i.e., if for example a parameter is tuned on a subset, then this change
will reflect on the whole dataset as well.

We note that in practice these assumptions only hold approximately, but
they do motivate the choices made in our algorithm.

4 Experimental Results

4.1 Datasets

Two collections of datasets are utilized in this work. The first dataset called Pat

consists of a non-disclosed collection of 1.05 million English patents that have
been filed to a patent office. The patents contain complete sections like title,
abstract, claims and description with 2500 words on average and are labeled
according to the CPC scheme. This dataset represents the main task of routing
new patent applications to the correct expert examiner. Each patent is assigned
to a range of CPC codes, grouped by the starting code of the range. These ranges
represent the area of expertise of the examiner groups. Considering these ranges
as target labels leads to a single-label classification task with an overall amount
of 1382 classes. Due to its real world nature the dataset is highly imbalanced.
The most frequent class includes around 30100 instances, while around 30% of
the classes include less than 100. The average number of documents per class on
each CPC level decreases considerably from 151, 296 examples on the 1st level to
31 examples on the 5th level. For testing the models on this dataset, a separate
set of 118, 177 patents with the same class-distribution is utilized.

A subset of Pat called Pat16 contains 250, 017 patents filed in 2016 and
applies a reduced set of 8 classes corresponding to the first level of the CPC code.
This reduced and simplified dataset is used in different variations of optimization
for performance reasons. As a separate test set for Pat16, 115, 795 patents filed
in 2017 are utilized.
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For comparable results, a second, freely available, dataset is used. Among
other Wipo datasets 4 and the CLEF-IP dataset 5, Wipo-Alpha was chosen as it
provides text for all sections and a distinguished single CPC/IPC class for the
single-label classification.

Wipo-Alpha contains 75K English patents with overall 451 classes. The sep-
arate test set consists of 28, 926 patents. It was used in previous evaluations and
shares most characteristics with the main dataset.

4.2 Model Selection

Several previously published models with good results are evaluated on both
datasets Pat16 and Wipo-Alpha, in order to pick a reasonable model for further
optimization. The default hyperparameters mentioned in the publications of each
model are used for the preliminary comparison, except for BERT [6] for which
learning rate, input sequence length, and batch size were optimized using random
search.

As shown in Table 2, ULMFiT [13] and BERT achieve the highest accuracy on
both experiments. However, it takes 68 hours to train ULMFiT on Pat16 (around
20% of Pat), which is considerably slower compared to the other methods that
take only a couple of hours (ranging from 3 to 9 hours)6. The reason is that
building a language model from a very large corpus requires a lot of computing
time. In addition, training Bi-LSTMs is generally slower than training CNNs.

The results of BERT are only provided for Wipo-Alpha as an initial compar-
ison. It is not investigated further in this work because it was not yet available
when the main part of this work was done. The language model is applied for
classification using the commonly used approach7.

Therefore, the next best model, Kim’s CNN [18], is used for further exper-
iments. 20 epochs can be trained within 3 hours on the Pat16 subset. It is
important to choose a model which can be trained relatively quickly, in order
to further optimize it using hyperparameter optimization tools and apply other
experiments and improvements.

4.3 Model Optimization

Word Embeddings First, the impact of different word embeddings on the
accuracy is investigated. The three popular models, i.e. GloVe [22], Word2Vec
[21] and FastText [2] are tested based on the different embedding sizes available

4 https://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/

dataset/index.html (accessed May 4, 2019)
5 http://www.ifs.tuwien.ac.at/~clef-ip/download/2011/index.shtml (accessed

May 4, 2019)
6 Specifications of the used machine: OS: CentOS Linux 7.5, RAM: 32GB Kingston

HyperX Fury DDR4, CPU: Intel Core i7-7700, GPU: MSI GeForce GTX 1080 Ti
Gaming X 11G

7 https://github.com/google-research/bert#sentence-and-sentence-pair-

classification-tasks (accessed June 24, 2019)
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Table 2. Accuracy (%) of previously published methods for the reduced subset Pat16
and a freely available dataset Wipo-Alpha.

Method Pat16 Wipo-Alpha

Linear SVM [25] 68.8 41.0
NB [29] 65.5 33.0
FastText [16] 74.4 29.6
HAN [28] 79.7 49.3
Yoon Kim’s CNN [18] 80.5 49.5
VDCNN [5] 76.1 41.3
ULMFiT [13] 82.8 49.7
BERT [6] - 53.4

online. Furthermore, custom Word2Vec and FastText embeddings are trained on
Pat containing 1.05 million patents.

