
Automated Data Transformation with Inductive
Programming and Dynamic Background

Knowledge?

Lidia Contreras-Ochando1�, Cèsar Ferri1, José Hernández-Orallo1,
Fernando Mart́ınez-Plumed1, Maŕıa José Ramı́rez-Quintana1, and

Susumu Katayama2

1 Valencian Research Institute for Artificial Intelligence (vrAIn)
Universitat Politècnica de València, Spain

{liconoc,jorallo,mjramirez}@upv.es,{cferri,fmartinez}@dsic.upv.es,
2 University of Miyazaki, Japan
skata@cs.miyazaki-u.ac.jp

Abstract. Data quality is essential for database integration, machine
learning and data science in general. Despite the increasing number of
tools for data preparation, the most tedious tasks of data wrangling –and
feature manipulation in particular– still resist automation partly because
the problem strongly depends on domain information. For instance, if the
strings “17th of August of 2017” and “2017-08-17” are to be formatted
into “08/17/2017” to be properly recognised by a data analytics tool,
humans usually process this in two steps: (1) they recognise that this is
about dates and (2) they apply conversions that are specific to the date
domain. However, the mechanisms to manipulate dates are very differ-
ent from those to manipulate addresses. This requires huge amounts of
background knowledge, which usually becomes a bottleneck as the di-
versity of domains and formats increases. In this paper we help alleviate
this problem by using inductive programming (IP) with a dynamic back-
ground knowledge (BK) fuelled by a machine learning meta-model that
selects the domain, the primitives (or both) from several descriptive fea-
tures of the data wrangling problem. We illustrate these new alternatives
for the automation of data format transformation, which we evaluate on
an integrated benchmark and code for data wrangling, which we share
publicly for the community.

Keywords: Inductive Programming · Data Wrangling Automation ·
Declarative Programming Languages · Dynamic Background Knowledge

? This research was supported by the EU (FEDER) and the Spanish MINECO
RTI2018-094403-B-C32, and the Generalitat Valenciana PROMETEO/2019/098. L.
Contreras-Ochando was also supported by the Spanish MECD (FPU15/03219). J.
Hernández-Orallo is also funded by FLI (RFP2-152). F. Mart́ınez-Plumed was also
supported by INCIBE (Ayudas para la excelencia de los equipos de investigación
avanzada en ciberseguridad), the European Commission (JRC) HUMAINT project
(CT-EX2018D335821-101), and UPV (Primeros Proyectos de lnvestigación PAID-
06-18).



2 L. Contreras-Ochando et al.

1 Introduction

Data science must integrate data from very different data sources (e.g., databases,
repositories, webs, spreadsheets, documents, etc.). Rarely does this data come in
a clean, consistent and well-structured way. Data wrangling, or data munging,
is a process that usually involves data manipulation tasks that are repetitive,
tedious and very time-consuming, such as transforming data into another format
that can be properly processed and that makes the whole process more reliable
[14]. Table 1 shows some data gathered in different formats, depending on the
user’s geographical region. Note that converting the (non-standardised) data
from each column into a unified format needs a non-negligible manual effort.

Table 1: Example of personal data in different standard formats.
Name Email Address Phone Date & Time Country

Alejandro Pala Corell apalacorell@. . . C/Jose Todos, 22 +34 465 698 03/04/17 19:39 Spain
Clau Bopper clb@. . . Rua bolog, 136 1195546 27/06/2017 22h56 France
Srta. Maria Garcia mariagc@. . . Av. Del Mar 14, piso 6, 12 659332 4 octubre 2017 10:20 Mexico
Dr Lauren Smith Lauren.Smith@. . . Flat 5, Royal Court, Coventy 748526 30 October 2017 9:45 am UK
Sabrina Bunha Passa sabrinabpassa@. . . Rua Beni, 365, Alegre +55 51 987 27/11/2017 07h05 Brasil
Mr David Bozz David.bozz01@. . . 88 Lane of trees, Texas 77925 8259744 10/2/2018 12:30 PM USA
Lara Alsi lalsi@. . . Av. Grande 2325 7p 54-12-3652 25/2/2018 17.00 Cuba

Recently, some tools have shown powerful skills in automating data wran-
gling tasks. Concretely, Inductive Programming (IP) [7,10] has been successfully
applied to data wrangling problems. IP learns programs from a few examples
possibly using declarative background knowledge (BK). From a machine learn-
ing (ML) point of view, the BK can be seen as a kind of bias, which is usually
composed of a set of auxiliary primitives or concepts that can be combined to
find a hypothesis that covers the data. But if this set of primitives becomes
too large then the search for a suitable combination becomes huge. As usual,
bias makes learning of some hypotheses easier (or possible) at the cost of other
hypotheses. In general terms, every problem becomes easy with appropriate back-
ground knowledge. As a consequence, the solution lies in finding this background
knowledge.

