
Sobolev Training with Approximated
Derivatives for Black-Box Function Regression

with Neural Networks

Matthias Kissel1(�) and Klaus Diepold1

1Chair for Data Processing, Technical University of Munich
Arcisstr. 21, 80333 Munich, Germany

matthias.kissel@tum.de

https://www.ldv.ei.tum.de/

Abstract. With Sobolev Training, neural networks are trained to fit tar-
get output values as well as target derivatives with respect to the inputs.
This leads to better generalization and fewer required training examples
for certain problems. In this paper, we present a training pipeline that
enables Sobolev Training for regression problems where target deriva-
tives are not directly available. Thus, we propose to use a least-squares
estimate of the target derivatives based on function values of neighboring
training samples. We show for a variety of black-box function regression
tasks that our training pipeline achieves smaller test errors compared
to the traditional training method. Since our method has no additional
requirements on the data collection process, it has great potential to
improve the results for various regression tasks.

Keywords: Sobolev Training · Neural Networks · Machine Learning.

1 Introduction

Neural networks are used as function approximators for a variety of regression
tasks like forecasting problems, policy regression or black-box function approxi-
mation (i.e. functions for which the analytical form is unknown). The standard
approach of training neural networks is backpropagation, which updates the
trainable parameters in the neural network by propagating the output error
through the network. A strategy to increase the efficiency of the backpropa-
gation algorithm proposed by several authors [2, 16, 1, 17, 10] is to incorporate
information on derivatives of the target function into the training algorithm. For
example, terms can be added to the error definition which penalize deviations of
the network’s partial derivatives to the partial derivatives of the target function.
This is based on the idea that the neural network should match the outputs of
the target function and its partial derivatives at the training points in order to
match the desired function accurately. In the remainder of this paper we will
use the terms introduced by Czarnecki et al. [1] and Masouka et al. [10] and
refer to the standard backpropagation approach for neural network training as
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Value Training, and to the modified backpropagation incorporating information
on derivatives as Sobolev Training.

It has been shown that Sobolev Training outperforms Value Training in terms
of validation error and convergence speed for several applications. For example,
Witkosie et al. [26] showed that using Sobolev Training to model potential en-
ergy surfaces can greatly reduce the density of data needed while still resulting in
a better fit. Mitchell et al. [11] showed that Sobolev Training can lead to better
generalization even by using fewer data points for training in the robotics and
reinforcement learning domain. Besides better training performance, Sobolev
Training can also decrease the sensitivity to noise in the training data as shown
by Lee and Oh [9]. These publications are consistent with each other in the sense
that they all claim that Sobolev Training is advantageous over Value Training in
their chosen application. Indeed, Masouka et al. [10] argued that adding deriva-
tive information to the training increases the probability for better generaliza-
tion.

In real world applications and in many toy-examples, however, information
on the derivatives of the target function are typically not available. Several pub-
lications overcome this problem by rewriting a-priori or expert knowledge as
derivatives which can be incorporated into the training process. For example,
Lampinen et al. [8] proposed to use numerically inaccurate expert knowledge
to design target derivatives which can be used during the training of a neural
network. Simard et al. [18] utilized the fact that the derivatives have to be zero if
the input data is transformed in specific ways (e.g. for translations or rotations).
They claim that by explicitly adding these assumptions into the training process
the learning speed is improved. Rifai et al. [17] used regularization terms incorpo-
rating the derivative to train an autoencoder for unsupervised feature extraction.
By that, the autoencoder is more robust to corruptions in the input data and
more relevant information is extracted. Similarly, Varga et al. [25] showed that
gradient regularization can increase classification accuracy especially for small
training datasets. Another approach is explanation-based learning [11, 10], where
knowledge about derivatives is extracted from previously learned tasks and seen
examples.

In contrast to the assumptions in the existing approaches, we assume that
for our applications no information on derivatives is accessible and no a-priori
knowledge or expert knowledge is available. Moreover it is assumed that the an-
alytical structure of the target function is unknown, i.e. we investigate the case
of black-box function regression. For this application case, we propose a train-
ing pipeline which approximates the partial derivatives of the target function.
Derivatives are approximated by a least squares estimate based on the function
values of neighboring training samples.

