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Abstract. Association rules are among the most important concepts in
data mining. Rules of the form X → Y are simple to understand, sim-
ple to act upon, yet can model important local dependencies in data.
The problem is, however, that there are so many of them. Both tradi-
tional and state-of-the-art frameworks typically yield millions of rules,
rather than identifying a small set of rules that capture the most im-
portant dependencies of the data. In this paper, we define the problem
of association rule mining in terms of the Minimum Description Length
principle. That is, we identify the best set of rules as the one that most
succinctly describes the data. We show that the resulting optimization
problem does not lend itself for exact search, and hence propose Grab,
a greedy heuristic to efficiently discover good sets of noise-resistant rules
directly from data. Through extensive experiments we show that, unlike
the state-of-the-art, Grab does reliably recover the ground truth. On
real world data we show it finds reasonable numbers of rules, that upon
close inspection give clear insight in the local distribution of the data.

1 Introduction

Association rules are perhaps the most important primitive in data mining. Rules
of the form X → Y are not only simple to understand, but they are also simple
to act upon, and, most importantly, can express important local structure in the
data. The problem is, however, that there are so many of them, and that telling
the interesting from the uninteresting rules has so far proven impossible. Both
traditional algorithms based on support and confidence [1], as well as modern
approaches based on statistical tests [7] typically discover orders of magnitude
more rules than the data has rows – even when the data consists of nothing
but noise. In this paper we show how to discover a small, non-redundant set of
noise-resistant rules that together describe the data well.

To succinctly express subtly different structures in data, we allow multiple
items in the consequent of a rule. To illustrate, while rule sets R1 = {A →
B,A → C} and R3 = {A → BC} both express that B and C appear fre-
quently in the context of A, the former states they do so independently, while
the latter expresses a dependency between B and C. We additionally allow for
patterns, which are simply rules like R4 = {∅ → ABC} and express uncondi-
tional dependencies. Real data is often noisy, and hence we can allow rules to
hold approximately. That is, for a transaction t = ABC, our models may infer
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Fig. 1: Five toy databases with corresponding rule sets 1) B and C occur in the
context of A but independently of each other, 2) C occurs in the context of B,
which in turn occurs in the context of A, 3) B and C show strong joint depen-
dence in the context of A, 4) A, B, C show strong unconditional dependence,
and 5) a rule with noise, BCD occuring jointly in the context of A.

that rule R5 = {A→ BCD} holds, even though item D is not present in t. We
call these noise-resistant, or robust rules. To determine the quality of a rule set
for given data, we rely on information theory.

In particular, we define the rule set mining problem in terms of the Minimum
Description Length (MDL) principle [6]. Loosely speaking, this means we identify
the best rule set as that one that compresses the data best. This set is naturally
non-redundant, and neither under- nor over-fitting, as we have to pay for every
additional rule we use, as well as for every error we make. We formally show
that the resulting problem is neither submodular, nor monotone, and as the
search space is enormous, we propose Grab, an efficient any-time algorithm to
heuristically discover good rule sets directly from data. Starting from a singleton-
only model, we iteratively refine our model by considering combinations of rules
in the current model. Using efficiently computable tight estimates we minimize
the number of candidate evaluations, and as the experiments show, Grab is
both fast in practice, and yields high quality rule sets. On synthetic data, Grab
recovers the ground truth, and on real-world data it recovers succinct models of
meaningful rules. In comparison, state of the art methods discover up to several
millions of rules for the same data, and are hence hardly useful.

2 Related Work

Pattern mining is arguably one of the most important and well-studied topics
in data mining. We aim to give a succinct overview of the work most relevant
to ours. The first, and perhaps most relevant proposal is that of association
rule mining [1], where in an unsupervised manner the goal is to find all rules
of the form X → Y from the data that have high frequency and high confi-
dence. As it turns out to be straightforward to distill the high-confidence rules
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from a given frequent itemset, research attention shifted to discovering frequent
itemsets efficiently [14,31,8], and non-redundantly [2,3,17]. Frequency alone is a
bad measure of interestingness, however, as it leads to spurious patterns [26].
To alleviate this, statistically sound measures were proposed that can mine pat-
terns with frequencies that deviate significantly from our expectation based on
margins [29,21], or richer background knowledge [9,24,4]. Perhaps because it is
already difficult enough to determine the interestingness of a pattern, let alone a
rule, most proposals restrict themselves to patterns. The key exception is King-
fisher, which proposes an upper bound for Fisher’s exact test that allows to
efficiently mine significant dependency rules using the branch-and-bound frame-
work [7]. Notably, however, Kingfisher can only discover exact rules with a
single item consequent. In addition, all these approaches suffer from the prob-
lems of multiple test correction, and return all patterns they deem significant,
rather than a small non-redundant set.