Consider Table 2. The difficulty of this problem lies in the different date
formats, where the day can be the first, second or third number, and these
numbers can be delimited by different symbols. A system based only on basic
string transformations may never find the right solution using only one example
since it does not know what the real problem is: extracting the first number?
The first two digits? Or everything before any symbol? We must know how dates
work, their constraints and how they are usually represented. We need BK.

In order to automate this process, the system (1) must recognise that it is
handling names, dates or any other domain and (2) must have a sufficiently rich
set of functions to deal with that particular domain. This size of the BK (the



Automated Data Transformation 3

Table 2: Example of a dataset with an input column composed of dates under
very different formats and the output where the day of the month is extracted.

Id Input Output Id Input Output

1 25-03-74 25 4 06 30 1975 30
2 03/29/86 29 5 25-08-95 25
3 1998/12/25 25 6 ... ...

number of primitives) is known as breadth (b), while the minimum number of
such primitives that have to be combined in the solution is known as depth (d). If
we only provide very general primitives, d would increase considerably. However,
as more kinds of domains are required, the library would become very large, and
hence b. Clearly, both depth and breadth highly influence the hardness of the
problem, jointly with the number of examples, n. Actually, for theory-driven
induction, this hardness strongly depends on d and b, in a way that is usually
exponential, O(bd) [12,6], with n being mostly irrelevant (indeed, most problems
are solved from just one example). How can we keep both, and especially b, at
very low levels?

In this paper, we propose to control the depth and breadth of the inductive
inference problem by using dynamic background knowledge for each problem. We
do this in three different ways. First, we structure the BK into specific subsets
(domains) and select the most appropriate one. Second, we build a ranker that
selects the most appropriate primitives depending on the problem. In both cases
we use off-the-shelf ML techniques applied to a set of meta-characteristics based
on the syntax of the inputs to be processed. Finally, we perform a combination
of both approaches. As we will see, these approaches find a good trade-off be-
tween knowledge breadth and the solution depth. As a result, we solve effectively
and efficiently a wide range of data wrangling manipulation problems, with the
user just providing one example. For assessing the approaches, we introduce a
new data wrangling benchmark consisting of a number of data transformation
examples from the literature and others new problems.

This paper presents general ideas that go well beyond the particular use of
IP to data science or other data manipulation applications. Overall, this paper
contains four main contributions: (1) we show that the required breadth and
depth for a particular theory-driven inductive inference problem can be min-
imised through the appropriate selection of primitives in the BK; (2) we propose
several strategies to dynamically select or construct this appropriate BK auto-
matically following the idea of detecting the best specialised functions according
to the context of the particular problem to solve; (3) we develop and apply this
schema to the important problem of data wrangling, which take a relevant por-
tion of many data science applications; (4) we provide an open benchmark for
further progress, replicability and comparison in this area. The paper is organised
as follows. Section 2 summarises relevant related work. Section 3 addresses the
problem of automating data wrangling with an IP system. Section 4 describes
our approach for handling the BK. The experimental evaluation is included in



4 L. Contreras-Ochando et al.

Section 5. Finally, Section 6 closes the paper with the conclusions and future
work.

