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Abstract. Signed networks contain both positive and negative kinds of
interactions like friendship and enmity. The task of node classification in
non-signed graphs has proven to be beneficial in many real world appli-
cations, yet extensions to signed networks remain largely unexplored. In
this paper we introduce the first analysis of node classification in signed
social networks via diffuse interface methods based on the Ginzburg-
Landau functional together with different extensions of the graph Lapla-
cian to signed networks. We show that blending the information from
both positive and negative interactions leads to performance improve-
ment in real signed social networks, consistently outperforming the cur-
rent state of the art.

1 Introduction

Signed graphs are graphs with both positive and negative edges, where positive
edges encode relationships like friendship and trust, and negative edges encode
conflictive and enmity interactions. Recently, signed graphs have received an
increasing amount of attention due to its capability to encode interactions that
are not covered by unsigned graphs or multilayer graphs [40, 47, 51, 53, 58],
which mainly encode interactions based on similarity and trust.

While the analysis of unsigned graphs follows a long-standing and well es-
tablished tradition [5, 39, 44], the analysis of signed graphs can be traced back
to [10, 29], in the context of social balance theory, further generalized in [16] by
introducing the concept of a k-balance signed graph: a signed graph is k-balanced
if the set of nodes can be partitioned into k disjoint sets such that inside the sets
there are only positive relationships, and between different sets only negative
relationships. A related concept is constrained clustering [2], where must-links
and cannot-links are constraints indicating if certain pairs of nodes should be
assigned to the same or different clusters.

Recent developments of signed graphs have been guided by the concept of k-
balance, leading to a diverse paradigm of applications, including: clustering [12,
14, 15, 19, 31, 34, 41, 42, 46], edge prediction [22, 33, 35], node embeddings [17,
30, 54, 56], node ranking [13, 48], node classification [49], and many more. See [23,
50] for a recent survey on the topic. One task that remains largely unexplored
is the task of node classification in signed networks.
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The problem of node classification in graphs is a semi-supervised learning
problem where the goal is to improve classification performance by taking into
account both labeled and unlabeled observations [11, 60], being a particular case
graph-based semi-supervised learning.

The task of graph-based classification methods on unsigned graphs is a fun-
damental problem with many application areas [3, 57, 59]. A technique that has
recently been proposed with very promising results utilizes techniques known
from partial differential equations in materials science and combines these with
graph based quantities (cf. [5]). In particular, the authors in [5] use diffuse inter-
face methods that are derived from the Ginzburg–Landau energy [1, 6, 26, 52].
These methods have been used in image inpainting where a damaged region of
an image has to be restored given information about the undamaged image
parts. In the context of node classification in graphs, the undamaged part of
an image corresponds to labeled nodes, whereas the damaged part corresponds
to unlabeled nodes to be classified based on the information of the underlying
graph structure of the image and available labeled nodes. With this analogy, one
can readily use results from [4] for the classification problem on graphs. While
the materials science problems are typically posed in an infinite-dimensional
setup, the corresponding problem in the graph-based classification problem uses
the graph Laplacian. This technique has shown great potential and has recently
been extended to different setups [7, 24, 43].

Our contributions are as follows: we study the problem of node classification
in signed graphs by developing a natural extension of diffuse interface schemes
of Bertozzi and Flenner [5], based on different signed graph Laplacians. To the
best of our knowledge this is the first study of node classification in signed
networks using diffuse interface schemes. A main challenge when considering the
application of diffuse interface methods to signed networks is the availability of
several competing signed graph Laplacians and how the method’s performance
depends on the chosen signed graph Laplacian, hence we present a thorough
comparison of our extension based on existing signed graph Laplacians. Further,
we show the effectivity of our approach against state of the art approaches by
performing extensive experiments on real world signed social networks.

