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Abstract. Matrix-assisted laser desorption/ionization-time-of-flight mass
spectrometry (MALDI-TOF-MS) is a well-known technology, widely used
in species identification. Specifically, MALDI-TOF-MS is applied on sam-
ples that usually include bacterial cells, generating representative signals
for the various bacterial species. However, for a reliable identification re-
sult, a significant amount of biomass is required. For most samples used
for diagnostics of infectious diseases, the sample volume is extremely low
to obtain the required amount of biomass. Therefore, amplification of the
bacterial load is performed by a culturing phase. If the MALDI process
could be applied to individual bacteria, it would be possible to circum-
vent the need for culturing and isolation, accelerating the whole process.
In this paper, we briefly describe an implementation of a MALDI-TOF
MS procedure in a setting of individual cells and we demonstrate the use
of the produced data for the application of pathogen identification. The
identification of pathogens (bacterial species) is performed by using ma-
chine learning algorithms on the generated single-cell signals. The high
predictive performance of the machine learning models indicates that the
produced bacterial signatures constitute an informative representation,
helpful in distinguishing the different bacterial species. In addition, we
reformulate the bacterial species identification problem as a time series
classification task by considering the intensity sequences of a given spec-
trum as time series values. Experimental results show that algorithms
originally introduced for time series analysis are beneficial in modelling
observations of single-cell MALDI-TOF MS.

Keywords: MALDI-TOF MS · single-cell spectrum · single-ionization-
event · classification · machine learning methods · bacterial species iden-
tification · time series
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1 Introduction

In the diagnostics of infectious diseases, matrix-assisted laser desorption/ ionization-
time-of-flight mass spectrometry (MALDI-TOF-MS) is used to identify the causative
organism of an infection as a first step in establishing an antibiotic therapy. Ow-
ing to its ease of use, its reliability and the low cost of ownership, the introduction
of MALDI-TOF-MS revolutionized the diagnostics of infectious diseases during
the last decade [4]. Specifically, this technology, applied to bacteria, generates a
mass spectrum exhibiting peaks of a limited number of (household) proteins (ri-
bosomal proteins) and peptides produced by the organism. Since the extracted
structure of these proteins depends on the species, the MALDI mass spectrum is
used as a signature enabling identification of microorganisms up to species level.

For a highly reliable classification result, a significant amount of biomass is
required in MALDI. However, for most samples used for diagnostics of infectious
diseases, the amount of the obtained biomass is often very low. As a consequence,
amplification of the bacterial load is required by culturing. Furthermore, since
there is almost no part in the human body that does not contain some form of a
natural flora consisting of microorganisms, a sample ‘harvested’ from a patient
sample will generally contain a mixture of organisms, optionally including the
organism responsible for the infection. Since interpreting samples containing
bacterial mixtures is still in an experimental phase [25], for routine diagnostics,
isolation of the causative organism is required as well. Thus, even though the time
required for a MALDI based identification is extremely short, in terms of seconds
or minutes, since it is dominated by the culturing process, the time-to-result is
still in the order of multiple hours (over-night culture) to days. Furthermore,
for choosing the culture medium/conditions and for choosing the colony(ies)
to identify, a-priori knowledge on the cause of the infection is required. If the
MALDI process can be applied to individual bacteria, it would be possible to
circumvent the need for culturing and isolation, accelerating the whole process.

Separating a patient sample into a stream of individual cells is possible us-
ing the technology developed by [26], originally aimed at dispensing individual
eukaryotic cells into well plates. In another work, researchers [24] developed
an aerosol TOF MS, able to apply MALDI to individual aerosol particles and
demonstrated that recognizable spectra could be accumulated from spectra of
large numbers of aerosol particles containing pure proteins only. By combining
the cell dispensing technology introduced by [26], with the aerosol TOF tech-
nology of [24], the desired single-cell capability can be realised. BiosparQ in
the Netherlands developed an instrument, called Cirrus D20, together with the
appropriate protocols that is able to produce an information rich signature of
bacteria based on accumulated spectra. In this paper, we evaluate this single-cell
MALDI-TOF MS methodology and we demonstrate the use of the single-particle
spectra for the application of pathogen (bacterial species) identification.