2 Related Work

Data wrangling is one scenario, among many others in data science and else-
where, where learning must be done from very few examples. In these cases, the
transfer or use of previous knowledge must impose a strong bias to make the
problem solvable. In particular, the term ‘inductive bias’ refers to the assump-
tions a learning system does to prioritise some hypotheses over others [19]. In
approaches where the hypothesis combines primitives or concepts, the inductive
bias has the aim of adapting the depth –how many primitives or elements are
needed– and breadth –how many choices there are in the librariy of components–
of the learning process. Thus, with no alteration of the search procedure, the BK
can be used to produce a bias on learning. However, as the BK grows to reduce
the depth d for more and more problems, the search becomes intractable because
of the growth of the breadth b. This problem has been analysed in incremen-
tal and lifelong learning scenarios [18,6,20]. The general idea is to combine the
hypothesis generation process with a forgetting mechanism to limit the amount
of BK that must take part in learning. The results shown in [25] suggest the
usefulness of a measure of relevance on the BK to guide the search over pro-
grams relying on expert knowledge. In a recent work [17], the idea of ranking
the functions according to some text features is presented. However, in this work
the authors are based on the fact that input and output strings are related. For
instance, the output is a substring of the input.

As said in the introduction, IP is an important paradigm in ML that is
typically (but not always) theory-driven. IP is concerned with the problem of
learning programs (typically recursive) from incomplete specifications such as
input/output examples [10] and BK. The use of BK facilitates some problems
but suffers from the general intractability issues when it gets large. Still, the
great advantage of IP is that it can infer a solution for one or a few examples. In
this regard, data wrangling and data transformation is one of the applications
where IP has been shown very successful (see [26,4]), because the training data is
generated online by the user, and we can only have a small number of examples
(the benefit of automation disappears if the user has to provide many examples).
IP has been so successful for data wrangling [10] that Microsoft included some
of these tools in Excel, such as FlashFill [8]. One of the reasons of the success of
these systems is the use of domain-specific languages (DSLs) [9], which are ad-
hoc for data wrangling and data manipulation situations, and reduce the search
space considerably.

With the goal of automatically transforming data within a spreadsheet for-
mat, Trifacta Wrangler [13] generates a ranked list of suggested transformations
also inferred automatically from user input, the data type and some heuristics us-
ing programming-by-demonstration techniques. More recently, Neural Program
Induction has been presented as an alternative for learning string transforma-



Automated Data Transformation 5

tions. In [21] the authors introduce a system that uses Neuro-Symbolic Program
Synthesis to learn programs in a DSL by incrementally expanding partial pro-
grams. They perform experiments with I/O data wrangling examples having
common substrings. Although the system is able to solve many of these exam-
ples it still has some limitations. On the one hand, the use of a DSL with many
expressions implies a combinatorial explosion problem when a large number of
programs have to be learned. On the other hand, due to their use of common
substrings, the aforementioned example about date transformation, again, is im-
possible to solve. As another relevant work, in [22] the authors propose NPBE
(Neural Programming by Example), a Programming by Example model based
on deep neural networks. NPBE induces string manipulation programs based on
simple I/O pairs by inferring the right functions and arguments. For assessing
the validity of the induced programs, the authors create 1000 random exam-
ples using the same syntax structure, which is something that does not hold in
general, as we see in Table 1.

Although the use of DSL systems for data wrangling automation seems
prominent, it also brings further disadvantages: (1) using DSLs implies the use
of languages that are specifically defined for a particular type of data processing.
(2) Whenever a new application or domain is required, a new DSL has to be
created, and the inductive engine recoded for it. (3) These systems work using
a basic set of transformations, normally working with unique input-output pairs
but not with an entirely table, and assuming the inputs of the same domain to
be in a unique format. (4) DSL-based systems usually have ‘program aliasing’
problems (many different programs satisfying the examples) in such a way that
more examples are needed to distinguishing the right hypothesis, affecting their
performance [5].

Finally, the most recent work dealing with automatic data transformation is
TDE (Transform Data by Example) [11]. In this work a search engine for Excel
that indexes program snippets from different sources in order to find relevant
functions for solving problems related to data transformation using two or more
examples. Even when their results are better than other existing tools, the system
uses more than 50k functions and their results tend to have many different
solutions that the user has to select from. As we will show in section 5, this
dependency on the user’s manual effort results in worse results when the domain
of the problem is not easy to detect.

3 Automating Data Wrangling with a general-purpose IP
system

Instead of using DSLs for each particular context (e.g., dates, addresses, etc.),
we propose to use a general-purpose IP system provided with a suitable domain
(set of primitives) as BK. Hence, in our approach, the automation of data manip-
ulation tasks is done as follows: (1) we take one example which is used to select
the appropriate set of primitives that form the BK; (2) one or more examples
are sent to an IP system, such as a first few rows in Table 2, which are the ones



6 L. Contreras-Ochando et al.

a user could complete to trigger the process; (3) using the selected BK and the
examples, the IP system learns a function f that correctly transforms the input
of the examples to the given outputs; and (4) the function f is applied to the rest
of the inputs, obtaining the new values for the output column automatically.