Our goal is to give empirical evidence for the superiority of our training
method. Therefore, we evaluate our algorithm by performing experiments with
various black-box function regression tasks and different training dataset sizes.
Besides comparing our training method with the standard Value Training algo-
rithm, we compare our algorithm with the approach of approximating the target



Sobolev Training with Approximated Derivatives 3

Algorithm 1 Sobolev Training with Least-Squares approximated Derivatives

In-/Output: Input Data X, Output Data Y
1: Approximate Target Derivatives
2: Transform Data
3: Initialize Neural Network and Optimizer
4: Initialize Sobolev Weight Factor ρ
5: while Stopping Criterion not met do
6: Shuffle the Dataset and create Batches
7: for batch in Batches do
8: Compute Gradients of the Error for batch w.r.t. the Weights of the Neural

Network
9: Update the Weights of the Neural Network

10: end for
11: Update ρ
12: end while

derivatives using a straightforward finite-difference method. We show that our
pipeline has the potential to greatly improve the training results for regression
tasks compared to the other methods, which we also validate on multiple real-
world regression datasets.

The remainder of this paper is organized as follows. In Section 2 we present
our training pipeline for Sobolev Training with approximated derivatives. Results
of our experiments with various black-box function regression tasks are presented
in the subsequent Section 3. Finally, we summarize our results in Section 4.

2 Sobolev Training with approximated Target Derivatives

Our goal is to enable Sobolev Training for the regression of black-box functions.
The difficulty here is that no analytical description of the target function is
available, and therefore the required information about the target derivatives
are not available in general. We overcome this problem by approximating these
derivatives. The training pipeline presented in the following facilitates the ap-
proximation of the target derivatives on the basis of the data already collected
(i.e. without the need to collect more data). Moreover, our proposed pipeline
describes the sequence of steps in which the actual training is embedded. This
sequence comprises of steps such as data preprocessing, which need to be tailored
to the Sobolev Training.

Algorithm 1 gives an overview over the training pipeline. The inputs to the
training pipeline are the training input data X and the corresponding function
values Y of the target function. The first step is to approximate the partial
derivatives of the target function (details are given in Section 2.1). Subsequently,
inputs, outputs and derivatives are transformed while preserving their relative
magnitudes (described in Section 2.2). Finally, the neural network is trained
using the corresponding error function and the respective sobolev weight factor,
as introduced in Section 2.3, until the stopping criterion is met.
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2.1 Target Derivative Approximation

We propose to approximate the partial derivatives of the target function with
respect to all input dimensions evaluated at each training input. In the following,
we describe this approximation for a single input Xs ∈ Rn, where Xs represents
the sth row of the training input matrix X ∈ Rm×n.

The aim is to approximate the partial derivatives of the unknown target
function f(x) at input Xs with x, d ∈ Rn such that

di ≈
δf(x)

δxi

∣∣∣∣
x=Xs

. (1)

This is done by approximating f(x) with a linear model in the neighborhood
of the regarded training input Xs. For this, the function values of the p nearest
neighbors f(n1), . . . , f(np) to Xs (with respect to the euclidean distance
||ni − Xs||2) are used, where each ni represents a row of the input matrix X
(note that the indices of ni do not correspond to the index of the row in the
training input matrix X). Approximating the partial derivatives then results in
a least squares problem

mind||W (Ad− b)||2, (2)

where A contains the differences of the inputs

A =

(n1 −Xs)
...

(np −Xs)

 , (3)

and b contains the difference of the output values

b =

f(n1)− f(Xs)
...

f(np)− f(Xs)

 . (4)

The p nearest neighbors are determined using a k-dimensional tree (implementa-
tion provided by Pedregosa et al. [14]). W is a diagonal matrix that controls the
influence of neighboring training points on the approximation of the derivatives
depending on their distance to Xs. The respective diagonal entries are

Wii =
1∑p

j=1 e
−||nj−Xs||2 e

−||ni−Xs||2 . (5)

After solving the minimization problem in Equation 2, d contains the approx-
imated partial derivatives of the target function evaluated at Xs. Thus, solving
the respective minimization problem for each input vector in the training dataset
determines all target derivatives required for training.
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2.2 Data Transformation

Several standard methods for data transformation exist for Value Training, e.g.
the standard scaler which transforms data to zero mean and unit variance [14].
We propose to adapt this approach for Sobolev Training in order to preserve
the relative magnitudes between outputs, derivatives and inputs. The presented
method is limited to regression functions with a one-dimensional output. How-
ever, the methods can be extended to functions with multidimensional outputs.
The adapted transformation comprises three steps.