Word2Vec and FastText utilize the skip-gram or CBOW algorithm to gener-
ate embeddings. Yet, FastText additionally considers n-gram sub-words as input
instead of whole words as atomic units. Apart from the increased training time,
it enables the model to embed unseen words. The word ”Propene”, for example,
is unseen in the training corpus, yet FastText can assign a vector near the vec-
tor of the seen word ”Propylene” which can be advantageous in domains with
complex language like patents. Word2Vec lacks this ability and only offers the
option to assign a random or zero-valued vector to unseen words.

There are many hyperparameters that can be optimized during the training of
a custom word embedding [4]. In this work, only the default values are employed
in order to ensure transferability. For testing the embeddings, a CNN was trained
and evaluated on the Pat16 subset for each embedding. Thereby, the embeddings
were allowed to adapt during training time. The results of the evaluation are
shown in Table 3. The accuracy on the first level of the patent hierarchy is used
as evaluation metric.

The FastText embeddings trained on the in-domain corpus surpasses all other
approaches. Yet, given sufficient embedding size (300) and training corpus the
out-of-the-box embeddings reach satisfying results.

The same behaviour can be observed regarding the Wipo-Alpha dataset. Us-
ing custom FastText embeddings increases the accuracy from 49.45% to 52.26%
with respect to the best pre-trained embeddings (GloVe, 300 dimensions, 1.9M
words).

Hyperparameter Optimization In this section, the results of applying Hy-
perparameter Optimization by using BOHB [7] are investigated. In total, 30 runs
of BOHB were executed on both the Pat and Wipo-Alpha dataset. The hyper-
parameters are optimized using only the training set of the respective dataset.

In the case of the Pat dataset, it is possible to completely randomize training
and evaluation set in order to mitigate overfitting due to its size. Therefore before
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Table 3. Results of different word embedding variations. The size of the vocabulary
is given by the predefined embedding models.

Model Dimensions Corpus Size Vocab Size Acc. %

GloVe 500 840B 2.2M 80.05
GloVe 300 42B 1.9M 80.27
GloVe 300 6B 400K 79.77
GloVe 200 6B 400K 79.60
GloVe 100 6B 400K 78.85
GloVe 50 6B 400K 77.50
FastText (skip-gram) 300 600B 2.5M 80.50
Word2Vec (skip-gram, custom) 300 2.5B 350K 80.81
FastText (skip-gram, custom) 300 2.5B 350K 81.35

each iteration two disjoint, stratified subsets containing 20% of the complete
dataset are sampled for training and validation.

As for Wipo-Alpha, a random 20% of the training set is used for validation
in each evaluation.

Table 4. Hyperparameters ranges.

Parameter Range

Learning Rate [1e−5, 9e−3]
Batch Size [16,256]
Dropout Rate [0.1,0.6]
Number of Words [10000,60000]
Regions Size [1,15]
Number of Filters [500,3000]
Sequence Length [300,2500]

The examined hyperparameter ranges are illustrated in Table 4. Furthermore,
Table 5 shows the best found parameters and their importance with respect to
the prediction accuracy calculated by the fANOVA tool [15].

It can be seen that the importance of the parameters is similar in both
datasets, except for Learning Rate, Dropout Rate, and Regions Size. It is hypoth-
esized that the importance of these parameters differ between the two datasets
mainly because of the differences in number of classes (1, 382/451) and their size
(250, 000/75, 000).

Table 6 shows that applying BOHB increases the accuracy by 1.59% on the
20% subset of Pat and by 2.76% on Wipo-Alpha.
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Table 5. Optimal hyperparameters.

Parameter Pat Importance (%) Wipo-Alpha Importance (%)

Learning Rate 0.0002 21.9 0.0011 63.5
Batch size 64 1.3 128 0.1
Dropout rate 0.75 26.2 0.26 7.5
Number of Words 17567 6.7 23140 3.9
Regions Size [4,5,6] 12.9 [6] 0.1
Number of Filters 2097 4.3 2426 7.9
Sequence Length 984 3.1 1431 5.5

Table 6. Hyperparameter optimization results.

Dataset Before BOHB After BOHB

Pat (20%) 60.84 62.43
Wipo-Alpha 52.26 55.02

Results The results after optimizing the CNN applied on the whole dataset are
shown in Table 7. The optimized CNN (CNNopt) yields 6% higher accuracy than
RNN-patent [24] achieving the current state-of-the-art results on Wipo-Alpha.
Additionally, the results surpass a neural network based on BERT (cf. 2). The
default CNN uses an upstream embedding (GloVe 300) and achieves an accu-
racy of 49.45%. The difference to the results before applying BOHB in Table 6
is caused by the usage of the custom FastText embeddings. Regarding Pat, op-
timizing the CNN increases accuracy from 62.01% to 65.43%, yielding a 6.71%
improvement compared to the hSVM the baseline.