For the purpose of this work we have used MagicHaskeller [15] as the general-
purpose IP system. The reasons for that choice are that MagicHaskeller exploits
the power of the underlying language Haskell for very compact representations
of the hypotheses, and it is able to solve many problems using only one exam-
ple from the data. Despite this choice, the setting and the new techniques for
dynamic knowledge allocation that we introduce in the next section could be
replicated using other IP learning systems.

In a nutshell, MagicHaskeller receives an input example (x) and the expected
result (y), and returns a list of functions (f) that make the values of the expres-
sions f x and y be equal, which in Haskell notation is expressed as the Boolean
predicate f x == y. MagicHaskeller looks for combinations of one or more func-
tions (primitives) from its library to work like the f above. The solution (if exists)
is a combination of d functions (where d ≤ dmax). Trying to reduce d, we may
be tempted to add a great number of powerful functions to the library. But, if
so, MagicHaskeller will have many primitives to choose from (the breadth value
b), suffering from a combinatorial explosion.

MagicHaskeller comes with 189 predefined primitives, the default BK, but
they are insufficient for complex or very specific problems. In order to overcome
this limitation, we have extended the generic BK including common string oper-
ators and nomenclature used in popular data manipulation tools (RapidMiner1

and Trifacta2):

– Constants: Symbols, numbers, words or list of words.
– Map: Boolean functions for checking string structures.
– Transform: Functions that return the string transformed using one or more

of the following operations:
• Add: Appending elements to a string, adding them at the beginning,

ending or a fixed position.
• Split: Splitting the string into two or more strings by positions, con-

stants or a given parameter.
• Concatenate: Joining strings, elements of an array, constants or given

parameters with or without adding other parameters or constants be-
tween them.

• Replace: Changing one or more string elements by some other given
element. This operation includes converting a string to uppercase and
lowercase.

• Exchange: Swapping elements inside strings.
• Delete/Drop/Reduce: Deleting one or more string elements by some

other given parameter, a position, size or mapping some parameter or
constant.

1 RapidMiner Studio - Feature List: https://goo.gl/oYypMh
2 Trifacta Wrangler - Wrangle Language: https://goo.gl/pJHSFw

https://goo.gl/oYypMh
https://goo.gl/pJHSFw


Automated Data Transformation 7

• Extraction: Get one or more string elements.

In total, we have added 108 functions, what we call the freetext BK. However, as
we have seen with the example in Table 2, these functions may not be enough to
solve specific tasks in some domains that would require more precise functions.

With this set of functions in the system’s library, we are able to solve many
common string manipulation problems. However, when data belong to a par-
ticular domain and the problem at hand ends up being a very exclusive task
pertaining to that domain, more precise functions are needed in order to get
correct results considering the context. We have explored the domains that are
common in data wrangling problems (Excel3 and Trifacta4) and we have created
different Domain-Specific BKs (DSBK) according to them. We have modified
MagicHaskeller so that a different DSBK can be used each time, as if it were se-
lected by the user. All the DSBKs include specific functions for the domain and
some freetext and default functions that can be useful for the specific problems
of each domain as well. This is the final list of DSBKs [2]:

– Dates (23 domain-specific functions + 139 default/freetext functions): Ex-
tracting days from a substring, extending to a 4-digit full format, etc.

– Emails (23 domain-specific functions + 139 default/freetext functions): Get-
ting all after the ‘@’ symbol, append the ‘@’ symbol, etc.

– Names (9 domain-specific functions + 93 default/freetext functions): Getting
the initials of a name, creating a user login, etc.

– Phones (12 domain-specific functions + 104 default/freetext functions): Set-
ting the prefix by country, detecting a phone in a text, etc.

– Times (5 domain-specific functions + 124 default/freetext functions): Change
between 24/12h format, changing time zone, etc.

– Units (24 domain-specific functions + 124 default/freetext functions): Con-
vert units of length, mass, time, temperature, etc.