The classification of single-cell bacterial fingerprints is not a trivial process
even for human annotators. Thus, MALDI-TOF single cell spectrum analysis
should be combined with statistical and machine learning methods. Previous
studies have focused on the statistical analysis of accumulated spectra (i.e., mass
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spectra formed by averaging multi-cell mass spectra) [14, 21, 11, 5]. For instance,
in the work of [11], machine learning algorithms, such as SVMs [7] and RFs [6],
have been exploited for bacterial identification from accumulated MALDI-TOF
mass spectra. For species identification, machine learning methods have been
also successfully applied on other representations coming from flow cytometry
[2, 19] and Raman spectroscopy [22, 17, 23] data. In this work, we focus on the
analysis of MALDI-TOF single-cell spectra for rapid species identification us-
ing machine learning techniques. Unlike previous studies, e.g., [21, 11], instead
of only applying general purpose machine learning techniques, we also experi-
mented by framing the problem as a time series classification task. In particular,
by mapping mass-over-charge (M/Z) ratios to the time axis, we consider the
sequences of the different intensities in a spectrum as time series values. This
way, standard time series classification methods [1] can be applied. To the best
of our knowledge, this is the first time that machine learning approaches and
time series classification methods are being applied on single-cell MALDI-TOF
data.

To sum up, the contribution of this paper is two-fold. Based on the im-
plementation of the MALDI-TOF-MS methodology in a single-cell setting de-
scribed here, we (i) experimentally prove that the single-cell signatures, produced
by this MALDI-TOF-MS implementation, are informative in distinguishing dif-
ferent bacterial species by using machine learning data analysis, and (ii) find
that algorithms originally introduced for time series analysis are beneficial in
modelling observations of single-cell MALDI. As such, we believe that the use
of single-cell MALDI-TOF-MS data combined with an accurate modelling ap-
proach comprises a solid framework that strives to solve the problem of fast
pathogen identification (in terms of minutes or seconds), revolutionizing current
state-of-the-art approaches.

2 Materials and Methods

2.1 Bacterial Species

The strains used in this study were provided by the Leiden Centre for Ap-
plied Bioscience. They are selected from a group of (opportunistic) pathogens,
comprising of Citrobacter freundii (C. freundii), Citrobacter koseri (C. koseri),
Enterobacter aerogenes (E. aerogenes), Klebsiaella oxytoca (Kl. oxytoca), often
responsible for common and frequent infections such as urinary tract infections.
The identity of these strains is established by evaluation of the cultures on a
bioMeriéux Vitek MS MALDI instrument.

2.2 MALDI-TOF Mass Spectrometry

Performing mass spectrometry of larger molecules, such as proteins and peptides,
is not evident. Generally, the amount of energy associated with direct ionization
of the analyte exceeds the disintegration energy of the analyte molecules. Since,
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the information content of the resulting molecular debris is low, a soft ionization
technique (such as MALDI), that leaves the molecules intact, is essential.

In MALDI, the analyte (proteins and peptides in case of identification of mi-
croorganisms), is co-crystalized with an organic substance generally containing
an aromatic ring (the so-called MALDI matrix) and illuminated using a pulsed
UV laser [10]. Upon absorption of the UV light by the MALDI matrix, part of
the MALDI-matrix/analyte mixture is ablated into a plume comprising of an-
alyte molecules, matrix molecules, molecular debris and clusters of molecules.
Through a number of, currently still only partly understood, interactions, dur-
ing this process, protons are transferred to the analyte molecules (see e.g. [15]).
That way, charge separation can be achieved with the minimum amount of en-
ergy. An electric field accelerates the ions into a field-free drift region. There,
the separation of the ions according to their mass-over-charge (M/Z) ratio is
achieved.

2.3 Single-Cell MALDI-TOF Mass Spectrometry

Implementation of Single-Cell MALDI To enable application of MALDI to
individual bacteria, three aspects of the conventional MALDI logistics need to be
changed. Specifically, (i) instead of preparing a large number of cells on a target
plate, individual cells need to be made suitable for applying MALDI, (ii) instead
of presenting a large number of cells (on a target plate), individual cells need to
be presented to the mass spectrometer, and (iii) instead of classifying an accu-
mulated spectrum resulting from a large number of ionization events (applied on
a large number of positions within a spot on the target plate), spectra resulting
from a single ionization event (applied on a single cell) need to be classified. For
the current application, (i) single cells are prepared using a single-cell dispens-
ing technology developed by [26], and (ii) single cells are presented to the mass
spectrometer and ionized using an aerosol TOF (ATOF) technology developed
by [24]. The current paper concentrates on the third aspect, classifying spectra
resulting from single ionization events applied to individual cells.