Less directly related to our problem setting, but still relevant, are supervised
methods that discover rules that explain a given target variable Y . Zimmermann
and Nijssen [32] give a good general overview. However, unlike Wang et al. [28]
and Papaxanthos et al. [19], we are not interested in rules that explain only Y ,
but rather aim for a set of rules that together explains all of the data well.

Our approach is therewith a clear example of pattern set mining [26]. That is,
rather than measuring the quality of individual patterns, we measure quality over
a set of patterns [27,5]. Information theoretic approaches, such as MDL and the
Maximum Entropy principle, have proven particularly successful for measuring
the quality of sets of patterns [27,13]. Most pattern set approaches do not account
for noise in the data, with Asso [15], Hyper+ [30], and Panda [12] as notable
exceptions. However, extending any of the above from patterns to rules turns
out to be far from trivial, because rules have different semantics than patterns.
Pack [25] uses MDL to mine a small decision tree per item in the data, and while
not technically a rule-mining method, we can interpret the paths of these trees
as rules. In our experiments we will compare to Kingfisher as the state-of-the-
art rule miner, Hyper+ as a representative of noise resilient pattern miner, and
Pack as a pattern miner, which output can be translated into rules.

3 Preliminaries

In this section we discuss preliminaries and introduce notation.

3.1 Notation

We consider binary transaction data D of size n-by-m, with n = |D| transactions
over an alphabet I of m = |I| items. In general, we denote sets of items as
X ⊆ I. A transaction t is an itemset, e.g. the products bought by a customer.
We write πX(D) := {t ∩X | t ∈ D} for the projection of D on itemset X. The
transaction set, or selection, T of itemset X is the multiset of all transactions
t ∈ D that contain X, i.e. TX = {t ∈ D | X ⊆ t}. We write nX = |TX | to denote
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the cardinality of a transaction multiset. The support of an itemset X is then
simply the number of transactions in D that contain X, i.e. support(X) = |TX |.

An association rule X → Y consists of two non-intersecting itemsets, the
antecedent or head X, and consequent or tail Y . A rule makes a statement
about the conditional occurrence of Y in the data where X holds. If X = ∅, we
can interpret a rule as a pattern, as it makes a statement on where in the whole
data the consequent holds. Throughout this manuscript, we will use A,B,C to
refer to sets of single items and X,Y, Z for itemsets of larger cardinality.

3.2 Minimum Description Length

The Minimum Description Length (MDL) principle [22] is a computable and
statistically well-founded approximation of Kolmogorov Complexity [11]. For
given data D, MDL identifies the best model M∗ in a given model class M as
that model that yields the best lossless compression. In one-part, or, refined MDL
we consider the length in bits of describing data D using the entire model class,
L(D | M), which gives strong optimality guarantees [6] but is only feasible for
certain model classes. In practice we hence often use two-part, or, crude MDL,
which is defined as L(M)+L(D |M). Here L(M) is the length of the description
of the model, and L(D |M) the length in bits of the description of the data using
M . We will use two-part codes where we have to, and one-part codes where we
can. Note that in MDL we are only concerned with code lengths, not materialized
codes. Also, as we are interested in measuring lengths in bits, all logarithms are
to base 2, and we follow the convention 0 log 0 = 0.

4 Theory

To use MDL in practice, we first need to define our model class M, how to
describe a model M in bits, and how to describe data D using a model M .
Before we do so formally, we first give the intuitions.

