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Abstract. On your search for scientific articles relevant to your research
question, you judge the relevance of a mathematical expression that you
stumble upon using extensive background knowledge about the domain,
its problems and its notations. We wonder if machine learning can sup-
port this process and work toward implementing a search engine for
mathematical expressions in scientific publications. Thousands of scien-
tific publication with millions of mathematical expressions or equations
are accessible at arXiv.org. We want to use this data to learn about
equations, their distribution and their relations in order to find similar
equations. To this end we propose an embedding model based on con-
volutional neural networks that maps bitmap images of equations into
a low-dimensional vector-space where similarity is evaluated via dot-
product. However, no annotated similarity data is available to train this
mapping. We mitigate this by proposing a number of different unsuper-
vised proxy tasks that use available features as weak labels. We evaluate
our system using a number of metrics, including results on a small hand-
labeled subset of equations. In addition, we show and discuss a number
of result-sets for some sample queries. The results show that we are able
to automatically identify related mathematical expressions. Our dataset
is published at https://whadup.github.io/EquationLearning/ and we
invite the community to use it.

Keywords: Applied Data Science Track · Data Science · Preference
learning and ranking · Deep learning.

1 Motivation

Finding relevant scientific publications to your own research question with the
tools currently available is a tedious and at times frustrating endeavor. Every
day, huge amounts of new scientific manuscripts are published. On the pre-print
service arXiv.org alone, more than 140,000 papers where uploaded in 20181.
This flood of scientific manuscripts is impossible to filter, index and organize
manually. Hence scientists rely heavily on existing search engines like Google
Scholar or Mendeley to find relevant content, mainly by using keyword search.
1 https://arxiv.org/stats/monthly_submissions

https://whadup.github.io/EquationLearning/
https://arxiv.org/stats/monthly_submissions
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Keyword search has limitations, because similar concepts are referred to using
different terminology between disciplines or even between subfields. For instance
in machine learning we talk about features and labels, whereas statisticians might
refer to the same concepts as independent and dependent variables.

However, once an interesting candidate paper is identified, it is usually not
immediately read thoroughly from beginning to end. Instead, the scientist might
briefly scan the pages for clues that indicate if the paper is indeed relevant. The
most useful clues for disciplines like computer science or physics are arguably
the equations used to describe the main ideas. A trained reader can easily match
patterns of concepts in equations, generalize between different notations and use
extensive background-knowledge to estimate the relevance of a paper to their own
research questions. We wonder whether machine learning can help automatize
this process.

The service arXiv.org grants access to thousands of publications, many con-
taining mathematical expressions. We process a sample of publications and de-
rive a dataset of equations in a standardized format. While this dataset is not
manually annotated in any form – particularly similarities are not labeled – it
still contains valuable information on equations and their relations. Ultimately
the goal is to exploit this information and provide a search-engine that allows
users to find equations related to their own research.

To this end we train embedding models based on convolutional neural net-
works. These networks take an equation represented as a fixed-size bitmap image
and embed it in a low-dimensional vector space. Similarities can then be evalu-
ated by dot-product in a low-dimensional space. Since ground-truth similarities
are not available, we propose a number of unsupervised proxy tasks that take
the available information and use it to define weak labels that guide the training
of the embedding model. We evaluate their usefulness in an empirical study. For
evaluation purposes we have hand-labeled a small set of equation into categories.
This way we can show that our embedding model is capable of grouping related
equations into clusters.

The rest of this paper is structured as follows: After discussing related work
and orthogonal approaches, we present the dataset we created in greater de-
tail. In Section 4 we present the unsupervised learning tasks that we design to
train embedding models as well as the convolutional neural networks we use to
tackle the tasks. Particular emphasis is put into choosing suitable loss functions.
Section 5 presents our empirical study; after presenting our validation dataset
and the metrics used to measure our success, we do a quantitative and qualita-
tive analysis of our models. Finally we summarize our contribution and present
directions of future work.