MALDI-TOF MS Procedure In the ATOF mass spectrometer built by
BiosparQ BV, each individual particle, which is formed based on a technique
described by [26], is illuminated in flight with a pulsed UV laser (337 nm), after
which the ions that are produced by the MALDI process are accelerated into
the time-of-flight tube. The ions are detected at the end of the time-of-flight
tube, using an electron multiplier. For each illuminated particle, the resulting
data is recorded as a time series in binary format. The relation between the
time-of-flight, and the mass over charge ratio of the ions, M/Z, is given by:

M/Z =

(
TTOF − C2

C1

)2

The values of the calibration coefficients C1 and C2 are established by calibrating
the mass spectrometer using a sample containing a known organism (E-coli,
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Fig. 1: Accumulated and single-cell spectra. (a) Accumulated spectrum of mul-
tiple single-ionization-event spectra of the species Kl. oxytoca, and (b) single-
ionization-event mass spectrum of Kl. oxytoca. Note that only the mass range
above 2000 Da is considered throughout the analysis. See text for more details.

ATCC 25922) and aligning the resulting spectrum with a reference spectrum of
E-coli ATCC 25922 recorded on a Vitek MS MALDI mass spectrometer.

The Structure of Single-Ionization-Event Mass Spectra Apart from
a signature that stems from the analyte molecules, MALDI spectra generally
contain signal, or clutter, caused by imperfect ablation of the analyte-MALDI-
matrix mixture, leading to (i) charged clusters of molecules and (ii) disintegra-
tion of large molecules (and thus leading to charged molecular debris). Note that
in single-ionization-event spectra the amplitude of the clutter signal may be of
the same order as the analyte signal. However, since the formation of clusters of
molecules and molecular debris is a highly stochastic process (while the presence
of analyte molecules clearly is not), the expected value of the clutter signal is
significantly lower than the one of the analyte signal.

Accumulation of a large number of single-ionization-event spectra will there-
fore lead to an accumulated spectrum showing high amplitudes at the locations
corresponding to the analyte mass molecules and significantly lower amplitudes
at intermediate (clutter) locations. By using straightforward baseline correction
algorithms, it is possible to remove the clutter contribution from the spectra.
However, in single-ionization-event mass spectrum classification, the difference
in the clutter and analyte stochastics cannot be used, and a different strategy
must be employed. To illustrate the difference between an accumulated signal
and a single-cell signal, we depict an accumulated spectrum of the species Kl.
oxytoca formed by multiple single-ionization-event spectra (Fig. 1a) and a single-
ionization-event mass spectrum of Kl. oxytoca (Fig. 1b), respectively. From these
two figures, it becomes clear that the classification of accumulated spectra is an
easier task compared to the classification of single-cell spectra, which is hard
even for a human annotator. In our analysis, only the M/Z range above 2000 Da
is considered. This is because the well conserved proteins (and peptides) (i.e.,
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Fig. 2: Informative and non-informative data observations. (a) Informative spec-
trum of a single-ionization-event of a single C. freundii particle, and (b) spectrum
of an empty particle (non-informative spectrum).

not depending strongly on the growth medium and growth circumstances) are
located in this part of the signal.

2.4 Data Pre-processing

Using expression (1) and the associated calibration coefficients the single-particle
time series are converted into mass spectra. These single-particle spectra are
finally normalized using the Root-Mean-Squared (RMS) voltage of the measure-
ment chain noise.