4.1 The Problem, Informally

Our goal is to find a set of rules that together succinctly describe the given data.
Our models M hence correspond to sets R of rules X → Y . A pattern ABC is
simply a rule with an empty head, i.e. ∅ → ABC. A rule applies to a transaction
t ∈ D if the transaction supports its head, i.e. X ⊆ t. For each transaction to
which the rule applies, the model specifies whether the rule holds, i.e. whether
Y is present according to the model. We can either be strict, and require that
rules only hold when Y ⊆ t, or, be more robust to noise and allow the rule to
hold even when not all items of Y are part of t, i.e. Y \ t 6= ∅. In this setting,
the model may state that rule A→ BCD holds for transaction t = ABC, even
though D /∈ t (see Fig. 1.5). A model M hence needs to specify for every rule
X → Y ∈ R a set of transactions ids TMY |X where it asserts that Y holds in the

context of X, and, implicitly also TM6Y |X , the set of transactions where it asserts
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Y does not hold. Last, for both these we have to transmit which items of Y are
actually in the data; the fewer errors we make here, the cheaper it will be to
transmit. To ensure that we encode any data D over I, we require that a model
M contains at least singleton rules, i.e. ∅ → A for all A ∈ I. Cyclic dependencies
would prevent us from decoding the data without loss. Any valid model M can
hence be represented as a directed acyclic graph (DAG), in which the vertices
of the graph correspond to rules in R, where vertex r = X → Y has incoming
edges from all vertices r′ = X ′ → Y ′ for which X ∩ Y ′ is non-empty.

We explicitly allow for rules with non-singleton tails, as this allows us to suc-
cinctly describe subtly different types of structure. When B happens indepen-
dently of C in TA (Fig. 1.1), rule set R1 = {A→ B,A→ C} is a good description
of this phenomenon. In turn, when C occurs often – but not always – in TB , which
in turn happens often in TA (Fig. 1.2) rule set R2 = {A→ B,B → C} is a good
description. To succinctly describe that B and C are statistically dependent in
TA (Fig. 1.3) we need rules with multiple items in its tail, i.e. R3 = {A→ BC}.
Finally, if A,B, and C frequently occur jointly, but conditionally independent of
any other variable, we need patterns to express this, which are just consequents
in the context of the whole database R4 = ∅ → ABC.

4.2 MDL for Rule Sets

Next, we formalize an MDL score for the above intuition. We start by defining
the cost of the data given a model, and then define the cost of a model.

Cost of the data We start with the cost of the data described by an individual
rule X → Y . For now, assume we know πX(D) and TX . We transmit the data
over Y in the context of X, i.e. DY |X = πY (TX), in three parts. First, we
transmit the transaction ids where model M specifies that both X and Y hold,
TMY |X , which implicitly gives TM6Y |X = TX \ TMY |X . We now, in turn transmit

that part of DY |X corresponding to the transactions in TMY |X , resp. that part

corresponding to TM6Y |X . We do so using optimal data-to-model codes, i.e. indices
over canonically ordered enumerations,

L(DY |X |M) = log

(
|TX |
|TMY |X |

)
+ log

(|TMY |X | × |Y |
1(TMY |X)

)
+ log

(|TM6Y |X | × |Y |
1(TM6Y |X)

)
,

where we write 1(TMY |X) for the number of 1s in TMY |X , i.e.

1(TMY |X) =
∑

t∈TM
Y |X

|t ∩ Y | ≤ |TMY |X | × |Y | .

We define 1(T6Y |X) analogue.
When the model makes exact assertions on Y holding when X is present,

i.e. when TMY |X = TY |X , the second term vanishes, and analogously for the third

term when TM6Y |X = T6Y |X . Both terms vanish simultaneously only when DY |X ∈
{∅, Y }|DX |. This is trivially the case when Y is a singleton.



6 J.Fischer, J.Vreeken

The overall cost of the data given the model simply is the sum of the data
costs per rule,

L(D |M) =
∑

X→Y ∈M
L(DY |X |M)

To decode the data, the recipient will of course need to know each rule X → Y .
These are part of the model cost.

Cost of the Model To encode a rule, we first encode the cardinalities of X and
Y using LN, the MDL-optimal code for integers z ≥ 1, which is defined as
LN(z) = log∗ z + log c0, where log∗ z = log z + log log z + ..., and c0 is a nor-
malization constant such that LN satisfies the Krafft-inequality [23]. We can
now encode the items of X, resp. Y , one by one using optimal prefix codes,
L(X) = −

∑
x∈X log sx∑

i∈I si
. Last, but not least we have to encode its parame-

ters, |TMY |X |, 1(TMY |X), and 1(T6Y |X). These we encode using a refined, mini-max
optimal MDL code. In particular, we use the regret of the Normalized Maximum
Likelihood code length [10] for the class of binomials,

Lpc(n) = log

(
n∑
k=0

n!