2 Related Work

The idea to implement a search engine for mathematical expressions is not new,
see for instance [21,20,28,6,33,34,8]. Most of these systems work on the level of
symbols and use inverted index structures designed for text to retrieve formulas.
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Zannibi et al. distinguish between text-based and tree-based approaches [34]
and propose a similarity measure based on the number of matching subtrees in
a symbol layout tree derived from the LaTex source. Kamali and Tompa apply
tree-edit-distance to retrieve similar equations [8]. NGuyen et al. use a tree-
representation of the equation and derive features that are used in a tf-idf vector
space[20].

To the best of our knowledge we propose the first system that represents
mathematical expressions as bitmap images and uses machine learning to de-
tect similarities. This way we can build on a rich set of works on similarity
learning between images. The current boom of deep networks, and in particular
convolutional neural networks, has heavily impacted computer vision. One im-
portant task is detecting similar images or similar objects in images or videos
and a popular architecture for learning these similarities are Siamese networks,
i.e. convolutional neural networks that are used to encode two images into a
shared vector space where the similarity is measured. Examples of this appli-
cation include identifying products in different product photos on e-commerce
websites[27], person re-identification in photos[4,35], detection of models of ve-
hicles [13]

Because we do not have labels for learning similarities, we proceed to view
the problem as an embedding learning problem. Since Mikolov et al. proposed
word2vec[17], these models have become increasingly popular for unsupervised
learning of similarities. The underlying hypothesis of word embeddings is that
words that appear together frequently share semantic similarities. This principle
has been extended to other domains, including textual documents [12] or users
in social networks [22]. We can view a whole publication as the context and com-
pute embeddings of the equations that capture regularities in their distribution.
We can construct a similar analogy to collaborative filtering [9,29], where we
want to learn to recommend items to users based on the logged interactions of
all users and items. Two items that are consumed by the same user may be sim-
ilar. This problem is often formulated as a matrix factorization problem where
items and users are mapped to low-dimensional embeddings such that their dot-
product models the logged interactions. Now instead of the dichotomy of users
and items, we have equations and documents, still we want to learn to identify
similarities between equations. The major difference between our approach and
both word embeddings and collaborative filtering is that we do not view equa-
tions as atomic units, which would be counterproductive as almost no equation
appears identically in two documents, but as examples with features, in our case
the grayscale information of a bitmap image.

Many machine learning tasks evolve around the use of LaTeX documents.
There is plenty of research on converting images of equations back to valid
LaTeX source [11,2]. We believe our data set might be a welcome addition to
the available datasets of this branch of research. Even more challenging than
parsing to LaTeX is parsing to a representation of the equation in a symbolic
math description [23]. This could allow us to apply powerful solvers like Maple
or Mathematica to judge similarities.
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Fig. 1. Example equation (left) with corresponding bitmap graphic (right), the orange
box marks the center rectangle used for learning. Note the decrease in visual clarity
due to converting to a low-resolution bitmap.

3 The Dataset

The popular pre-print service arXiv.org hosts thousands of scientific publica-
tions; for the majority of these publications LaTex sources are available. This
allows us to easily extract the mathematical expressions and represent them as
images. Each publication has a unique arXiv-id. For this study, we only work on
a small subset of publications, a combination of two publicly available crawls of
arXiv-ids at Kaggle.com2 and at Andrej Karpathy’s page3. The publications in
these crawls are mainly from machine-learning related subdomains of computer
science. For each publication in these crawls, we try to download and extract
the source files, obtaining more than 44k publications.

From these sources we extract snippets that describe mathematical equations
as well as snippets that define new commands or macros. With these snippets,
we are able to compile more than 600,000 equations; the major cause for failed
compilation being more complicated user-defined LaTeX macros or the use of
non-standard LaTeX packages. We have decided to work with bitmap images
of equations rather than working with a text based representation like LaTex.
This representation is invariant to the authors’ LaTeX programming style, use
of macros, etc. Additionally the LaTeX sources of a scientific publication are
often unavailable, particularly on platforms other than arXiv, but images of
equations may be identified and cropped from digital documents automatically
in future projects. The images we create are 531×106 pixels in size, however for
more efficient learning we only use the center rectangle of size 333 × 32 pixels
for training. This decrease in height does not affect single-line equations, the
decrease in width does not affect equations that fit into a single column in a
two-column layout, longer equations will miss beginning and end. See Figure 1
for an example equation and the corresponding bitmap.