As a first preprocessing step, we remove particles (observations) that do not
contain any information. To do so, we calculate the variance of each particle. If
the calculated variance is low, there are no intensities captured by the ionization
procedure. In Fig. 2b, an observation of an empty particle is depicted. In this pa-
per, we demonstrate that the single-cell signals, produced by the aforementioned
procedure, form a valid signature of the most common bacterial species. To this
end, machine learning classifiers are employed to identify bacterial species from
single-cell signals. Following the standard practices of machine learning methods,
signals of various species should be aligned in a common feature space (i.e., for
the same values of M/Z ratios). This is because intensities for the various species
may be measured in different M/Z ratios. Therefore, we employ an interpolation
technique as a feature construction approach in order to form a common feature
representation for all the studied species. The interpolation procedure followed
in our experimental study comprises four steps: (i) M/Z values are defined (these
values should be in between the maximum and minimum M/Z values existing in
the dataset), (ii) a cumulative spectrum of each individual spectrum is formed,
(iii) linear interpolation is performed on the cumulative spectrum, (iv) the in-
terpolated values are differentiated and the final signal is produced. The number
of M/Z values (bins) defined in step (i) is a tunable parameter that is optimized
during the learning process (model training).
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Fig. 3: Comparison of the different interpolation approaches. (a) Original ac-
cumulated spectrum of Kl. oxytoca, (b) accumulated spectrum after linear in-
terpolation on the cumulative spectra, (c) accumulated spectrum after linear
interpolation on the original spectra, and (d) toy example of the two interpo-
lation techniques. The original signal is represented with blue bars, the linear
interpolated signal on the original spectrum is represented in red color, and the
linear interpolated signal on the cumulative spectrum is colored in green. The
corresponding cumulative spectrum is drawn in black color.

We also experimented by applying the interpolation method directly on the
original spectrum values, resulting in low values for the characteristic peaks of
the spectra. Figure 3a shows the mean spectrum of Kl. oxytoca observations
before the interpolation (raw data), Fig. 3b depicts the same mean spectrum
after the interpolation procedure on the cumulative spectrum, while Fig. 3c
presents the result of the interpolation on the raw spectrum. The number of
bins (M/Z values) selected in these examples (Fig. 3b and 3c) is equal to 1000,
while the original signal includes intensities for ∼16000 bins. It is observed that
the signals in Fig. 3c have been mostly affected by the interpolation, and the
peaks of the average spectrum are not well-formed as in the original data (see
Fig. 3a). On the other hand, Fig. 3b shows an interpolated signal that is close to
the original one (with respect to the high peaks). Although the intensity scale
increases due to the cumulative information that each bin captures, by employing
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interpolation on the cumulative spectrum, the peaks of the original signal are
well-preserved. This is important, since these peaks constitute the informative
part of a signal. In Fig. 3d, a toy example of a single-cell spectrum, where a
peak is not captured using simple linear interpolation on the original signal, is
illustrated. As mentioned above, in single-cell spectra there are no well-shaped
peaks (see Fig 2a for an example) and thus, possible spikes in the signal should
be preserved.

2.5 Machine Learning Methods

We conduct an extensive experimental study on the task of species identification
from single-cell MALDI-TOF data. In machine learning, species identification
can be formulated as a typical classification task. In mathematical notation,
an observation in this task is symbolized as a pair (x, y), where x is a feature
vector of length m, i.e., (x1, ..., xm) (m values), and y is a class value. Following
this notation, a dataset D, in a classification task, consists of N observations
with their associated class labels, i.e., D = {X,y} = {(x1, y1), ..., (xN , yN )}.
The vector y represents a discrete class variable with c possible values. In our
setting, the observations are the various spectra, the intensities are the values
of the m features (bins) and the bacterial species the different class values. We
evaluate the results of seven machine learning classifiers, four of them are well-
known algorithms that have been broadly applied on MALDI-TOF data, namely
random forests (RFs), support vector machines (SVMs), logistic regression (LR),
and k-nearest neighbor (KNN). The other three algorithms, originally developed
for the task of time series classification (described below), are time series forests
(TSF), Bag-of-SFA-Symbols (BOSS) and complexity invariant distance (CID).

The first group of models consists of algorithms that can distinguish non-
linearly (e.g., RF) and linearly (e.g, LR) separable data. Some of these algo-
rithms are also able to easily handle high-dimensional data (e.g., RFs), while
others are not (e.g., KNN). This is the very first time that a predictive mod-
elling benchmarking is performed on this kind of data and thus, an extensive
experimental setup of the most well-known predictive models is necessary to set
a strong baseline for future studies. Regarding the various models, the RF [6] is
the well-known non-linear ensemble algorithm. The SVMs [7] used in this set-
up apply a Gaussian RBF kernel to model non-linear boundaries between the
different species. The LR algorithm [9] is a simple method that learns linear
boundaries between the classes, while the KNN model [8] serves as an intuitive
non-linear baseline algorithm.