(n− k)!k!

(k
n

)k(n− k
n

)n−k)
,

which is also known as the parametric complexity of a model class. Kontkanen
and Myllymäki [10] showed that this term can be computed in time O(n) in a
recursive manner. We obtain the model cost L(X → Y ) for a rule X → Y by

L(X → Y ) = LN(|X|) + L(X) + LN(|Y |) + L(Y )+

Lpc(|TX |) + Lpc(|TMY |X | × |Y |) + Lpc(|TM6Y |X | × |Y |) .

From how we encode the data we can simply ignore the last two terms for rules
with |Y | = 1. The overall cost of a model M then amounts to

L(M) = LN(|R|) +
∑

X→Y ∈R
L(X → Y ) ,

where we first send the size of rule set R, and then each of the rules in order
defined by the spanning tree of the dependency graph.

4.3 The Problem, formally

We can now formally define the problem in terms of MDL.

Definition 1 (Minimal Rule Set Problem). Given data D over items I, find
that rule set R and that set of T of transaction sets TMY |X for all X → Y ∈ R,

such that for model M = (R, T ) the total description length,

L(D,M) = L(M) + L(D |M)

is minimal.
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Solving this problem involves enumerating all possible models M ∈ M. There

exist
∑|I|
i=0

((|I|
i

)
× 2i

)
= 3|I| possible rules – where the second term in the sum

describes all possible partitions of i items into head and tail, and the equality
is given by the binomial theorem. Assuming that the optimal TMY |X are given,

there are generally 23
|I|

possible models. The search space does not exhibit any
evident structure that can be leveraged to guide the search, which is captured
by the following two theorems. We postpone the proofs to the online Appendix.3

Theorem 1 (Submodularity). The search space of all possible sets of associ-
ation rules 2Ω, when fixing a dataset and using the description length L(D,M)
as set function, is not submodular. That is, there exists a data set D s.t.
∃X ⊂ Y ⊆ Ω, z ∈ Ω. L(D,X ∪ {z})− L(D,X) ≤ L(D,Y ∪ {z})− L(D,Y ).

Theorem 2 (Monotonicity). The description length L(D,M) on the space of
all possible sets of association rules 2Ω is not monotonously decreasing. That is,
there exists a data set D s.t. ∃X ⊂ Y ⊆ Ω. f(X) ≤ f(Y ).

Hence, we resort to heuristics.

5 Algorithm

In this section we introduce Grab, an efficient heuristic for discovering good
solutions to the Minimal Rule Set Problem. Grab consists of two steps, candi-
date generation and evaluation, that are executed iteratively until convergence
of L(D,M), starting with the singleton-only rule set R0 = {∅ → A | A ∈ I}.

Candidate generation From the current rule set R we iteratively discover that
refined rule set R′ that minimizes the gain ∆L = L(D,M ′) − L(D,M). As
refinements we consider the combination of two existing rules into a new rule.

We generate candidate refinements by considering all pairs r1 = X → Y, r2 =
X → Z ∈ R, assuming w.l.o.g. nXY ≥ nXZ , and merging the tails of r1 and
r2 to obtain candidate rule r′1 = X → Y Z, and merging the tail of r1 with the
head to obtain candidate rule r′2 = XY → Z. We now construct refined rule sets
R′1 and R′2 by adding rule r′1 resp. r′2. To reduce redundancy, we remove r2 from
both R′1 and R′2, and r1 from R′1, taking care not to remove singleton rules. We
only evaluate those refined rule sets R′ for which the corresponding dependency
graph is acyclic, and select the one with minimal gain ∆L < 0. For completeness
we give the pseudocode in the online Appendix.