The paper is structured as follows. We first introduce the tools needed from
graphs and how they are extended to signed networks. We study the proper-
ties of several different signed Laplacians. We then introduce a diffuse interface
technique in their classical setup and illustrate how signed Laplacians can be
used within the diffuse interface approach. This is then followed by numerical
experiments in real world signed networks.

Reproducibility: Our code is available at https://github.com/melopeo/GL

2 Graph information and signed networks

We now introduce the Laplacian for unsigned graphs followed by particular ver-
sions used for signed graphs.
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2.1 Laplacians for unsigned graphs

In this section we introduce several graph Laplacians, which are the main tools
for our work. Let G = (V,W ) be an undirected graph with node set V =
{v1, . . . , vn} of size n = |V | and adjacency matrix W ∈ Rn×n with non-negative
weights, i.e., wij ≥ 0.

In the case where a graph presents an assortative configuration, i.e. edge
weights of the adjacency matrix W represent similarities (the larger the value of
wij the larger the similarity of nodes the vi and vj), then the Laplacian matrix
is a suitable option for graph analysis, as the eigenvectors corresponding to the
k-smallest eigenvalues convey an embedding into Rk such that similar nodes are
close to each other [39]. The Laplacian matrix and its normalized version are
defined as:

L = D −W, Lsym = D−1/2LD−1/2

where D ∈ Rn×n is a diagonal matrix with Dii =
∑n

i=1 wij . Observe that Lsym

can be further simplified to Lsym = I −D−1/2WD−1/2. Both Laplacians L and
Lsym are symmetric positive semi-definite, and the multiplicity of the eigenvalue
zero is equal to the number of connected components in the graph G.

For the case where a graph presents a dissasortative configuration, i.e. edges
represent dissimilarity (the larger the value of wij the more dissimilar are the
nodes vi and vj), then the signless Laplacian is a suitable option, as the eigen-
vectors corresponding to the k-smallest eigenvalues provide an embedding into
Rk such that dissimilar nodes are close to each other [18, 37, 41]. The signless
Laplacian matrix and its normalized version are defined as:

Q = D +W, Qsym = D−1/2QD−1/2

Observe that Qsym can be further simplified to Qsym = I + D−1/2WD−1/2.
Both Laplacians Q and Qsym are symmetric positive semi-definite, with smallest
eigenvalue equal to zero if and only if there is a bipartite component in G.

We are now ready to introduce the corresponding Laplacians for the case where
both positive and negative edges are present, to later study its application to
node classification in signed graphs.

2.2 Laplacians for signed graphs

We are now ready to present different signed graph Laplacians. We give a special
emphasis on the particular notion of a cluster that each signed Laplacian aims to
identify. This is of utmost importance, since this will influence the classification
performance of our proposed method.

Signed graphs are useful for the representation of positive and negative in-
teractions between a fixed set of entities. We define a signed graph to be a pair
G± = (G+, G−) where G+ = (V,W+) and G− = (V,W−) contain positive and
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negative interactions respectively, between the same set of nodes V , with sym-
metric adjacency matrices W+ and W−. For the case where a single adjacency
matrix W contains both positive and negative edges, one can obtain the signed
adjacency matrices by the relation W+

ij = max(0,Wij) and W−ij = −min(0,Wij).
Notation: we denote the positive, negative and absolute degree diagonal

matrices as D+
ii =

∑n
j=1W

+
ij , D−ii =

∑n
j=1W

−
ij and D̄ = D+ + D−; the Lapla-

cian and normalized Laplacian of positive edges as L+ = D+ − W+, and
L+
sym = (D+)−1/2L+(D+)−1/2; and for negative edges L− = D− −W−, and

L−sym = (D−)−1/2L−(D−)−1/2, together with the signless Laplacian for negative

edges Q− = D− +W−, and Q−sym = (D−)−1/2Q−(D−)−1/2.
A fundamental task in the context of signed graphs is to find a partition of

the set of nodes V such that inside the clusters there are mainly positive edges,
and between different clusters there are mainly negative edges. This intuition
corresponds to the concept of k-balance of a signed graph, which can be traced
back to [16]: A signed graph is k-balanced if the set of vertices can be partitioned
into k sets such that within the subsets there are only positive edges, and between
them only negative.