In addition to the image data, for each equation we know the arXiv-id of the
corresponding publication. For each publication we know the title as well as the
abstract, additional meta-data could be obtained via this identifier at a later
point.

We have applied only rudimentary data-cleaning on the images. Most notably,
we omit images that are mostly white background and have only few black
foreground pixels. The majority of these images are artifacts of failed LaTeX
compilation.

2 https://www.kaggle.com/neelshah18/arxivdataset
3 https://cs.stanford.edu/people/karpathy/arxiv_10K_export.zip

https://www.kaggle.com/neelshah18/arxivdataset
https://cs.stanford.edu/people/karpathy/arxiv_10K_export.zip
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Our dataset is published at https://whadup.github.io/EquationLearning/
and we invite the community to use it.

4 Unsupervised Training

Usually similarities between objects are learned in a supervised manner, where
a dataset of labeled pairs is available. Since we do not have labeled data, we
propose a number of unsupervised proxy training tasks for learning embeddings.
All our proposed embedding models are based on the same encoder architecture
that embeds a bitmap equation x into a low-dimensional vector space. We denote
this operation by f(x) : R333×32 → Rd. These embeddings can then be used for
computing similarities between equations. We compute the similarity between
two equations by taking the dot-product of the embeddings

s(x1, x2) = 〈f(x1), f(x2)〉.

This allows us to store all embeddings in an efficient index structure, e.g. a
navigable small-network graph [15], and efficiently perform similarity search by
embedding the query. Depending on the particular proxy task, we try various
loss functions for optimizing our models.

4.1 Equation-Encoder

Our equation-encoder is a standard convolutional neural network. We try two
different networks, a small and a large one. The small model is comprised of
three convolution layers with 32 channels, each followed by a MaxPooling layer,
followed by a final fully connected linear layer, as depicted in Figure 2. The larger
model uses 6 convolution layers with 64 channels each, every other layer followed
by a MaxPooling layer. Then the embedding is computed by a two fully con-
nected layers. We apply batch normalization between the fully connected layers
for more stable optimization, but freeze that layer in later epochs of training.
Both models map into a space of dimensionality d = 64. All non-linearities are
rectifying linear units (ReLU). In total, the small model has 45,504 parameters,
while the number of parameters in the large model is 255,040.

Fig. 2. Equation Encoder Architecture (small)

https://whadup.github.io/EquationLearning/
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4.2 Learning Tasks and Loss Functions

We want to learn an encoder that embeds two equations into a low dimensional
vector space, such that the dot product between two embeddings is large if and
only if the corresponding equations are similar. Unfortunately, in our application
we do not have gold-standard labels for similar and dissimilar pairs available.
We design a number of unsupervised proxy tasks that use the available features
as weak labels and argue why they are related to the real task.

Latex-Symbols as Labels The first proxy task we propose is to treat expressions
in the available LaTeX-code as labels. We train a network based on our equation
encoder, that has to decide if a given equation contains a selected symbol. This
way the convolutional equation encoder has to learn to identify letters, numbers
or symbols in an equation, a task loosely related to optical character recognition.

Abstract-Keywords as Labels The second task uses the abstract that is available
for each publication to derive labels. We automatically extract keywords from
those abstracts using RAKE [24] and label equations with those keywords. This
task tries to link equations to background knowledge about research domains,
particularly the objects of investigation. Prominent keywords include ‘deep learn-
ing’, ‘optimization’, ‘classification’, etc. This task is very similar to a weak-label
task proposed by Denton et al. who train to label images on social media plat-
forms by the hashtags used to describe the images [3].