First, the input values are scaled column-wise to zero mean and unit variance

x̃i = αixi + βi. (6)

Secondly, the output values y = f(x) are shifted such that the mean magnitude
of the outputs equals the mean magnitude of the partial derivatives

ŷ = y + ζ. (7)

This step reduces the magnitude difference between outputs and derivatives. In
the third step outputs and derivatives are scaled to

ỹ = γŷ (8)

and

d̃i =
γ

αi
di, (9)

where di are the approximated target derivatives. The factor γ is chosen such
that outputs and derivatives have combined unit variance.

2.3 Error Functions

The main distinguishing characteristics between Sobolev Training and Value
Training is the function used to compute the error of the network, i.e. the loss
which is backpropagated through the network during training. In Value Training,
any loss function l(x, y) can be used to compare the output of the network with
the desired value, e.g. the mean squared error. The resulting training error eV T
for a training input Xs is

eV T = l(o, od)

∣∣∣∣
Xs

, (10)

where o is the output of the network for input Xs and od is the corresponding
desired output.

In Sobolev Training, the neural network is trained to fit the desired outputs
and the respective partial derivatives of the target function. This is achieved
by adding terms to the error function of Value Training. By that, discrepancies
between the partial derivatives of the neural network to the partial derivatives
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of the target function are explicitly penalized. The resulting error function eST
is

eST = l(o, od) + ρ

n∑
i=1

l

(
δnet(x)

δxi
, di

)∣∣∣∣
Xs

, (11)

where n refers to the dimension of the input space. The derivative of the network

with respect to input dimension xi is given by δnet(x)
δxi

and the approximated
partial derivatives of the target function f(X) by d.

The terms added for Sobolev Training are weighted with a factor ρ, which
determines the importance of these terms in relation to the Value Training loss
function. We propose to decrease this weight factor after each epoch of training
to emphasize the importance of accurate output values at the end of the training

ρυ+1 = ρυρup, (12)

where ρup is the corresponding update factor and υ the index of the regarded
training epoch.

The theoretical basis for the proposed error function is given by Hornik et al.
[5] and Czarnecki et al. [1]. Hornik et al. [5] proved that neural networks with at
least one hidden layer are able to arbitrarily well approximate any function and
its derivatives if the activation function of the neurons is appropriately smooth.
Moreover, Czarnecki et al. [1] showed that Rectified Linear Units (ReLU) can be
used as activation function to achieve universal approximation of function values
and derivatives up to the first order. Furthermore it should be noted that any
gradient-based optimization algorithm such as Adam [7] used for Value Training
can be used for Sobolev Training [15].

2.4 Derivative Approximation using Finite-Differences

In order to compare our pipeline with the approach of using a straightforward
finite-difference method for derivative approximation, we introduce a slightly
modified training pipeline depicted in Algorithm 2. This approach requires ad-
ditional data collected in a small neighborhood of the given training data. To
ensure a fair comparison, we consider this extra effort. Therefore, we assume that
the total amount of data which can be collected is limited, i.e. there is a trade-off
between collecting data to explore the whole input space versus collecting data
for derivative approximation.

For example, if the target function has two-dimensional inputs, the training
dataset size passed to the pipeline in Algorithm 2 is only one-third of the size used
for the other training approaches. This results from the fact that additional data
points required for derivative approximation are collected during the execution of
this pipeline. However, the total number of target function evaluations remains
the same for all training methods, which allows a fair comparison of the methods.