Based on the concept of k-balance of a signed graph, several extensions of the
graph Laplacian to signed graphs have been proposed, each of them aiming to
bring a k-dimensional embedding of the set of nodes V through the eigenvectors
corresponding to the k-smallest eigenvalues, such that positive edges keep nodes
close to each other, and negative edges push nodes apart.

Examples of extensions of the graph Laplacian to signed graphs are the signed
ratio Laplacian and its normalized version [34], defined as

LSR = D̄ −W, LSN = I − D̄−1/2WD̄−1/2

Both Laplacians are positive semidefinite. Moreover, they have a direct relation-
ship to the concept of 2-balance of a graph, as their smallest eigenvalue is equal
to zero if and only if the corresponding signed graph is 2-balanced. Hence, the
magnitude of the smallest eigenvalue tells us how far a signed graph is to be
2-balanced. In [34] it is further observed that the quadratic form xTLSRx is
related to the discrete signed ratio cut optimization problem:

min
C⊂V

(
2cut+(C,C) + assoc−(C) + assoc−(C)

)( 1

|C|
+

1∣∣C∣∣
)

where C = V \C, cut+(C,C) =
∑

i∈C,j∈C W
+
ij counts the number of positive

edges between clusters, and assoc−(C) =
∑

i∈C,j∈C W
−
ij counts the number of

negative edges inside cluster C (similarly for assoc−(C)). Therefore we can see
that the first term counts the number of edges that keeps the graph away from
being 2-balanced, while the second term enforces a partition where both sets are
of the same size.
Inspired by the signed ratio cut, the balance ratio Laplacian and its normalized
version are defined as follows [12]:

LBR = D+ −W+ +W−, LBN = D̄−1/2LBRD̄
−1/2,
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Observe that these Laplacians need not be positive semi-definite, i.e. they poten-
tially have negative eigenvalues. Further, the eigenvectors corresponding to the
smallest eigenvalues of LBR are inspired by the following discrete optimization
problem:

min
C⊂V

(
cut+(C,C) + assoc−(C)

|C|
+

cut+(C,C) + assoc−(C)∣∣C∣∣
)

A further proposed approach, based on the optimization of some sort of ratio of
positive over negative edges (and hence denoted SPONGE) is expressed through
the following generalized eigenvalue problem and its normalized version [14]:

(L+ +D−)v = λ(L− +D+)v , (L+
sym + I)v = λ(L−sym + I)v

which in turn are inspired by the following discrete optimization problem

min
C⊂V

(
cut+(C,C) + vol−(C)

cut−(C,C) + vol+(C)

)
where vol+(C) =

∑
i∈C d

+
i and vol−(C) =

∑
i∈C d

−
i . Observe that the normal-

ized version corresponds to the eigenpairs of LSP := (L−sym + I)−1(L+
sym + I). Fi-

nally, based on the observation that the signed ratio Laplacian can be expressed
as the sum of the Laplacian and signless Laplacian of positive and negative edges,
i.e. LSR = L+ + Q−, in [41] the arithmetic and geometric mean of Laplacians
are introduced:

LAM = L+
sym +Q−sym, LGM = L+

sym#Q−sym .

Observe that different clusters are obtained from different signed Laplacians.
This becomes clear as different clusters are obtained as solutions from the related
discrete optimization problems above described. In the following sections we will
see that different signed Laplacians induce different classification performances
in the context of graph-based semi-supervised learning on signed graphs.