The second group of models consists of algorithms that are extensively used in
the time series classification task. The aim of a time series classification task is the
assignment of a given time series to a particular class. As in other classification
problems, a classifier is a function or mapping from the input space to the class
values. The only difference from the general classification task, described above,
is that the feature vector x of length m is a time series of the same length.
In our setting, the observations of the single-cell MALDI-TOF dataset can be
seen as time series, since the ion intensities are consecutive values over the M/Z
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axis (see Fig. 2a). The class values are again the various bacterial species. To
the best of our knowledge, time series classification methods have not yet been
investigated on MALDI-TOF data. As such, in the next paragraph, the time
series classification methods used in this study are briefly introduced.

Time series classification algorithms enable some automatic feature construc-
tion or filtering of the time series values prior or during constructing the classifier.
That way, these methods extract high-level representations for the time series
or use similarity metrics for measuring the relatedness between the time series
[16, 13, 1]. Time series classification algorithms can be categorized as methods
that use: (i) the whole series or the raw data for classification – this family of
algorithms mainly consists of one-nearest-neighbour-type (1-NN) classifiers with
varying distance measures, (ii) sub-intervals of the raw time series – summary
statistics of these sub-intervals are commonly used as discriminative features in
this family of classifiers, and (iii) the frequency of the patterns in a given time
series – a dictionary of patterns is formed and a histogram for each observation
is calculated based on the constructed dictionary by this kind of methods.

In this study, we compare three algorithms, one from each of the aforemen-
tioned categories. The complexity invariant distance (CID) [3] algorithm belongs
to the first category. This classifier defines the concept of complexity invariance in
time series. Intuitively, complex time series are characterized by many peaks and
valleys. The distance between pairs of complex time series is frequently greater
than the distance between pairs of simple time series (i.e., without many peaks
and valleys). A complexity invariant distance measure has been introduced to
compensate this phenomenon. Specifically, a distance measure is multiplied by
a term that is calculated based on the sum of squares of the first differences of
the time series. The Euclidean distance measure has been used as base distance
measure from the CID algorithm.

A representative method of the second category is the time series forests
(TSF) [12]. This method is similar to the RF model, because it consists of a set of
classification trees. Specifically, each tree is trained by using summary statistics
(i.e., the mean, standard deviation and slope) of random sub-intervals derived
from the times series observations. The calculated summary statistics serve as
discriminative features. The classification of a new observation is obtained by
majority voting over all trees.

Bag of SFA symbols (BOSS) [20] is an algorithm that belongs to the third
category of the methods mentioned above. It starts by creating a dictionary of
patterns from the given time series observations. The frequencies of the patterns
of this dictionary are used as discriminative features. The different patterns are
constructed by using time series sub-intervals in a sliding window setting. Then,
the discrete Fourier transform (DFT) is performed on each sub-interval window.
Afterwards, the calculated Fourier coefficients are transformed into categorical
values (e.g., ‘a’, ‘b’, ‘c’) based on their quantity (i.e., ‘high’, ‘medium’, ‘low’),
and thus, the patterns of the dictionary are formed by the combination of the
categorical values of the Fourier coefficients. Finally, each time series observation
is represented based on the frequency of the calculated patterns in the time series
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Table 1: Predictive performance on the test set in terms of mean accuracy for the
compared predictive models. For each model, the optimal value of the parameter
number of bins, which is tuned during the training phase, is also reported.

Model Number of bins Mean accuracy

LR 9,000 0.760
RF 9,000 0.727

SVM 500 0.763
KNN 500 0.633

TSF 8,500 0.832
CIDNN 500 0.666
BOSS 7,500 0.478

itself. The classification of a new observation is performed by using an 1-NN-
based classifier.