We use the term global for the set of all primitives, including default, freetext and
all the domain functions above mentioned (374 unique primitives). Of course,
using this massive BK the system would not work, so one simple idea is to have
the user choosing the appropriate domain in order to use the DSBK associated
with the domain, an idea already explored in the literature to reduce the size of
the BK [16]. However, in the long term, this is giving too much responsibility
to the user. In the next section, we explore a new approach for automatically
selecting a dynamic set of primitives for the BK.

4 Dynamic Background Knowledge

If we want to automatically detect the domain of a problem as humans do, we
need a way to identify the characteristics that distinguish the domains. For in-
stance, we can see that the ‘@’ symbol is very distinctive for emails, while dates

3 Excel - Data types in Data Models: https://goo.gl/uWnbZh
4 Trifacta Documentation - Supported Data Types: https://goo.gl/pV1owi

https://goo.gl/uWnbZh
https://goo.gl/pV1owi


8 L. Contreras-Ochando et al.

in numeric format usually come with some specific punctuation for separating
days, months and years. Following this idea, we have defined some descriptive
meta-features that can be extracted automatically and describe different charac-
teristics of the inputs, such as how the string starts (e.g., start upper, start digit,
etc.), how it ends (i.e. end lower, end digit, etc.), which kind of symbols it con-
tains (e.g., has numbers, has dots, etc.) and what structure they have (e.g.,
is onlyNumeric, is onlyPunctuation, etc.). We defined n = 54 meta-features in
total, extracted by using regular expressions. Figure 1 shows an example of some
of these characteristics extracted from dates and emails.

23 - 03 - 86 lico@uni.edu29 uni.edu

hasPunctuation
hasDigits
startWithDigit

isNumeric

Input Data Expected Output

hasDot
hasAt
startLower

hasDot
startLower 

Input Data Expected Output

Fig. 1: An example of meta-features that can be extracted from the examples of
different domains (dates and emails in the figure).

The idea of identifying domains was inspired by what a user would do to
organise a large library of functions. But do we really need the notion of domain?
Can we just do the selection of primitives by a ranking approach over the whole
BK? As explained in the following paragraphs and illustrated in Figure 2, the
information extracted from the input examples is going to be used in different
ways:

1. Domain identification for the appropriate DSBK (Inferred Domain).
As we want to automate the process, the domain can no longer be provided
by the user, so we need to find a way to select the right domain for each
problem. To do this, we train a domain classifier from a dataset composed
of meta-features of m examples with correctly labelled domains. So, we have
n + 1 columns (meta-features and domain) and m rows. The classifier is
learned off-line with a pool of examples.

2. Building dynamic BK by ranking the primitives from global (Rank-
ing). For this, we use the descriptive features for each example as input
variables and the primitives that are used in the solution of the example
as labels. We generate a primitive estimator, with the probability that a
primitive may be needed for a particular problem. Since global has many
primitives (374 primitives), we actually have a set of binary classifiers, one
for each primitive, determining whether the primitives are required or not.

3. Building dynamic BK by ranking the primitives from the identified
domain (Inferred Domain +Ranking). We also explore a combination of
the two previous approaches. Namely, given a new problem, we first use the
domain classifier to identify the most convenient domain according to the
extracted features. Then we rank all primitives using the primitive estimator



Automated Data Transformation 9

but, in this case, only the functions included in the DSBK identified are taken
into account. Finally, only the k = 12 best functions are used as BK5.

(1) Extract metafeaturesInput Output

6-10-16 20:35 2016
03/10/201 1 00:25:45 2011

1995.12.25 1995
(2) Detect domain

(3) Pre-select a subset of
transformations (ranking)

Domain
Specific

BK
 

(4) Infer a solution

IP System
Dynamic BK

transformLongYear
(getYear (getDate Input))

(5) Apply to the
rest of inputs

(6) Fill the outputs

Fig. 2: Automating data wrangling with IP: process example. The first row (In-
put and Output) is used as an input example for the IP system. The function
returned is applied to the rest of the instances to obtain the outputs.

5 Experiments

Unfortunately, at the beginning of this research there were no general bench-
mark or public repository to analyse the quality of new data wrangling tools
[3]. In order to overcome this issue and for the experimental evaluation in
this and future papers6, we collected most of the examples previously pre-
sented in the literature [1,24,8,23]. In addition, we generated new examples
based on the problems that appear in these papers. In total, we gathered 95
datasets (with 6 instances each) with different data wrangling problems includ-
ing names, phones, emails, times and unit transformations. All the datasets
are published as the first data wrangling dataset repository, openly available at
http://dmip.webs.upv.es/datawrangling/index.html and are summarised in
Table 3.