Derivatives are approximated using a one-sided-difference approach [12] de-
fined as:

δf(x)

δxi
≈ f(x+ εei)− f(x)

ε
(13)
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Algorithm 2 Sobolev Training with Finite Differences

In-/Output: Input Data X, Output Data Y
1: Collect Data for Derivative Approximation
2: Approximate Target Derivatives using Finite-Differences
3: Transform Data
4: Initialize Neural Network and Optimizer
5: Initialize Sobolev Weight Factor ρ
6: while Stopping Criterion not met do
7: Shuffle the Dataset and create Batches
8: for batch in Batches do
9: Compute Gradients of the Error for batch w.r.t. the Weights of the Neural

Network
10: Update the Weights of the Neural Network
11: end for
12: Update ρ
13: end while

Where ei has zero entries except for the ith entry and ε is the step-size used
for derivative approximation. We use the one-sided-difference approach as the
small gain in accuracy obtained by using the two-sided-difference often does not
justify the extra effort for collecting additional data [12].

To make use of all obtained information we propose to add the data collected
for derivative approximation to the training data. Moreover, for each of these
data points one partial derivative can be added to the training data without extra
effort. This is achieved by exchanging ei with −ei in Equation 13 to calculate the
respective partial derivative at the new data point. After adding the additional
data to the training dataset, the number of training points for this method is
the same as for the other training methods. However, the data distribution of
the training data is different.

The one-sided-difference (Equation 13) results in an error linearly depending
on the chosen step-size ε, i.e. the error is O(ε) [12]. Hence, in order to decrease
the approximation error, a sufficiently small step size must be chosen. However,
note that choosing ε too small can lead to underflow in the input as well as the
output data depending on the machine precision.

The other steps of the training pipeline remain the same as introduced before.
It should be noted that this training pipeline can only be used for regression tasks
where training data points can be collected at any desired position in the input
space. This is, however, not the case for most real world applications.

3 Results

We compare our training pipeline to existing approaches in terms of their perfor-
mance on approximating specific black-box functions. The black-box functions
are chosen to represent functions with different shapes, input-value domains
and output-value ranges. Therefore, we chose optimization test functions with
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Table 1. Black-Box Functions used in the experiments and their respective category

Function Category Definition Input Range

Sphere Bowl-Shaped f(x) =
∑n
i=1 x

2
i xi ∈ [−5.12; 5.12]

Sum Diff. Pow. Bowl-Shaped f(x) =
∑n
i=1 |xi|

i+1 xi ∈ [−1; 1]
Sum Squares Bowl-Shaped f(x) =

∑n
i=1 ix

2
i xi ∈ [−10; 10]

Trid Bowl-Shaped f(x) =
∑n
i=1(xi − 1)2 −

∑n
i=2 xixi−1 xi ∈ [−4; 4]

Booth Plate-Shaped f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 xi ∈ [−10; 10]
McCormick Plate-Shaped f(x) = sin(x1 + x2) + (x1 − x2)2 x1 ∈ [−1.5; 4]

−1.5x1 + 2.5x2 + 1 x2 ∈ [−3; 4]
Matyas Plate-Shaped f(x) = 0.26(x21 + x22)− 0.48x1x2 xi ∈ [−10; 10]
Powersum Plate-Shaped f(x) =

∑n
i=1[(

∑n
j=1 x

i
j)− bi]2 xi ∈ [0; 2]

b = (8, 18)T

Rosenbrock Valley-Shaped f(x) =
∑n−1
i=1 [100(xi+1 − x2i )2 + (xi − 1)2] xi ∈ [−5; 10]

Three Hump Camel Valley-Shaped f(x) = 2x21 − 1.05x41 +
x61
6

+ x1x2 + x22 xi ∈ [−5; 5]

Six Hump Camel Valley-Shaped f(x) = (4− 2.1x21 +
x41
3

)x21 x1 ∈ [−3; 3]
+x1x2 + (−4 + 4x22)x22 x2 ∈ [−2; 2]

Dixon Price Valley-Shaped f(x) = (x1 − 1)2 +
∑n
i=2 i(2x

2
i − xi−1)2 xi ∈ [−10; 10]

Easom Steep Ridges f(x) = −cos(x1)cos(x2)exp(−(x1 − π)2 − (x2 − π)2) xi ∈ [−5; 5]