Both of these tasks are multi-label classification tasks with a large number of
classes. We choose a negative-sampling approach for training [16]: For each pos-
sible label y we have a weight vector wy ∈ Rd. We jointly learn the encoder and
these weights, such that the dot-product of 〈f(x), wy〉 is large when y is in the
set of labels of x and small otherwise. To train, we randomly generate pairs of
equations and labels; with probability 0.5 we create a pair with a correct label,
otherwise we choose an incorrect label uniformly at random. This process gener-
ates data (x, y, z) where z ∈ {0, 1} describes whether the label y fits the data x or
not. Treating this as a binary classification problem with two inputs, we train by
minimizing the cross entropy loss of the logistic function σ(a) = 1/(1+exp(−a))
applied to the scalar product

`log(x, y, z) = −z ln(σ(〈f(x), wy〉))− (1− z) ln(1− σ(〈f(x), wy〉)). (1)

Document-Context as Labels Finally, we propose a proxy similarity learning task
by choosing weak labels for pairs of examples. We say that two equations are
similar if they appear in the same publication. This task is reminiscent of the
word2vec embedding model by Mikolov et al. [17] popular in natural language
processing, where two words are similar if they appear in the same context in
a document. While it appears plausible that two equations in a publication are
somehow related, the inverse is not necessarily true: Two equations can be related
if they are from different documents. In fact it is our goal to identify those related
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documents. Like Mikolov et al., we use negative sampling to address this: We
create artificial pairs of dissimilar equations by sampling equations from our
collection uniformly and proclaiming them as dissimilar. We conjecture that the
probability of accidentally sampling a similar pair is sufficiently small. Hence the
labels should have a level of noise that still allows learning [10].

We explore two different types loss functions for this task. The first one works
on annotated pairs of equations. Mobahi et al. [19] propose the Siamese loss:
Given a margin ∆, the dot product of the embeddings should be larger than ∆
for a similar pair and less than −∆ otherwise. We use y = ±1 to encode the
similarity and define

`siam(x1, x2, y) = max(0, ∆− y〈f(x1), f(x2)〉). (2)

The equation encoder is used twice to calculate the loss, motivating the term
‘Siamese’ network, because we can also view this as two convolutional networks
that share all their weights (twins) and that are connected by the loss function.

The second loss works on triples of equations, so that the encoder is used
three times per training example: Given an equation x, the so-called anchor, a
similar equation x+ and a dissimilar equation x−, we want the encoder to judge
the similar pair as more similar then the dissimilar pair. Balntas et al. propose
to formulate this as a margin loss as well [1]. Furthermore they propose to swap
the roles of anchor example and the positive example if this yields a larger loss
value to obtain a more strict loss:

`tri(x, x+, x−) = max


0

∆− 〈f(x), f(x+)〉+ 〈f(x), f(x−)〉
∆− 〈f(x+), f(x)〉+ 〈f(x+), f(x−)〉

(3)

Margin losses require that the magnitude of embeddings is controlled either
by applying regularization or normalization. Otherwise arbitrary absolute mar-
gins can be satisfied by scaling the output by a large enough values. We choose
to normalize our embeddings to unit length f̄(x) = f(x)/(||f(x)||2 + ε) where
a small, constant ε > 0 is added for numerical stability. This choice avoids the
introduction of yet another hyperparameter that controls regularization.

Following Janocha and Czarnecki [7] we use squared hinge losses `2siam and
`2tri instead of hinge losses for faster convergence.

4.3 Training Procedure

We train our models using the ADAM optimizer, a variant of stochastic gradient
descent. We initialize the learning rate at 0.00025 and reduce it by a factor of
0.1 every 10 epochs of training. We train using minibatches of size 100 and run
training for 30 epochs.

All of our training tasks involve negative sampling; the triples task sam-
ple an additional positive point. For every gradient step, we sample new nega-
tive/positive samples. This way we hope to avoid overfitting to the particular
choices of pairs/triples used for training.
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The margin losses use a margin ∆ = 1, the constant used for normalizing
the encoder output is ε = 10−5. The filters of the convolutional neural layers are
initialized uniformly in (−k−1/2, k−1/2) where k is the number of weights per fil-
ter. The weights of the linear layers are initialized uniformly in (−m−1/2,m−1/2)
where m is the input dimensionality of the layer.