Gain estimation To avoid naively evaluating the gain ∆L of every candidate,
we rely on accurate gain estimations. In particular, we consider two different
estimates; the first estimate is very inexpensive to compute, but overly optimistic
as it assumes a perfect overlap between the two rules. The second estimate is
computationally more costly, as it requires us to compute the intersection of the
selections of the two original rules. In practice, however, it is exact (see Fig. 2b).

3 http://eda.mmci.uni-saarland.de/grab/

http://eda.mmci.uni-saarland.de/grab/
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Fig. 2: Grab searches efficiently and estimates accurately. For DNA we show
(left) the convergence of the relative compression of model M at iteration i

against the singleton model Ms, %L = L(D,M)×100
L(D,Ms)

, and (right) the correlation

between estimated and actual gain of all evaluated candidates in real data.

Depending on how we combine two rules r1 and r2, we need different estimate
definitions. In the interest of space, we here consider one case in detail: that of
combining singleton rules r1 = ∅ → A and r2 = ∅ → B into r = A→ B. For the
remaining definitions we refer to the online Appendix.

Following the general scheme described above, for the first estimate ∆̂1 we
assume that TB ⊆ TA. With singleton tails we do not transmit any errors. Thus,
we only subtract the old costs for r2 and add the estimated cost of sending where
the new rule r holds, as well as the estimated regret for the new matrices,

∆̂1(r) = − log

(
n

nB

)
+log

(
nA
nB

)
+Lpc(nA)+Lpc(nB)+Lpc(nA−nB)−Lpc(n) .

For the tighter, second estimate ∆̂2 we instead need to retrieve the exact
number of usages of the rule by intersecting the transaction sets of merged rules.
The change in model costs L(M) by introducing r appearing in L(M) is trivially
computable and thus abbreviated by L̂(M). For formerly covered transactions
that are not covered by the new rule, we need to send singleton rules with adapted
costs, which is estimated through simple set operations on the transaction sets.
Additionally, we need to subtract the model costs for r2, in case B is completely
covered by r, ensured by the indicator variable I. We hence have

∆̂2(r) =− log

(
n

nB

)
+ log

(
nA

|TA ∩ TB |

)
+ log

(
n

|TB \ TA|

)
+ L̂(M) + Lpc(nA)

+ Lpc(|TA ∩ TB |) + Lpc(nA − |TA ∩ TB |)− I(TB ⊆ TA)× Lpc(n) .

Grab first computes the first order estimate ∆̂1 per candidate, and only if
this shows potential improvement, it computes the second order estimate ∆̂2.
Out of those, it evaluates all candidates that have the potential to improve over
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the best refinement found so far. In the next paragraph we describe how to
efficiently compute the overall score L(D,M).

Efficiently computing L(D,M) To get the codelength of a rule set with a new
candidate, two steps are carried out, which we summarize in Alg. 1. First, the
data is covered with the new rule to determine where the rule holds and what
error matrices to send. Covering the data is straightforward, but to find the error
matrices we have—unless we rely on a user-defined threshold—to optimize for
the best point to split between additive and destructive noise. We observe that
each rule encoding is independent of every other rule (except singletons), that
is, changing the error matrices for one rule does not change the matrices for any
other rule as we always encode all transactions where the antecedent is fulfilled.

With this in mind, it is clear that we can optimize the split point for each
rule X → Y separately. Thus, we find a partitioning of TX into TMY |X and TM6Y |X
that minimizes the contribution of this rule to the overall costs:

∆TX ,TM
Y |X ,T

M
6Y |X ,1(T

M
Y |X),1(TM

6Y |X) = Lpc(|TX |) + Lpc(|TMY |X | × |Y |)

+ Lpc(|TMY |X | × |Y |) + log

(|TMY |X | × |Y |
1(TMY |X)

)
+ log

(|TM6Y |X | × |Y |
1(TM6Y |X)

)
.

We can also view the problem from a different angle, namely, for each transaction
t ∈ TX we count how many items of Y are present, which yields a vector of counts
B, B[i] = |{t ∈ TX | |t ∩ Y | = i}|. For fixed split point k, we get the additive
and destructive matrix sizes 1(·)k and transaction set sizes | · |k:

|TMY |X |
k :=

|B|+1∑
i=k

B[i] |TM6Y |X |
k :=

k−1∑
i=1

B[i]

1(TMY |X)k :=

|B|∑
i=k

B[i]× i 1(TM6Y |X)k :=

k−1∑
i=0

B[i]× i .