In this section, we present a summary of the results obtained by applying
our system and other related systems on this repository. The complete results
of these experiments can be found in [2], and the code is available at: https:
//github.com/liconoc/DataWrangling-DSI.

5.1 Strategies of employing BK functions

First, we want to determine which is the best strategy for selecting the BK to
be used in data wrangling problems in such a way that the overall system is
accurate and fast at the same time.
5 We observed that the maximum number of functions needed to solve the most com-

plex problem collected in our benchmark is k = 12.
6 An application example of our system can be seen on: https://www.youtube.com/
watch?v=wxFhXYyonOw

http://dmip.webs.upv.es/datawrangling/index.html
https://github.com/liconoc/DataWrangling-DSI
https://github.com/liconoc/DataWrangling-DSI
https://www.youtube.com/watch?v=wxFhXYyonOw
https://www.youtube.com/watch?v=wxFhXYyonOw


10 L. Contreras-Ochando et al.

Table 3: Datasets included in the new data wrangling repository offered for the
research community.

id Description Expected Output

1, 2 Add punctuation The date in numeric format split by a punctuation sign
3 . . . 5 Change format The date in one particular format

6, 7 Change Punctuation The date in one particular format
8 . . . 10 Get Day The day in numeric format
11, 12 Get Day Ordinal The day in numeric ordinal format
13, 14 Get Month Name The name of the month
15, 16 Get Week Day The name of the weekday
17, 18 Reduce Month Name The name of the month reduced to three letters
19, 20 Set Format The date split in DMY format

21 . . . 23 Generate Email An email account created with the name and the domain
24 . . . 27 Get After At Everything after the at symbol

28, 29 Get Domain The domain before the dot
30 Before At Everything before the at symbol

31, 32 Add Title The name with a title
33, 34 Get Title The title attached to the name, if exists
35, 36 Generate Login A login generated using the name

37 . . . 45 Reduce name The name reduced before the surname(s)

46 . . . 50 Add Prefix by Country Phone numbers with the prefix of the countries
51, 52 Delete Parentheses The list of phone numbers without parentheses
53, 54 Get Number A phone number presented in the string, if exists

55 . . . 59 Set Prefix The list of phone numbers with the prefix
60, 61 Set Punctuation A phone number split by a punctuation sign

62, 63 Add Time The time increasing the hour by the integer
64, 65 Append o’clock Time The time appending an o’clock time
66, 67 Append Time The time appending the integer as new component
68, 69 Convert Time The time formatted to 24 hours format
70, 71 Convert Time The time formatted to a given format
72, 73 Convert Time The time formatted to 12 hours format

74 . . . 77 Convert Time The time changed from the first time zone to the second
78, 79 Delete Time The time deleting the last component
80, 81 Get Hour The hour component
82, 83 Get Minutes The minutes component
84, 85 Get Time A time presented in the string

86 . . . 89 Convert Units The value transformed to a different magnitude
90, 91 Get System The system represented by the magnitude
92, 93 Get Units The units of the system
94, 95 Get Value The numeric value without any magnitude

To build the domain classifier and the primitive estimator, we used the 54
descriptive meta-features and one off-the-shelf machine learning method: random
forest (the learning method that obtained the best results [2]). We applied a
leave-one-out cross validation approach using the 95 datasets, such that, for
each fold, 94 datasets are used for training both classifiers and the remaining
dataset is used for testing. As evaluation metrics we used accuracy for the domain



Automated Data Transformation 11

classifier, and AUC (the Area under the ROC curve which is a standard metric
for ranking performance) for the primitive estimator. The results obtained for
the domain classifier showed that the descriptive meta-features are useful to
express the information about the domain since the classifier is able to predict the
domain correctly 88.6% of the times (see Table 4). Analogously, the experiments
performed with the primitive estimator (see [2] for details) obtained an average
AUC=0.97, showing that it can predict accurately the functions needed to solve
the problems.

Table 4: Results for the domain detection using the meta-features with different
machine learning methods. The best results are highlighted in bold.