3 Diffuse interface methods

Diffuse interface methods haven proven to be useful in the field of materials
science [1, 6, 9, 20, 25] with applications to phase separation, biomembrane
simulation [55], image inpainting [4, 8] and beyond. In [5] it is shown that diffuse
interface methods provide a novel perspective to the task of graph-based semi-
supervised learning. These methods are commonly based on the minimization
of the Ginzburg-Landau (GL) functional, which itself relies on a suitable graph
Laplacian. Let S ∈ Rn×n be a positive semi-definite matrix. We define the GL
functional for graph-based semi-supervised learning as follows:

ES(u) :=
ε

2
uTSu+

1

4ε

n∑
i=1

(u2i − 1)2 +

n∑
i=1

ωi

2
(fi − ui)2 , (1)
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where fi contains the class labels of previously annotated nodes.
Observe that this definition of the GL functional for graphs depends on a

given positive semi-definite matrix S. For the case of non-signed graphs a natural
choice is the graph Laplacian (e.g. S = Lsym), which yields the setting presented
in [5, 24, 43]. In the setting of signed graphs considered in this paper one can
utilize only the information encoded by positive edges (e.g. S = L+

sym), only
negative edges (e.g. S = Q−sym), or both for which a positive semi-definite signed
Laplacian that blends the information encoded by both positive and negative
edges is a suitable choice (e.g. S = LSR, LSN, LSP, or LAM).

Moreover, each element of the GL functional plays a particular role:
1. ε

2u
TSu induces smoothness and brings clustering information of the signed

graph. Different choices of S convey information about different clustering
assumptions, as observed in Section 2.2,

2. 1
4ε

∑n
i=1(u2i − 1)2 has minimizers with entries in +1 and −1, hence for the

case of two classes it induces a minimizer u whose entries indicate the class
assignment of unlabeled nodes,

3.
∑n

i=1
ωi

2 (fi − ui)
2 is a fitting term to labeled nodes given a priori, where

ωi = 0 for unlabeled nodes and ωi = w0 for labeled nodes, with w0 large
enough (see Sec. 4 for an analysis on w0.)

4. The interface parameter ε > 0 allows to control the trade-off between the first
and second terms: large values of ε make the clustering information provided
by the matrix S more relevant, whereas small values of ε give more weight
to vectors whose entries correspond to class assignments of unlabeled nodes
(see Sec. 4 for an analysis on ε.)

Before briefly discussing the minimization of the GL functional ES(u), note that
the matrix S needs to be positive semi-definite, as otherwise the ES(u) becomes
unbounded below. This discards signed Laplacians like the balance ratio/normal-
ized Laplacian introduced in section 2.2. The minimization of the GL functional
ES(u) in the L2 function space sense can be done through a gradient descent
leading to a modified Allen-Cahn equation. We employ a convexity splitting
scheme (see [4, 7, 8, 21, 27, 38, 45]), where the trick is to split ES(u) into a
difference of convex functions:

ES(u) = E1(u)− E2(u)
with

E1(u) =
ε

2
uTSu+

c

2
uTu ,

E2(u) =
c

2
uTu− 1

4ε

n∑
i=1

(u2i − 1)2 −
n∑

i=1

ωi

2
(fi − ui)2

where E1 and E2 are convex if c ≥ ω0 + 1
ε ; (see e.g. [7]). Proceeding with an

implicit Euler scheme for E1 and explicit treatment for E2, leads to the following
scheme:

u(t+1) − u(t)

τ
= −∇E1(u(t+1)) +∇E2(u(t))
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where (∇E1(u))i = ∂E1

∂ui
(u) and (∇E2(u))i = ∂E2

∂ui
(u) with i = 1, . . . , n, and

u(t+1) (resp. u(t)) is the evaluation of u at the current (resp. previous) time-
point. This further leads to the following

u(t+1) − u(t)

τ
+ εSu(t+1) + cu(t+1) = cu(t) − 1

ε
∇ψ(u(t)) +∇ϕ(u(t)).