To find the best split k∗ we optimize along k using the two equation sets
above, which is in time linear in the size of the consequent,

k∗ = argmin
k=1...|B|

(
∆TX ,TM

Y |X ,T
M
6Y |X ,1(T

M
Y |X),1(TM

6Y |X)

)
. (1)

This yields the best splitpoint k∗ for how many items of the consequent are
required for a rule to hold in terms of our MDL score and thus implicitly gives
the error matrices.

Putting everything together, we have Grab, given in pseudo-code as Alg. 2.

Complexity In the worst case we generate all pairs of combinations of rules,
and hence at each step Grab evaluates a number of candidates quadratic in
the size of the rule table. Each evaluation of the O(32

m

) candidates requires a
database cover which costs time O(n×m), and singleton transaction set update,
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Algorithm 1: Cover

input : Database D, model M = (R, T ), refined rule set R′

output : Model M ′ = (R′, T ′)
1 TM′

Y |X ← according to Equation (1) ; // Initialize where new rule holds

2 for I ∈ I do // For each singleton

3 TM′
I ← TI ; // Reset usage to baseline model

4 for {X → Y ∈ R′ | I ∈ Y } do // For each rule tail containing I

5 TM′
I ← TM′

I \ TX ; // Remove these transactions from list

6 return (R′, {TM′
I | I ∈ I} ∪ {TM

U|V ∈ T | U → V ∈ R ∩R′} ∪ {TM′
Y |X}) ;

Algorithm 2: Grab

input : Dataset D
output : Heuristic approximation to M

1 M ← {∅ → {A} | A ∈ I} ; // Initialize model with singletons
2 do
3 C ← generateCandidates(D,M);
4 M∗ ←M ; ∆∗ ← 0;

5 while C contains a refinement R with ∆̂2 < ∆∗ do

6 R′ ← refinement R ∈ C with best ∆̂2 ;
7 M ′ ← cover(D,M,R′) ; // Construct model M ′

8 ∆′ ← L(D,M ′)− L(D,M) ; // Compute exact gain
9 if ∆′ < ∆∗ then

10 M∗ ←M ′; ∆∗ ← ∆′;

11 if M∗ 6= M then // Update best model
12 M ←M∗;

13 while L(D,M) < L(D,M∗);
14 return M

thus giving an overall time in O(32
m ×m× n). However, MDL ensures that the

number of rules is small, and hence a more useful statement about runtime is
given in the following theorems that are based on the size of the output or in
other words the number of mined rules. For the proofs, see the online Appendix.

Theorem 3 (Grab candidate evaluations). Given that we mine k rules for
a given dataset D, Grab evaluates O((m+ k)3) candidates.

This theorem gives us insight in how many times Grab calls Cover. For
the runtime analysis, we know that in each step i our rule table has size m + i
and Grab has to compute the cover of the newest rule in time O(n ×m) and
update the singleton costs in time O((m+ i)×m× n).

Theorem 4 (Grab runtime). Given that we mine k rules for a given dataset
D, the overall runtime of Grab is O((m+ k)4 ×m× n).
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In practice, however, this runtime is never reached both due to our gain
estimates and because we only allow to merge rules with the same head.

6 Experiments

In this section we empirically evaluate Grab quantitatively and qualitatively on
both synthetic and real-world data. We implemented Grab in C++. We make
all code and data available for research purposes.4 All experiments were exe-
cuted single-threaded on Intel Xeon E5-2643 v3 machines with 256 GB memory
running Linux. We report the wall-clock running times.

We compare to state of the art methods for mining statistically significant
patterns and association rules.In particular, we compare to Hyper+ [30], which
mines noise-resistant patterns, Kingfisher [7], which is arguably the current
state of the art for mining statistically significant rules under the Fisher-exact-
test5, and Pack [25], an MDL-based method that yields a binary tree per item
A ∈ I of which we can interpret the paths to leafs as rules X → A.