2.6 Experimental Setup

In our experiments, we evaluate the predictive performance of the seven afore-
mentioned classifiers (see Sect. 2.5). Specifically, each classifier is assessed based
on its ability to distinguish single-cell spectra of four species, namely C. koseri,
C. freundii, E. aerogenes and Kl. oxytoca. We use the same train/test splits to
obtain a fair comparison between the various tested algorithms. In particular,
after the removal of the empty particles (see Sect. 2.4), we keep 1000 examples
for each species for training and the 268 examples for test (for each species).
Parameter tuning is performed in a separate validation set, which is part of the
training set. For all the models, the number of bins is considered as a tunable
parameter with a tested range [500, 10000] with steps of 500. For the algorithms
LR, RFs, SVMs and KNN, the sklearn [18] python implementation is used, while
for the CIDNN, BOSS and TSF the java implementation of [1] is evaluated. For
the evaluation procedure we report the mean accuracy for all the species and
we present the confusion matrix of the best performing algorithms for further
discussion (see Sect. 3).

3 Results and Discussion

In this section, the performance of the classification algorithms is presented.
Table 1 shows the predictive performance of the seven classification algorithms in
terms of the mean accuracy (over the four classes). The number of bins (features),
which is a tunable parameter for each method, is also noted. The first block of
algorithms (i.e., LR, RFs, SVMs, and KNN) consists of well-known methods
generally-applied in many applications. On the other hand, the second block of
methods (i.e., TSF, CIDNN, and BOSS) comprises models that solve time series
classification tasks, as discussed in Sect. 2.5.
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Overall, the best performing algorithm is the TSF with mean accuracy of
0.832. TSF is considered as a phase dependent classification method. This is due
to the fact that it detects the intervals among all observations that are most
informative for the classification problem. In our setting, the peaks and valleys,
which characterize a bacterial species, are strongly associated with the corre-
sponding M/Z ratios. Therefore, the exact same extracted intervals should be
compared across all the observations. This means that comparisons with shifted
peaks (or valleys) may lead to incorrect classification results, because spectra of
different species may consist of similar signatures (yet not identical). As stated
in Sect. 2.5, TSF constructs features from the original time series by calculating
summary statistics from arbitrary-sized sub-intervals. This means that it cap-
tures information from short-sized intervals till long-sized ones that can even
cover entire peaks (and valleys) of the signals. Thus, this combined information
(from short and long sub-intervals) comprises a “high-level” representation of
the original spectra, imitating the human perception about the spectra. After
the feature construction process, TSF selects the features with the maximum
discriminative power, by building various weak classifiers (classification trees).
This procedure is also combined with majority voting for prediction, ensembling
the resulting predictions, a technique that is often beneficial in classification
tasks. That way the algorithm is able to explore the discriminative power of
more intervals and avoid overfitting.

A high performance (> 0.72) is obtained also using other classifiers, such
as the SVMs, LR and RFs. These classifiers take combinations of features into
account to perform their predictions. This is beneficial in our setting, since com-
binations of peaks and valleys in the spectra are informative for distinguishing
the various bacterial species. Both linear (LR) and non-linear (SVM and RF)
models perform similar in this scenario. However, compared to the TSF algo-
rithm, these models are not based on consecutive values (intervals) of a spectrum
and thus, are less able to capture information coming from large intervals. On
the contrary, TSF encodes the information that the rest of the algorithms do,
since it also generates and assesses short intervals (of, e.g., three or four consecu-
tive values). That way, TSF combines information from short and long intervals
of the spectrum, and outperforms the other models.

The algorithms that are based on the intuition of the nearest neighbor (NN),
i.e., KNN and CIDNN, are outperformed by the aforementioned ones, while the
BOSS model gives the worst predictive performance. This result is not surprising,
since the NN algorithms are not able to generalize well when the number of
features is high (curse of dimensionality). This is the reason why the optimal
number of bins is low for these models (i.e., 500) compared to the corresponding
number of bins for other models. In addition, the result of the BOSS algorithm
is low due to the phase independent features that are extracted during training.
As discussed in Sect. 2.5, the BOSS method constructs a dictionary of patterns,
and counts the times that these patterns occur in a particular observation. These
patterns may occur at any point of the spectrum. Thus, the model counts the
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Fig. 4: Normalized confusion matrices for (a) the TSF, and (b) the SVM algo-
rithm.

presence of the “spectral” patterns by treating them independently from their
corresponding M/Z ratios.