Michalewicz Steep Ridges f(x) = −
∑n
i=1 sin(xi)sin

20(
ix2i
π

) xi ∈ [0;π]
Styblinski Tang Others f(x) = 1

2

∑n
i=1(x4i − 16x2i + 5xi) xi ∈ [−5; 5]

Beale Others f(x) = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x
2
2)2 xi ∈ [−4.5; 4.5]

+(2.625− x1 + x1x
3
2)2

Branin Others f(x) = (x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6)2 x1 ∈ [−5; 10]

+10(1− 1
8π

)cos(x1) + 10 x2 ∈ [0; 15]
Golstein Price Others f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 xi ∈ [−2; 2]

+6x1x2 + 3x22)]× [30 + (2x1 − 3x2)2

×(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

two-dimensional input from five different categories proposed by Surjanovic and
Bingham [19]: Bowl-shaped functions, plate-shaped functions, functions with
steep ridges or drops, valley-shaped functions and special functions grouped in
the category named others. A list of all functions and their definitions can be
found in Table 1.

With our experiments we aim to empirically answer the following questions:

– How does our training pipeline compare to the standard training method
(Value Training)?

– Does the size of the training dataset or the shape of the target function have
an influence on the performance of our training method?

– How does the performance compare to the approach of approximating deriva-
tives directly with a finite-difference method?

These questions are addressed in the following Sections by interpreting the re-
sults of our experiments. Furthermore, at the end of this Section we evaluate
our training pipeline on several real-world regression problems. The Hyperpa-
rameters of our experiments are listed in Table 2. We would like to emphasize
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Table 2. Hyperparameters of the experiments

Hyperparameter Value

Hidden layers 2
Neurons per Layer 200
Hidden Layer Activation ReLU
Output Layer Activation Linear
Loss Function Mean squared error
Optimizer Adam
Adam - Learning Rate 1e− 3
Adam - β1 0.9
Adam - β2 0.999
Repetitions per experiment 10
Amount Batches 10
Data Collection Strategy Uniform-Random
Validation Set Size 4000
Test Set Size 4000
Finite-Difference Step Size ε 1e− 4
Number of Neighbors for Least Squares 5
Initial ρ 1.0
Update Factor ρup 0.95
Stopping Criterion Validation Error Convergence
Patience pc 10

that we did not optimize these hyperparameters. Exemplary code of our training
methods can be found on GitHub1.

3.1 Sobolev Training with approximated Target Derivatives versus
Value Training

First, we compare the performance of our training pipeline with the standard
method of training neural networks (Value Training) by conducting various ex-
periments. Each experiment consists of training a neural network with the con-
sidered training method to approximate one of our regression functions. Experi-
ments are carried out with different training dataset sizes, whereas the collected
training data is distributed random-uniformly over the input space. During the
experiments, the number of training epochs is not limited. Instead, the neural
network is trained until the stopping criterion is met. For our experiments, we
chose to stop the training if there is no improvement in the validation error over a
period of pc epochs (pc is referred to as patience). Each experiment is conducted
ten times in order to decrease the influence of statistical effects, where we plot
the mean value of the test error in combination with the respective minimum
and maximum values. We compare the results of different training methods by
means of the mean squared error of the test dataset for the trained network.
For this, the network parameters of the epoch with lowest validation set error

1 https://github.com/MatthiasKi/SobolevTrainingApproxDerivatives
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are used to compute the test error (in general, this is not the test error of the
last training epoch). To make the results comparable regarding the differences in
the output data ranges, we divide this error by the mean squared output of the
respective function (the mean squared output is calculated beforehand and the
same value is used to normalize all training results of the same target function).
All relevant hyper parameters used for training are depicted in Table 2.

The reader can see the training results for one representative function of
each category in Figure 1. As expected, Sobolev Training with exact derivative
information clearly outperforms the other training methods for most functions.
This results from the extra information added to the training algorithm (note
that for Sobolev Training with exact derivatives the same training data as for
Value Training is used, plus the partial derivatives of the target function for each
training data point). Furthermore, Sobolev Training with Least Squares approx-
imated derivatives consistently (except for the function Michalewicz ) achieves
better results than Value Training.