5 Evaluation

In this section we experimentally evaluate the models we proposed in the pre-
vious section. First we try to establish quantitative metrics for measuring the
quality of our embeddings. To this end, we curate a small evaluation dataset
with hand-labeled equations. Second, we do a qualitative evaluation and inspect
a few queries and discuss the results.

5.1 Gold-Label Evaluation Data

Quantitative evaluation is difficult whenever we cannot compare to a ground
truth. This problem arises in many unsupervised learning applications, includ-
ing clustering [14] and embedding learning[18,26,5]. Word Embedding models
are often evaluated by computing measures using a small, manually labeled set
of word pairs. Following their experimental protocol, we hand-labeled about 100
equations into 13 categories of equations that we have identified as prominent
in machine learning literature. These include equations describing the empiri-
cal risk minimization principle, the k-means objective, the dual formulation of
the kernelized support vector machine, but also concentration inequalities and
Rademacher averages used in the theoretical analysis of machine learning algo-
rithms. Under our embedding model, equations that belong to the same category
should have higher similarity than inter-category pairs. Thus quantitative mea-
sure of embedding quality are possible. Note that this labeled dataset is used
exclusively for evaluation purposes and never for learning.

5.2 Metrics

To get a detailed picture of the quality of our embeddings, we evaluate a number
of different metrics.

Margin Losses on Eval Data We can evaluate the Siamese `siam and Triplet
losses `tri on all triples in the evaluation data. In contrast to the training phase,
now the similarity is measured with respect to the hand-annotated labels and
not with respect to the weak-label based on the arXiv-id.

Hard Ranking on Eval Data In addition to the triplet margin loss, we can also
evaluate a discrete ranking loss, that is 0, if the anchor example is more similar
to to the positive example than the negative example and 1 otherwise. We can
evaluate this over all triples derived from the evaluation dataset and measure
how many triples are ranked wrong.
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Nearest-Neighbor Accuracy on Eval Data We compute leave-one-out estimates of
the accuracy for 1-nearest-neighbor classification for the hand-labeled evaluation
data. This metric measures how many nearest-neighbor pairs share the same
category.

Loss on Hold-Out Data We evaluate the margin losses and the hard ranking
loss on hold-out data. This allows us to assess whether we are overfitting to the
training data. For comparability between models we use the weak label based
on the document context for all models.

5.3 Quantitative Results

We investigate a total of 12 different models, using 6 small architectures and
6 large architectures. The first four models of both architectures are trained
using the different proxy tasks, namely predicting latex symbols (Symbols),
predicting keywords in the abstracts (Abstract), training using the document
context with triples loss (Triples) and Siamese loss (Siamese). In addition
we try a transfer learning approach where we initialize the network with the
weights trained using the symbol-task (Symbols+Triples) or the abstract-task
(Abstract+Triples) and then proceed to train the network on the triples-
task. This way we hope to combine the benefits of both weak labels.

Table 1. Performance Metrics for Small Models. Best scores in bold letters.

Symbols Abstract Triples Siamese
Symbols
+Triples

Abstract
+Triples

Eval Accuracy 0.4712 0.5096 0.6827 0.5385 0.5385 0.6058
Eval Ranking 0.3762 0.2355 0.3675 0.4637 0.4408 0.3259
Eval Triples 0.8885 0.9033 0.8091 0.9208 0.8918 0.7633
Eval Siamese 0.9088 0.9437 0.8403 0.8777 0.8789 0.8132
Hold-Out Ranking 0.5520 0.4540 0.3341 0.3642 0.3353 0.3331
Hold-Out Triples 1.0342 0.9819 0.8015 0.8120 0.8040 0.8010
Hold-Out Siamese 0.9578 0.9739 0.8458 0.8392 0.8469 0.8439

We have summarized our results for the small architecture in Table 1 and for
the large architecture in Table 2. First of all, we note that a larger model size
is beneficial for the problem at hand. It allows us to obtain larger margins on
both hold-out and evaluation data. Furthermore we note that pretraining has
a negative effect on the nearest neighbor accuracy, but has advantages for the
Siamese and Triples loss. Overall, the pure Triples-model or the Triples model
with abstract pretraining seem to perform best. A notable exception is that the
Abstract model has the best ranking performance on the eval dataset. This is
probably due to the manual labeling process for curating the evaluation dataset.
We used keyword search in the abstract to identify candidate papers for a given
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Table 2. Performance Metrics for Large Models. Best scores in bold letters.