In Fig. 4, the confusion matrices of the two best performing methods are
presented. Specifically, Fig. 4a and b show the accuracy of the TSF and the
SVM model per species, respectively. Overall, both models have high discrimi-
native power for all the species. However, the TSF model performs similar for
each of the species, while the SVM model performs really high for two species
(Kl. oxytoca and E. aerogenes) and relatively low for the rest of the species (i.e.,
C. koseri and C. freundii). In addition, the spectra of the different species are
mostly confused with the spectra of Kl. oxytoca. This is especially clear for the
C. koseri species, for which the model gives the lowest accuracy. The confusion
with the Kl. oxytoca species can be explained by the fact that the spectra of this
species includes peaks with low intensities and thus observations with low peaks
(from this or other species) are classified as Kl. oxytoca observations. Fig. 5b
confirms this conclusion. The mean spectrum of the misclassified C. koseri ob-
servations is depicted with orange, while the mean spectrum of the correctly
classified observations in blue. Most of the C. koseri observations have been
confused with the Kl. oxytoca observations. More specifically, the misclassified
C. koseri observations are the ones with low intensity values. Therefore, the
clearer the signal peaks (high intensities), the better the result of the species
classification task for the SVM classifier. Fig. 5a depicts the corresponding mis-
classified/correctly classified mean of the spectra for the TSF model in orange
and blue, respectively. The misclassified observations have higher variance and
mean values compared to the correctly classified ones. Differences in variance
in these two plots are due to a different number of bins used in the TSF (8500
bins) and the SVMs (500 bins) experiments (tuned in validation set).

Note also that for the classification experiments we assume that the quality of
the spectra of different species is similar. However, it is known that even between
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Fig. 5: Accumulated spectrum of the correctly and incorrectly classified particles.
The blue accumulated spectrum has been formed by the correctly classified C.
koseri spectra, while the orange one by the incorrectly classified ones for (a) the
TSF, and (b) the SVM models.

successive experiments using the same organism there may be a variation in the
intensity of peaks (not the position) in the accumulated spectrum, even when
exactly the same protocol has been used. Hence, the difference in performance
may be caused by differences in the quality of the spectra. The fact that when
using TSF the difference in performance for the different species is less than when
using SVN, may indicate that TSF is less sensitive to this type of variation.

From the confusion matrix of Fig. 4b, it seems that the SVM model per-
forms well for the Kl. oxytoca species (0.98 accuracy). However, there are many
false positive examples that are not taken into account in the calculation of the
accuracy metric. The ratio of false positives is incorporated in the estimation
of the precision-recall curves, see Fig. 6. Fig. 6 shows the precision-recall trade-
off for each of the four species for the TSF (Fig. 6a) and the SVM (Fig. 6b)
models. The precision-recall curves for each species have been calculated in a
one-versus-all fashion. Fig. 6a shows that for all the species, the precision is
above 0.75 for a recall value of 0.8. This means that 80% of the observations
(for each species) is identified correctly with accuracy higher than 75%. On the
other hand, Fig. 6b illustrates that for the species C. koseri, E. aerogenes, and
C. freundii, the SVM model is able to correctly identify more than 75% of the
observations with high precision (more than 80%). However, this is not the case
for the Kl. oxytoca species, where the precision increases (0.8) only when recall
drops to 0.3 (or less). This means that the model misclassifies many examples of
the other species (i.e., C. koseri, E. aerogenes and C. freundii), when it comes
to predict a high ratio of the Kl. oxytoca observations.

4 Conclusion

In this paper, we described an implementation of a MALDI-TOF MS proce-
dure in a setting of single-ionization-event on individual cells. We demonstrated
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Fig. 6: Precision/recall curves for (a) the TSF, and (b) the SVM models.

the use of the single-cell MALDI-TOF MS data for the application of bacterial
species identification. Specifically, we combined the single-cell spectra produced
by the described methodology with machine learning algorithms, and we ex-
perimentally proved that these signatures are informative in distinguishing dif-
ferent bacterial species. Finally, we formulated the problem of bacterial species
classification as a time series classification task and we found that algorithms
originally introduced for time series analysis are beneficial in modelling obser-
vations of single-cell MALDI-TOF MS. Our conclusions confirm that the use
of single-cell MALDI-TOF-MS data combined with an accurate modelling ap-
proach comprises a promising and complete framework that gives the green light
for fast species identification. The fast response time, which is in terms of min-
utes or seconds, revolutionizes current time-consuming approaches (due to the
dominant culturing time) in pathogen identification related to human infections.
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