where ψ(u) =
∑n

i=1(u2i − 1)2 and ϕ(u) =
∑n

i=1
ωi

2 (fi − ui)2.
Let (λl, φl), l = 1, . . . , n, be the eigenpairs of S. By projecting terms of the
previous equation onto the space generated by eigenvectors φ1, . . . , φn, we obtain

al − āl
τ

+ ελlal + cal = −1

ε
b̄l + cāl + d̄l for l = 1, . . . , n (2)

where scalars {(al, āl, b̄l, d̄l)}nl=1 are such that u(t+1) =
∑n

l=1 alφl, u
(t) =

∑n
l=1 ālφl,(

[φ1, . . . , φn]
T ∇ψ (

∑n
l=1 ālφl)

)
l
= b̄l,

(
[φ1, . . . , φn]

T ∇ϕ (f −
∑n

l=1 ālφl)
)
l

= d̄l.

Equivalently, we can write this as

(1 + ετλl + cτ) al = −τ
ε
b̄l + (1 + cτ)āl + τ d̄l for l = 1, . . . , n (3)

where the update is calculated as u(t+1) =
∑n

l=1 alφl. Once either convergence
or the maximum of iterations is achieved, the estimated label of node vi is equal
to sign(ui). The extension to more than two classes is briefly introduced in the
appendix of this paper. Finally, note that the eigenvectors corresponding to the
smallest eigenvalues of a given Laplacian are the most informative, hence the
projection above mentioned can be done with just a small amount of eigenvec-
tors. This will be further studied in the next section.

4 Experiments

In our experiments we denote by GL(S) our approached based on the Ginzburg-
Landau functional defined in Eq. 1. For the case of signed graphs we consider
GL(LSN),GL(LSP), and GL(LAM). To better understand the information rel-
evance of different kind of interactions we further evaluate our method based
only on positive or negative edges, i.e. GL(L+

sym) and GL(Q−sym), respectively.
We compare with different kinds of approaches to the task of node classi-

fication: First, we consider transductive methods designed for unsigned graphs
and apply them only to positive edges, namely: local-global propagation of la-
bels (LGC) [57], Tikhonov-based regularization (TK) [3], and Label Propaga-
tion with harmonic functions (HF) [59].

We further consider two methods explicitly designed for the current task:
DBG [28] based on a convex optimization problem adapted for negative edges,
and NCSSN [49] a matrix factorization approach tailored for social signed net-
works.

Parameter setting. The parameters of our method are set as follows, un-
less otherwise stated: the fidelity parameter ω0 = 103, the interface parameter
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Wikipedia RfA Wikipedia Elections Wikipedia Editor
G+ G− G± G+ G− G± G+ G− G±

# nodes 3024 3124 3470 1997 2040 2325 17647 14685 20198
+ nodes 55.2% 42.8% 48.1% 61.3% 47.1% 52.6% 38.5% 33.5% 36.8%

# edges 204035 189343 215013 107650 101598 111466 620174 304498 694436
+ edges 100% 0% 78.2% 100% 0% 77.6% 100% 0% 77.3%

Table 1: Dataset statistics of largest connected components of G+, G− and G±.

ε = 10−1, the convexity parameter c = 3
ε + ω0, time step-size dt = 10−1, maxi-

mum number of iterations 2000, stopping tolerance 10−6. Parameters of state of
the art approaches are set as follows: for LGC we set α = 0.99 following [57], for
TK we set γ = 0.001 following [3], for DBG we set λ1 = λ2 = 1, and for NCSSN
we set (λ = 10−2, α = 1, β = 0.5, γ = 0.5) following [49]. We do not perform
cross validation in our experimental setting due to the large execution time in
some of the benchmark methods here considered. Hence, in all experiments we
report the average classification accuracy out of 10 runs, where for each run we
take a different sample of labeled nodes of same size.