Symbols Abstract Triples Siamese
Symbols
+Triples

Abstract
+Triples

Eval Accuracy 0.4135 0.4808 0.6827 0.6827 0.5385 0.5673
Eval Ranking 0.3568 0.2485 0.2812 0.3598 0.3409 0.2848
Eval Triples 0.8736 0.7936 0.6921 0.7867 0.7555 0.6715
Eval Siamese 0.8886 0.8852 0.7680 0.8168 0.7861 0.7530
Hold-Out Ranking 0.5474 0.5186 0.2942 0.3048 0.3181 0.3098
Hold-Out Triples 1.0382 0.4851 0.7245 0.7314 0.7861 0.7397
Hold-Out Siamese 0.9480 0.9592 0.7972 0.7970 0.7916 0.7897

category of equations, the same information was used to train the model, while
all other models did not have access to the abstract information.

We visually inspect the performance of the large Triples-embedding in a
hierarchical clustering of our labeled evaluation data. The clustering is done us-
ing agglomerative clustering with the complete-linkage strategy and dot-product
similarity. In Figure 3 we see that on the lower levels of the hierarchy many clus-
ters belong to a unique category of equations and that the computed similarities
are high. On the right side of the plot, we see that categories mix, but do so in
a plausible manner: the connection from sgd (stochastic gradient descent) and
convex (equations describing properties like convexity or Lipschitz continuity) is
apparent, as articles analyzing the convergence of optimization algorithms rely
heavily on these definitions. The connection between Rademacher complexities
and concentration inequalities cannot be denied as well.

ra
de

m
ac

he
r

gp gp
ke

rn
el m
rf

em
pi

ric
al

ris
k

m
rf

ke
rn

el m
rf

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

km
ea

ns
km

ea
ns

lst
m

lst
m

km
ea

ns
m

at
rix

fa
ct

m
at

rix
fa

ct
m

at
rix

fa
ct

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

lst
m

lst
m

lst
m

lst
m

lst
m

lst
m

lst
m ld
a

ld
a

ld
a

ld
a

ld
a

ql
ea

rn
ql

ea
rn

lst
m

ql
ea

rn
lst

m
lst

m
lst

m
lst

m
lst

m
lst

m
lst

m
km

ea
ns

km
ea

ns
km

ea
ns

m
at

rix
fa

ct
m

at
rix

fa
ct gp gp gp gp gp gp

ke
rn

el
m

at
rix

fa
ct

ke
rn

el
km

ea
ns gp gp m
rf

m
rf

m
rf

m
rf ld
a

sg
d

ke
rn

el
co

nv
ex

co
nv

ex
co

nv
ex

ke
rn

el
co

nv
ex

co
nv

ex
co

nv
ex

em
pi

ric
al

ris
k

sg
d

sg
d

sg
d

sg
d

em
pi

ric
al

ris
k

co
nc

en
tra

tio
n

co
nc

en
tra

tio
n

ra
de

m
ac

he
r

km
ea

ns
em

pi
ric

al
ris

k
ra

de
m

ac
he

r
ra

de
m

ac
he

r
co

nc
en

tra
tio

n
co

nc
en

tra
tio

n
co

nc
en

tra
tio

n
ra

de
m

ac
he

r
ra

de
m

ac
he

r
sg

d
co

nv
ex

co
nv

ex
co

nv
ex

co
nv

ex sg
d

sg
d

sg
d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fig. 3. A dendrogram showing a hierarchical clustering of our evaluation dataset ac-
cording to our embedding model, colored according to hand-annotated labels, gray for
non-pure clusters.
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Fig. 4. Sample Queries and Results: The first line shows queries, the remaining lines
show the top-5 results. Shows center rectangle only.
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Fig. 5. More Sample Queries and Results: The first line shows queries, the remaining
lines show the top-5 results. Shows center rectangle only. The results for these queries
are more diverse.