Table 7. Optimized results compared to base lines. Only available baseline results and
published results for the datasets are given. Previously published methods of Table 2
are neglected due to runtime performance.o

Method Pat Wipo-Alpha

SVM - 41.00
RNN-patent - 49.00
hSVM 58.72 -
CNN 62.01 49.45
CNNopt 65.43 55.02



12 L. Abdelgawad et al.

4.4 Discussion and Error Analysis

Figure 1 shows the accuracy on each level for both models, hSVM and CNNopt.
CNNopt outperforms hSVM on all levels by a small delta although CNNopt is not
a hierarchical method like the applied SVM.

The top-k results of CNNopt can be seen in Figure 2 providing an overview
of the accuracy of each prediction. The accuracy reaches 95% when considering
the top-6 predictions for all 1382 classes.
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Fig. 1. Accuracy on each level for hSVM

and CNNopt on Pat.
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Fig. 2. Accuracy for top-k predictions of
CNNopt on Pat.

Hierarchical Results As an experiment to present the hierarchical structure
of CNNopt, the accuracy is calculated at each level regardless of the other levels.
For example, if there are 100 examples in total, and in the first level 80 of them
are classified correctly, then the first level accuracy is 80%. Afterwards, if 65 of
those 80 are classified correctly in the second level, then the second level accuracy
is 81.25% (65 out of 80 correct). This procedure is continued for all levels. Table
8 shows the results for hSVM and CNNopt, which indicate that CNNopt follows a
hierarchical classification structure. Although the given labels are independent
of one another and have no structure, its results are slightly better than hSVM

at each level. Furthermore, a hierarchical CNN was implemented and evaluated
but without considerable improvements, which is on par with the findings in this
section.

Confusion Matrix The optimized network CNNopt achieves an accuracy of
80.5% on Pat16 and 90.3% on Pat when considering only the first level. Ini-
tially, it was assumed that the data imbalance lowers the accuracy. However, the
confusion matrix in Figure 3 highlights the main reason which is the similarity
of classes. For example, the model shows the highest error rates between the
two categories ”Electricity” and ”Physics” which share common characteristics.
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Table 8. Level independent accuracy on Pat for investigating the dependence on the
hierarchical structure.

Accuracy % hSVM CNNopt

First Level 84.1 86.6
Second Level 91.7 93.0
Third Level 88.4 90.2
Fourth Level 89.0 90.9
Fifth Level 96.8 97.7

The second highest error rate classes are the ”Human Necessities” (health, hy-
giene, tobacco, food additives) and ”Chemistry”, which are similar as well. To
ascertain this hypothesis, the top-2 accuracy was considered. As expected, the
result improved from 80.5% to 95.5% on Pat16, while improving from 90.3% to
98% on Pat. Another hypothesis behind the reason the top-2 accuracy is much
higher than the top-1 accuracy is that these patents are originally classified by
multi-labels not only one label. In the single label dataset, only the most im-
portant class selected by some hidden heuristics is considered and the remaining
are ignored. A patent may belong to different classes but with different levels of
concentration (e.g. a patent may be discussing an electrical and chemical inven-
tion at the same time, but if it is concentrating more on the electrical part, then
the leading class would be Electricity, while Chemistry would be a sub-class).

Error Analysis After inspecting and analyzing a sample of the common errors,
three main types of errors can be identified:

1. Labels are classified correctly up to a certain level.
2. Labels are wrongly classified, but actually related.
3. Labels are wrongly classified.

Table 9 shows examples of the three types of errors and the description of
the labels. The most frequent types of errors are the first and second ones. Using
top-k predictions would mitigate these errors. However, this would lead to a
multi-label classification problem, which would require modifications in the final
layer of the network.

5 Conclusion

The task of automated classification of patents is far from being solved but with
the growth of new patents filed from year to year it becomes more important
every day. In this work we have studied the performance of several recent neural
network models on the automated patent classification problem. It was shown
that CNNs are a suitable choice in terms of accuracy and training/inference
speed. We applied state-of-the-art hyperparameter optimization techniques to
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Fig. 3. Confusion matrix for the predictions of CNNopt restricted to the first level.

the problem and presented its effects on the accuracy. Furthermore, the results
indicate that a complex hierarchical network may not be needed as the CNN
learns the hierarchy of the labels by itself. The code for reproducing the experi-
mental results is released as open source.8
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