4.1 Datasets

We consider three different real world networks: wikipedia-RfA [36], wikipedia-
Elec [36], and Wikipedia-Editor [56]. Wikipedia-RfA and Wikipedia-Elec are
datasets of editors of Wikipedia that request to become administrators, where
any Wikipedia member may give a supporting, neutral or opposing vote. From
these votes we build a signed network for each dataset, where a positive (resp.
negative) edge indicates a supporting (resp. negative) vote by a user and the
corresponding candidate. The label of each node in these networks is given by
the output of the corresponding request: positive (resp. negative) if the editor is
chosen (resp. rejected) to become an administrator.

Wikipedia-Editor is extracted from the UMD Wikipedia dataset [32]. The
dataset is composed of vandals and benign editors of Wikipedia. There is a
positive (resp. negative) edge between users if their co-edits belong to the same
(resp. different) categories. Each node is labeled as either benign (positive) or
vandal (negative).

In the following experiments we take the largest connected component of
either G+, G− or G±, depending on the method in turn: for LGC, TK, HF, and
GL(L+

sym) we take the largest connected component of G+, for GL(Q−sym) we
take the largest connected component of G−, and for the remaining methods we
take the largest connected component of G±.

In Table 1 we show statistics of the corresponding largest connected compo-
nents of each dataset: all datasets present a larger proportion of positive edges
than of negative edges in the corresponding signed network G±, i.e. at least
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Wikipedia
RfA

Wikipedia
Elections

Wikipedia
Editor

Labeled nodes 1% 5% 10% 15% 1% 5% 10% 15% 1% 5% 10% 15%

LGC(L+) 0.554 0.553 0.553 0.553 0.614 0.614 0.613 0.613 0.786 0.839 0.851 0.857
TK(L+) 0.676 0.697 0.681 0.660 0.734 0.763 0.742 0.723 0.732 0.761 0.779 0.791
HF(L+) 0.557 0.587 0.606 0.619 0.616 0.623 0.637 0.644 0.639 0.848 0.854 0.858
GL(L+

sym) 0.577 0.564 0.570 0.584 0.608 0.622 0.626 0.614 0.819 0.759 0.696 0.667

DGB 0.614 0.681 0.688 0.650 0.648 0.602 0.644 0.609 0.692 0.714 0.721 0.727
NCSSN 0.763 0.756 0.745 0.734 0.697 0.726 0.735 0.776 0.491 0.533 0.559 0.570
GL(Q−

sym) 0.788 0.800 0.804 0.804 0.713 0.765 0.764 0.766 0.739 0.760 0.765 0.770
GL(LSP) 0.753 0.761 0.763 0.765 0.789 0.793 0.797 0.798 0.748 0.774 0.779 0.779
GL(LSN) 0.681 0.752 0.759 0.764 0.806 0.842 0.851 0.852 0.831 0.841 0.846 0.847
GL(LAM) 0.845 0.847 0.848 0.849 0.879 0.885 0.887 0.887 0.787 0.807 0.814 0.817

Table 2: Average classification accuracy with different amounts of labeled nodes.
Our method GL(LSN) and GL(LAM) performs best among transductive meth-
ods for signed graphs, and outperforms all methods in two out of three datasets.

77.3% of edges are positive in all datasets. Further, the distribution of positive
and negative node labels is balanced, except for Wikipedia-Editor where the
class of positive labels is between 33.5% and 38.5% of nodes.

4.2 Comparison of Classification Performance

In Table 2 we first compare our method GL(S) with competing approaches
when the amount of labeled nodes is fixed to 1%, 5%, 10% and 15%. We can
see that among methods for signed graphs, our approach with GL(LSN) and
GL(LAM) performs best. Moreover, in two out of three datasets our methods
based on signed graphs present the best performance, whereas for the dataset
Wikipedia-Editor the unsigned graph method HF performs best. Yet, we can
observe that the performance gap with our method GL(LSN) is of at most
one percent. Overall we can see that the classification accuracy is higher when
the signed graph is taken, in comparison to the case where only either positive
or negative edges are considered. This suggests that merging the information
encoded by both positive and negative edges leads to further improvements.