In order to combine the training results of different functions of the same cat-
egory in one plot, we consider the test error of the respective training method
divided by the test error achieved by using Value Training. By that, the magni-
tude of the output data is canceled out and the results for different functions can
be directly compared with each other. The combined performance for functions
of the same category is depicted in Figure 2. In the Figure, the lines represent the
mean values over the results of all functions of the respective function category
(whereas for each target function, training method and training dataset size 10
independent experiments have been conducted). In addition, the minimum and
maximum performance of the respective function category are depicted. Values
greater than 1.0 indicate that the respective training method achieved higher
test errors than Value Training (and therefor has a worse performance), and
values less than 1.0 indicate a lower test error, respectively. We observe that
Sobolev Training with Least-Squares approximated derivatives achieves consis-
tently lower test errors than Value Training (except for functions with steep
ridges or drops).

For some function shapes the effect of our training pipeline is bigger than
for others. This is due to the different value of information about derivatives
for different function shapes. This can also be seen by looking at the effect of
classical Sobolev Training compared to Value Training for the respective func-
tion shapes (i.e. Sobolev Training with exact derivatives). For example, Sobolev
Training with exact derivatives achieves much lower relative test errors than
Value Training for valley shaped functions compared to plate shaped functions
(as depicted in Figure 2). In case of our functions with steep ridges or drops,
Sobolev Training even tends to worsen the training results. This fits to the ex-
pectations as information about target derivatives is of small value for functions
of these shapes and, due to the limited accuracy of the learned model, can even
be misleading for some functions.

In general, the effect of our training pipeline increases with the number of
data points in the training set. This is in line with the expectations, as increasing
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Fig. 1. Comparison of the test errors for different training methods

the dataset size leads to a higher density of the data points distributed in the
input space, i.e. neighboring points in the dataset lie closer to each other. This in
turn increases the accuracy of the derivative approximation, since as indicated
in Section 2.4, the approximation error of the derivatives increases linearly with
the distance of neighboring points.

3.2 Sobolev Training with approximated Derivatives based on
Finite-Differences

In this Section, we compare the performance of our training pipeline with the
approach of approximating derivatives directly using a finite-difference method.
As explained in Section 2.4, the size of the training dataset passed to the training
pipeline directly using finite-differences is one third of the size of the training
dataset used for Value Training. This ensures a fair comparison, as the number
of data points which can be collected is limited for most applications.
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Fig. 2. Comparison of the test error for different training methods in relation to the
test error achieved with Value Training

As shown in Figure 2, Value Training outperforms Sobolev Training with
Finite-Difference approximated derivatives especially in the low-data regime.
This is due to the fact that this method uses some of the samples for deriva-
tive approximation, i.e. obtaining more local information instead of exploring
unknown regions of the input space. Of course, this effect decreases for larger
training datasets.

For all function shapes except for valley shaped functions, our training pipeline
clearly outperforms the straightforward approach of using finite-differences for
derivative approximation. Our experiments induce that the local additional in-
formation in the form of accurate derivatives provide a great deal of additional
value for describing our valley shaped functions. This also explains the small
magnitude of the relative test error of Sobolev Training with exact derivatives
compared to Value Training. Of course, the derivatives approximated with the
direct finite-difference method are more accurate than the least-squares approx-
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imated ones, which leads to the good performance of this training method for
valley-shaped functions.

3.3 Real-World Regression Problems

To show the applicability of our pipeline for problems with high dimensional
inputs and noise in the collected data, we evaluate our pipeline with several
existing datasets for real-world regression problems. In contrast to the previous
Subsections, we do not intend to represent a broad spectrum of different regres-
sion problems with our selection. Instead, we aim to show the abilities of our
pipeline to be applied to real-world regression tasks using problems selected from
the UCI Machine Learning Repository [3], which are presented in the following.
Moreover, Table 3 gives an overview over the properties of the different datasets.

– Combined Cycle Power Plant [20, 6]: The goal of this regression problem is
to predict the net hourly electrical energy output of a combined cycle power
plant composed of gas turbines, steam turbines and heat recovery generators.
The predictions are based on features such as the ambient pressure and the
relative humidity.