Synthetic data First, we consider data with known ground truth. As a sanity
check, we start our experiments on data without any structure. We draw datasets
of 10000-by-100 of d% 1s, and report for each method the average results over
10 independent runs in Fig. 3a. We find that both Kingfisher and Hyper+
quickly discover up to millions of rules. This is easily explained, as the former

4 http://eda.mmci.uni-saarland.de/grab/
5 No relation to the first author.

http://eda.mmci.uni-saarland.de/grab/
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relies on statistical significance only, and lacks a notion of support, whereas the
latter does have a notion of support, but lacks a notion of significance. Pack
and Grab, however, retrieve the ground truth in all cases.

Next, we consider synthetic data with planted rules. We generate datasets of
n = 20000 transactions, and vary m from 10 to 1000 items. We generate rules
that together cover all features. We sample the cardinality of the heads and
tails from a Poisson with λ = 1.5. To avoid convoluting the ground truth via
overlap, or by rules forming chains, we ensure that every item A is used in at
most one rule. Per rule, we choose confidence c uniformly at random between 50
and 100%. We then randomly partition the n transactions into as many parts as
we have rules, and per part, set the items of the corresponding rule head X to
1, and set Y to 1 for c% of transactions within the part. Finally, we add noise
by flipping 1% of the items in the data – we use this low noise level to allow for
a fair comparison to the competitors that do not explicitly model noise.

We provide the results in Fig. 3b. We observe that unlike in the previous
experiment, here Pack strongly overestimates the number of rules – it runs out
of memory for data of more than 92 features. Kingfisher and Hyper+ both
discover over an order of magnitude more rules than the ground truth. Grab,
on the other hand, is the only one that reliably retrieves the ground truth.

Real-World Data Second, we verify whether Grab also yields meaningful results
on real data. To this end we consider 8 data sets over a variety of domains. In
particular, from the UCI repository we consider Mushroom, Adult, Covtype, and
Plants. In addition we use data of Belgium traffic Accidents, DNA amplifica-
tion [18], Mammals [16], and ICDM Abstracts [25]. We give basic statistics in
Table 1, and provide more detailed information in the online Appendix.

We run each of the methods on each data set, and report the number of
discovered non-singleton rules for all methods and the average number of items
in head and tail for Grab in Table 1. We observe that Grab retrieves much
more succinct sets of rules than its competitors, typically in the order of tens,
rather than in the order of thousands to millions. The rules that Grab discovers
are also more informative, as it is not constrained to singleton-tail rules. This is
also reflected by the number of items in the consequent, where the average tail
size is much larger than 1 for e.g. Mammals and Plants, where we find multiple
rules with more than 10 items in the consequent.

To qualitatively evaluate the rules that Grab discovers, we investigate the
results on Abstracts and Mammals in closer detail. For Abstracts we find patterns
such as ∅ → {naive, bayes}, ∅ → {nearest ,neighbor}, ∅ → {pattern, frequency},
and, notably, ∅ → {association, rule}. Further, we find meaningful rules, in-
cluding {high} → {dimension}, {knowledge} → {discovery}, {ensembl} →
{bagging , boosting}, and {support} → {vector ,machin,SVM }. All patterns and
rules correspond to well-known concepts in the data mining community.

On Mammals, Grab finds large patterns such as ∅ → {red deer, European
mole, European fitch, wild boar, marten, mice*}, and ∅ → {common squirrel,
deer, ermine, marten, mice*}, that correspond to animals that commonly occur
across Europe, with multiple mouse species (items) indicated by mice*. In addi-
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Fig. 4: Example Rules for Mammals Shown are the inferred presence (green) and
absence (red) of a pattern ∅ → {common squirrel, deer, ermine, marten, mice*}
and b rule {Southwest European cat} → {Mediterranean mice*, Iberian rabbit}.
The intensity of the colour indicates how many items of the tail hold – the ideal
result is hence dark green and light red. Yellow dots indicate presence of animals
from tail of rule where animals of head of rule were not sighted.

tion, it also discovers specific patterns, e.g. ∅ → {snow rabbit, elk, lynx, brown
bear}, which are mammals that appear almost exclusively in northeastern Eu-
rope. We visualized the second rule in Figure 4a to show that the consequent
should hold in most of the cases, but not necessarily need to be always present.
Moreover, Grab is able to find meaningful rules in the presence of noise, e.g.
{Southwest European cat} → {Mediterranean mice*, Iberian rabbit}, where the
rule should only hold in southwest europe. For the rule that Grab discovers
this is indeed the case, although the data contains (likely spurious) sightings
of Iberian rabbits or Mediterranean mice in Norway (see Fig. 4b) and some
sightings of mice alone, along the Mediterranean sea.