In the next section we evaluate the effect on classification performance of
different amounts of labeled nodes.

4.3 Effect of the Number of Labeled Nodes

We now study how the classification accuracy of our method is affected by
the amount of labeled nodes. For our method we fix the number of eigenvec-
tors to Ne ∈ {20, 40, 60, 80, 100} for Wikipedia-RfA and Wikipedia-Elec, and
Ne∈{200, 400, 600, 800, 1000} for Wikipedia-Editor. Given Ne, we evaluate our
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Fig. 1: Average classification accuracy with different amounts of labeled nodes
given a fixed number of eigenvectors. Each row presents classification accu-
racy of dataset Wikipedia-RfA, Wikipedia-Elec, and Wikipedia-Editor. Each
column presents classification accuracy of GL(L+

sym), GL(Q−sym), GL(LSN ), and
GL(LAM ).

method with different proportions of labeled nodes, going from 1% to 25% of
the number of nodes |V |.

The corresponding average classification accuracy is shown in Fig. 1. As ex-
pected, we can observe that the classification accuracy increases with larger
amounts of labeled nodes. Further, we can observe that this effect is more pro-
nounced when larger amounts of eigenvectors Ne are taken, i.e. the smallest clas-
sification accuracy increment is observed when the number of eigenvectors Ne is
20 for Wikipedia-RfA and Wikipedia-Elec and 100 eigenvectors for Wikipedia-
Editor. Further, we can observe that overall our method based on GL(LSN ) and
GL(LAM ) performs best, suggesting that blending the information coming from
both positive and negative edges is beneficial for the task of node classification.

While our method based on signed Laplacians GL(LSN ) and GL(LAM ) over-
all presents the best performance, we can observe that they present a slightly
difference when it comes to its sensibility to the amount of labeled nodes. In par-
ticular, we can observe how the increment on classification accuracy GL(LSN )
is rather clear, whereas with GL(LAM ) the increment is smaller. Yet, GL(LAM )



Node Classification for Signed Networks Using Diffuse Interface Methods 11

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

Fig. 2: Average classification accuracy with 5% labeled nodes and different
amounts of eigenvectors. Average accuracy is computed out of 10 runs. Our
method based on Laplacians LSN and LAM consistently presents the best classi-
fication performance.

systematically presents a better classification accuracy when the amount of la-
beled nodes is limited.

4.4 Effect of the Number of Eigenvectors

We now study how the performance of our method is affected by the number
of eigenvectors given through different Laplacians. We fix the amount of labeled
nodes to 5% and consider different amounts of given eigenvectors. For datasets
Wikipedia-RfA and Wikipedia-Elec we set the number of given eigenvectors
Ne in the range Ne = 1, . . . , 100 and for Wikipedia-Editor in the range Ne =
1, 10, . . . , 1000.

The average classification accuracy is shown in Fig. 2. For Wikipedia-RfA
and Wikipedia-Elec we can see that the classification accuracy of our method
based on GL(Q−sym) outperforms our method based on the Laplacian GL(L+

sym)
by a meaningful margin, suggesting that for the task of node classification neg-
ative edges are more informative than positive edges. Further, we can see that
GL(LAM) consistently shows the highest classification accuracy indicating that
taking into account the information coming from both positive and negative
edges is beneficial for classification performance.

For the case of Wikipedia-Editor the previous distinctions are not clear any-
more. For instance, we can see that the performance of our method based on the
Laplacian GL(L+

sym) outperforms the case with GL(Q−sym). Moreover, the in-
formation coming from positive edges presents a more prominent performance,
being competitive to our method based on the Laplacian GL(LSN) when the
number of eigenvectors is relatively small, whereas the case with the arithmetic
mean Laplacian GL(LAM) presents a larger classification accuracy for larger
amounts of eigenvectors. Finally, we can see that in general our method first
presents an improvement in classification accuracy, reaches a maximum and then
decreases with the amount of given eigenvectors.
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Dataset Lowest Accuracy Largest Accuracy Increment

wikipedia-Elec 0.6317 0.8625 36.54%

wikipedia-RfA 0.6264 0.8280 32.17%

wikipedia-Editor 0.6785 0.8491 25.13%

Fig. 3: Top: Average classification accuracy of our method with GL(LSN ) under
different number of eigenvectors and different amounts of labeled nodes. Bottom:
Lowest and largest average classification accuracy of GL(LSN) per dataset.