– Communities and Crime [21–24]: This dataset contains data about different
communities such as the age distribution of its population or the number of
full time police officers. The aim is to predict the total number of violent
crimes per population for each community based on these features. Note that
for our experiments, we considered only features which are available for all
communities.

– Concrete Compressive Strength [27]: This dataset was created to analyze
the compressive strength of concrete based on features like the age of the
concrete or its components (e.g. the amount of cement).

– Yacht Hydrodynamics [4, 13]: The purpose of this dataset is to find a connec-
tion between the residuary resistance of sailing yachts and geometric features
of the yacht like the hull geometry coefficients.

For our experiments, each dataset is split randomly into training, validation
and test set, whereas the validation set and the test set comprise 20% of the total
data each. The calculation of the neighboring points of a considered sample was
performed using the transformed data matrix as described in Section 2.2. This
is necessary, because the entries of the data matrix can have different units or
can be of different orders of magnitudes for datasets comprising real-world data,
which can distort the calculation of the neighboring points. In addition, we found
that the weighted data matrix can be ill-conditioned in some cases. Therefore,
we cut-off singular values which are smaller than 0.01σmax to compute the least-
squares solution, where σmax is the largest singular value of A belonging to the
least-squares problem minx||Ax− b||2.

Each experiment was performed 50 times to account for the random initial-
ization of the neural networks and the shuffling of the data before splitting into
training, validation and test datasets. We report the mean and standard devia-
tion of the root mean squared errors of both models on the respective test dataset
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Table 3. Properties of the datasets for the real-world regression problems (Considered
Neighbors is the number of neihbors considered for the least-squares approximation of
the partial derivatives)

Dataset name Input Dimensionality Dataset Size Considered Neighbors

Combined Cycle Power Plant 4 9568 20
Communities and Crime 101 1994 3
Concrete Compressive Strength 9 1030 10
Yacht Hydrodynamics 7 308 2

Table 4. Mean and standard deviation of the RMSE over 50 independent experiments
trained with either Value Training or our proposed training pipeline

Dataset name LS-Sobolev Training Value Training

Combined Cycle Power Plant 3.97 ± 0.13 4.01± 0.12
Communities and Crime 369.95 ± 26.02 375.42± 25.93
Concrete Compressive Strength 5.91± 0.59 5.24 ± 0.5
Yacht Hydrodynamics 1.53 ± 0.42 2.16± 0.8

after training in Table 4. The experiments show that our pipeline can have advan-
tages for some real-world regression problems with high-dimensional inputs and
noise in the collected data. Note that we did not tune the models, nor performed
a hyperparameter optimization (we used the hyperparameters depicted in Table
2 except for the number of neighboring samples used for derivative approxi-
mation for which we found suitable numbers by hand). Indeed, a sophisticated
parameter optimization is not needed, since our focus lies on the comparison
between Value Training and Sobolev Training with Least-Squares approximated
derivatives, and we therefore only have to guarantee fair comparison conditions.

4 Conclusion

We introduced a training pipeline for neural networks, which makes it possible
to use Sobolev Training for black-box function regression tasks where the target
derivatives are not directly accessible. Our pipeline describes the various steps
necessary for training, which includes a preprocessing procedure designed for
Sobolev Training.

With our experiments we showed empirically that our training pipeline out-
performed the standard training approach (i.e. Value Training) for functions with
various different shapes. Furthermore, our approach outperforms the straightfor-
ward approach of approximating derivatives using finite-differences. In addition
to experiments with optimization functions from different categories, we illus-
trated the practical benefit by evaluating our training pipeline on multiple real
world regression problems.

Our pipeline does not require additional training samples and has no spe-
cial requirements on the data generation process. We observed that our training
method leads to improved performance for almost all tested functions, especially
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if the training dataset is large. Therefore, we believe that the presented train-
ing pipeline has the potential to greatly improve the training results for many
regression applications.

Our results raise further research questions that lie out of the scope of this pa-
per. For example, it would be interesting to examine the influence of the training
data distribution on the learning performance, or to explicitly use information
about the data distribution for approximating target derivatives.
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