Method Acc. Kappa

C5.0 Tree 0.822 0.786
Neural Network 0.741 0.689
Näıve Bayes 0.458 0.350
Random Forest 0.886 0.847

The different strategies to configure the BK we experimentally analysed are:

1. Default: We use the default BK included in MagicHaskeller.
2. Freetext: We use the freetext BK (basic string transformation functions).
3. Global: We provide a BK composed by all the functions.
4. User Domain: We know (or the user gives) the correct domain (DSBK) for

the problem.
5. Inferred Domain: We identify the domain of the problem automatically using

the domain classifier and we select its associated DSBK.
6. Ranking: We rank all the functions of the global BK using the primitive

estimator.
7. Inferred Domain + Ranking: We apply the primitive estimator to obtain the

ranking of functions in the BK identified by the domain classifier.

We consider strategies 1, 2 and 3 as baselines since they do not constitute any
improvement in the handling of the BK. Strategy 4 is included just as a human-
assisted (semi-automated) reference, since it requires the manual recommenda-
tion of the appropriate DSBK. The experiments try to show whether our pro-
posals (strategies 5, 6 and 7 introduced in Section 4) are able to improve the
performance over the baselines, in time and accuracy. We also applied a leave-
one-out cross validation using the 95 datasets, such that, for each fold from the
six examples that contains the test dataset, only one random example is given
to the IP system which, jointly with the domain classifier and the primitive esti-
mator, infers a pattern that is applied to the five remaining examples. Accuracy
is computed as the ratio of correctly covered examples by the induced pattern.

Table 5 shows the average time and accuracy for the seven strategies. The
average times include the duration of the whole process: from the extraction of



12 L. Contreras-Ochando et al.

Table 5: Average time (in seconds) and the average accuracy for the seven strate-
gies. The best accuracy is highlighted in bold.

Strategy time acc

1 Default 48.14 ± 28.46 0.09 ± 0.21
2 Freetext 78.77 ± 44.00 0.14 ± 0.25
3 Global 136.18 ± 67.97 0.06 ± 0.17
4 User Domain 74.23 ± 43.45 0.92 ± 0.20
5 Inferred Domain 75.45 ± 44.38 0.91 ± 0.24
6 Ranking 46.81 ± 25.51 0.96 ± 0.12
7 Inferred Domain + ranking 46.37 ± 26.89 0.94 ± 0.18

the first example to the automatic transformation of the rest of the outputs (as
described in Figure 2). Concretely, we have measured: (1) time for detecting the
domain (strategies 5 and 7); (2) time for ranking the functions (strategies 6 and
7); and (3) time of running the IP system (all strategies). In each execution we
have used a dmax = 12 in MagicHaskeller, which means that the solution will
have 12 functions at most (which is the number of functions selected by the
ranking estimator as explained in Section 4). Considering the running times of
Table 5, we conclude that the proposed strategies are able to speed up the whole
process, especially those using the ranking of primitives.

If we consider accuracy, the baseline approaches are poor since they do not
have the appropriate functions in the BK (default and freetext strategies), or
there are too many functions to explore (global strategy). Strategies 6 and 7 are
even able to outperform strategy 4, which requires a human. Only strategy 5
remains below this human-assisted reference. One of the reasons of these results
is the misclassification of the emails domain, which means that strategy 5 is
using an incorrect domain and the right solution is not obtained in this case. We
can see this more clearly in Table 6, which shows the results by domain. Here we
see that in some cases the baselines have too many functions and the system is
not able to find the right solution. We can also see that the ranking of functions
can achieve similar or better performance than the human-assisted reference.

5.2 Comparison with related systems

We have also compared the performance of our Dynamic BK selection approach
using the ranking strategy with other data wrangling tools, specifically FlashFill,
Trifacta Wrangler and TDE (Transform Data by Example).