Runtime and Scalability Last, but not least, we investigate the runtime of Grab.
We first consider scalability with regard to number of features. For this, in Fig. 5a
we give the runtimes for the synthetic datasets we used above. From the figure
we see that while Grab is not as fast as Kingfisher and Hyper+, it scales
favourably with regard to the number of features. Although it considers a much
larger search space, Grab only needs seconds to minutes. On real data Grab
is the fastest method for five of the data sets, and only requires seconds for
the other datasets, whereas the other methods take up to hours for particular
instances (compare Figure 5b).

7 Discussion

The experiments show that Grab is fast and returns crisp, informative rule sets.
On synthetic data it recovers the ground truth, without picking up noise. On
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Grab Hyper+ Kingfisher Pack

Dataset n m |X| |Y | |R| Number of Discovered Rules

Abstracts 859 3933 0.9 1.2 29 1508 42K 334
Accidents 339898 468 1 1.1 138 65M mem 69M
Adult 10830 97 1 1.1 27 26K 9K 68M
Covtype 581012 105 1.3 1.1 41 13K 43K 286M
DNA 1316 392 1 1.7 147 49 140K 451
Mammals 2183 121 1.5 2 38 mem ≥ 10M 2K
Mushroom 8124 119 1.6 1.5 65 13K 81K 7K
Plants 34781 69 1.2 3.2 20 6M mem 910

Table 1: For Grab, the size of the rule set and average size of head |X| and
tail |Y | are given. For the other methods, number of found rules are given, mem
indicates an aborted run due to memory usage > 256GB.

real world data, it retrieves concise and easily interpretable rule sets, as opposed
to the state of the art that discovers thousands, up to millions of rules.

The results on the Mammals data clearly show Grab recovers known popula-
tion structures, even in the presence of noise. The results on the ICDM Abstracts
data are equally good, with rule {support} → {vector ,machin, svm} as a notable
example. In contrast to machine learning, in data mining “support” is ambigu-
ous. In the ICDM abstracts it means the support of a pattern, as well as support
vector machines, and the rule expresses this. To verify this, we additionally ran
Grab on abstracts from the Journal of Machine Learning Research (JMLR),
where it instead recovers the pattern ∅ → {support , vector ,machin, svm}.

Thanks to careful implementation and accurate gain estimates, Grab scales
very well in the number of transactions, as well as in the number of features. In
practice, Grab can consider up to several thousand features in reasonable time.
Ultimately, we are interested in bioinformatics applications, and are hence inter-
ested in rule set search strategies that scale up to millions of features or more. For
similar reasons we are interested in extending Grab towards continuous-valued,
and mixed-type data. This we also leave for future work.

Whereas the rules Grab discovers provide useful insight, they are not nec-
essarily actionable; that is only the case when X causes Y . Currently Grab can
only reward correlation, and we are interested in extending it towards addition-
ally identifying causal rules from observational data [20].

8 Conclusion

We considered the problem of non-parametrically discovering sets of association
rules for a given dataset. We proposed to mine small, non-redundant sets of
highly informative noise-resistant rules and patterns, that together succinctly
describe the data at hand. To do so, we defined a score based on solid infor-
mation theoretic grounds, showed the problem does not lend itself for efficient
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Fig. 5: Scalability On the left side, runtimes are visualized on a logarithmic y-axis
for synthetic data of varying number of features (x-axis). On the right, runtimes
(logarithmic y-axis) are depicted for 8 real world data sets (x-axis). Kingfisher
did not finish on Accident and Plants, Hyper+ did not finish on Mammals.

optimization, and proposed Grab, a highly efficient heuristic that greedily ap-
proximates the MDL optimal result. Grab is unique in that it can discover both
patterns and rules, is noise-resistant and allows rules and patterns to hold ap-
proximately, and, can discover rules with non-singleton consequents. Through
thorough experiments we showed that unlike the state-of-the-art, Grab is able
to recover the ground truth in synthetic data, and discovers small sets of highly
meaningful rules from real world data.
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