4.5 Joint Effect of the Number of Eigenvectors and Labeled Nodes

We now study the joint effect of the number of eigenvectors and the amount of
labeled nodes in the classification performance of our method based on GL(LSN).
We let the number of eigenvectors Ne ∈ {10, 20, . . . , 100} for datasets Wikipedia-
RfA and Wikipedia-Elec and Ne ∈ {100, 200, . . . , 1000} for dataset Wikipedia-
Editor. Further, we let the amount of labeled nodes to go from 1% to 25%. The
corresponding results are shown in Fig. 3, where we confirm that the classification
accuracy consistently increases with larger amounts of labeled nodes. Finally,
we can notice that the classification accuracy first increases with the amount
of eigenvectors, it reaches a maximum, and then slightly decreases. To better
appreciate the performance of our method under various settings, we present
the difference between the lowest and largest average classification accuracy in
the bottom table of Fig. 3. We can see that the increments go from 25.13% to
36.54%.

4.6 Joint effect of fidelity (ω0) and interface (ε) parameters

We now study the effect of fidelity (ω0) and interface (ε) parameters on the classi-
fication accuracy of our method based on GL(LSN ). We fix the number of eigen-
vectors to Ne = 20, and let the amount of labeled nodes to go from 1% to 15%.
Further, we set the fidelity parameter ω0 to take values in {100, 101, . . . , 105}
and the interface parameter ε to take values in {10−5, 10−4, . . . , 104, 105}. The
results are shown in Fig. 4. We present the following observations:

First: we can see that the larger the amount of labeled nodes, the smaller
is the effect of parameters (ω0, ε). In particular, we can observe that when the
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Fig. 4: Average classification accuracy of our method based on GL(LSN ) with
different values of fidelity (ω0) and interface (ε). Columns (from left to right):
amount of labeled nodes: 1%, 5%, 10%, 15%. Rows (from top to bottom): clas-
sification accuracy on datasets Wikipedia-RfA, Wikipedia-Elec, and Wikipedia-
Editor.

amount of labeled nodes is at least 10% of the number of nodes, then the pa-
rameter effect of (ω0, ε) is small, in the sense that the classification accuracy
remains high.

Second: we can see that there is a relationship between the fidelity param-
eter ω0 and the interface parameter ε describing a safe region, in the sense
that the classification accuracy is not strongly affected by the lack of large
amounts of labeled nodes. In particular, we can observe that this region cor-
responds to the cases where the interface parameter ε is larger than the fidelity
parameter ω0, i.e. ε(k1) > ω0(k2) where ε(k1) = 10k1 and ω0(k2) = 10k2 , with
k1 ∈ {100, 101, . . . , 105} and k2 ∈ {10−5, 10−4, . . . , 104, 105}. This can be well
observed through a slightly triangular region particularly present for the case
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where the amount of labeled nodes is 1% on all datasets, which is depicted in
Figs. 4a, 4e, and 4i .

5 Conclusion

We have illustrated that the semi-supervised task of node classification in signed
networks can be performed via a natural extension of diffuse interface methods
by taking into account suitable signed graph Laplacians. We have shown that
different signed Laplacians provide different classification performances under
real world signed networks. In particular, we have observed that negative edges
provide a relevant amount of information, leading to an improvement in classi-
fication performance when compared to the unsigned case. As future work the
task of non-smooth potentials can be considered, together with more diverse
functions of matrices that would yield different kinds of information merging of
both positive and negative edges.
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