5.4 A Qualitative Analysis of Example Queries

We choose to evaluate the large model without pretraining, because it beats the
model pretrained with abstract keywords on 4 of 7 metrics. In Figure 4 we
want to show some example queries with their respective top results4. In the
first column we query an equation that describes a modified variant of an LSTM
recurrent neural network. The system returns equations that seem to describe
other recurrent network architectures or parts of recurrent units like the output
part in row (3). In the second column the system does not work as well: The
first result is relevant, however it is from the same publication as the query.
That is a) not very useful for the user, and b) not difficult for the system to
identify, as the query-answer-pairs were used during training. The remaining

4 In the supplementary material you can find a table of the corresponding works
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answers seem to have no semantic similarity. However they are at least visually
similar: Short equation where an uppercase character function equals a term with
a fraction. This difference in quality between the two columns is also expressed
in the computed similarities. While the most relevant equation on the left has a
similarity of 0.99, the most relevant equation on the right that is not from the
same paper, has a similarity of only 0.91.

In Figure 5 we see more examples: On the left we query a definition of the
value function, an expression related to reinforcement learning. And indeed all
results are related to reinforcement learning. Even (2), which looks the most
dissimilar, is taken from a survey on reinforcement learning5. On the right, the
equations appear more diverse, but all involve probabilistic modeling. The com-
puted similarities range between 0.93 and 0.90, which again is substantially lower
than on the left.

Overall the quality of the results is convincing, the results contain useful
and related equations in most cases. It seems that our system has learned to
group equations that belong to a subfield of machine learning together in a
latent space. Using a visual representation helps comparing the coarse structure
of expressions.

6 Conclusion and Outlook

This work has worked towards the development of a search engine for mathemat-
ical expressions in scientific publications. We have created a dataset of equations
that we used to learn to detect similarities between equations based on unsu-
pervised training tasks. Our models work on bitmap image representations of
equations and we use standard convolutional neural networks to compute low-
dimensional embeddings of those equations6. In order to evaluate our system, we
have hand-labeled real equations into categories. This way we tested how infor-
mative our embeddings are for grouping equations into categories and retrieving
equations of the same category. A qualitative analysis revealed that or system is
indeed capable of retrieving related equations.

We see many opportunities to further improve our system. First we believe
it is crucial to refine the process we use to generate weak labels. Using the whole
document context may be to broad and does not recognize that scientific publi-
cations have a sequential nature. We want to look into generating better weak
labels by including the text in the paragraphs surrounding an equation. Further-
more we want to use the citation network to generate positive labels between two
different documents. Generating better labels for learning also includes gener-
ating better negative labels. Currently our system generates negative examples
by sampling uniformly at random, but more advanced sampling routines are
possible.
5 Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar. Bayesian Re-

inforcement Learning: A Survey, 2016.
6 We made both our code for computing embeddings and our dataset available at
https://github.com/Whadup/EquationLearning/

https://github.com/Whadup/EquationLearning/
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In the future we want to generate training data not only based on weak la-
bels, but also on simulations and symbolic math-solvers like SymPy or Maple.
This way we hope to generate pairs of equations that not only share a semantic
context, but that are actually equivalent pairs. We can also think about other
forms of relations other than equivalence, e.g. lower- or upper-bounds. Prelim-
inary experiments with a very simple grammar that allowed us to randomly
generate pairs of equivalent equations showed a stark mismatch between the
space of equations we encounter in real scientific publications and the space of
synthetically generated equations. More advanced methods for synthetic gener-
ation of labeled data are necessary, maybe using advances in generative models
or generative adversarial models [32].

Another point of attack for further improvements is the family of models used
for embedding the bitmap equations into a vector space. A plain feed-forward
convolutional neural network may very well be inferior to a more task-specifically
designed model. Currently a lot of research investigates models that can solve
simple mathematical problems [25,30]. Innovation from that area of research
could inspire new models that can detect more advanced connections between
pairs of equations.

Ultimately the goal is to have a running search system, which offers new
exciting research possibilities in learning from logged interactions and hopefully
provides the community a new tool for efficient literature search.
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