FlashFill works in a similar way as our approach, namely, it uses one, two or
more input instances to try to infer a potential solution which is then applied to
the rest of examples. TDE also works similarly except that it needs at least two
instances for learning. However,Trifacta Wrangler works in a slightly different
fashion: it tries to discover patterns and perform actions in the entire dataset.
Each of these actions can involve one change (e.g., merge two columns) and they
are saved in a final recipe. As we have used a dmax value equal to 12 in Magic-
Haskeller, in order to make a fair comparison with Trifacta Wrangler, we limit



Automated Data Transformation 13

Table 6: We show for the seven strategies, the average and standard deviation
of time (in seconds), and the average and standard deviation of the accuracy
depending on the domain. The best accuracy and time are highlighted.
domain strategy time acc domain strategy time acc

dates

default 59.13 ± 24.22 0.15 ± 0.33

phones

default 34.93 ± 30.63 0 ± 0
freetext 112.81 ± 41.15 0.34 ± 0.42 freetext 56.32 ± 45.23 0.24 ± 0.43
global 188.36 ± 42.91 0 ± 0 global 95.43 ± 72.67 0.22 ± 0.43
user domain 114.27 ± 42.02 0.90 ± 0.29 user domain 53.21 ± 47.49 0.89 ± 0.32
pred domain 117.86 ± 42.80 0.90 ± 0.29 pred domain 51.04 ± 49.73 0.89 ± 0.32
ranking 58.95 ± 24.42 0.91 ± 0.29 ranking 31.65 ± 28.80 0.89 ± 0.32
dom ranking 58.36 ± 23.46 0.91 ± 0.29 dom ranking 31.37 ± 27.95 0.89 ± 0.32

emails

default 56.17 ± 31.81 0.08 ± 0.25

times

default 46.59 ± 26.41 0.10 ± 0.26
freetext 81.17 ± 43.24 0 ± 0 freetext 75.21 ± 44.44 0.11 ± 0.28
global 155.37 ± 77.75 0.08 ± 0.25 global 119.25 ± 71.74 0.020 ± 0.07
user domain 69.67 ± 37.21 0.98 ± 0.06 user domain 78.46 ± 48.83 0.89 ± 0.22
pred domain 63.07 ± 34.99 0.90 ± 0.32 pred domain 83.09 ± 51.50 0.89 ± 0.22
ranking 56.17 ± 31.22 1 ± 0 ranking 43.92 ± 23.75 0.98 ± 0.06
dom ranking 54.87 ± 29.45 0.90 ± 0.32 dom ranking 43.79 ± 23.44 0.98 ± 0.06

names

default 49.95 ± 28.11 0.04 ± 0.15

units

default 42.05 ± 29.59 0.16 ± 0.26
freetext 82.35 ± 44.10 0.07 ± 0.26 freetext 64.75 ± 45.83 0.06 ± 0.13
global 147.01 ± 69.02 0.07 ± 0.26 global 111.65 ± 73.74 0 ± 0
user domain 59.61 ± 33.38 0.97 ± 0.07 user domain 70.15 ± 51.76 0.92 ± 0.25
pred domain 57.28 ± 34.80 0.97 ± 0.07 pred domain 74.35 ± 52.43 0.92 ± 0.25
ranking 49.95 ± 28.54 0.97 ± 0.07 ranking 40.25 ± 28.33 1 ± 0
dom ranking 49.95 ± 28.54 0.97 ± 0.07 dom ranking 39.85 ± 28.51 1 ± 0

the maximum number of actions in each Wrangler recipe to 12. Additionally,
although some tools are able to generate more than one solution, if they exist
(as TDE and MagicHaskeller do), for the experiments we have only considered
the first solution offered by the systems.

Due to space limitations, Table 7 shows some illustrative outcomes obtained
by the analysed systems for some datasets (one dataset per each domain de-
scribed in section 3) as well as their accuracy values. The first instance (in
italics) for each dataset (input column) is the one used for inferring the solu-
tion (except for TDE that, as mentioned above, needs the two first instances
for learning). The complete results of this comparison between systems can be
found in [2].

Flashfill works well with emails and some basic string transformations, but
it fails when it has to deal with people’s names, problems related to phones or
times, and dates in different formats. Something similar is observed in the TDE
results: inconsistent data formats cause TDE finds incorrect solutions because
it is not able to detect the domain or the problem at hand. On the other hand,
Trifacta Wrangler is able to detect some data types or domains, for instance:
‘url’, ‘time’, ‘phone’ since it has some predefined formats for each domain. In this
way the tool is capable of solving very domain-specific problems (e.g., getting



14 L. Contreras-Ochando et al.

the month or the day in a date, detect an email or extract the hour of a time
stamp), although with some limitations (e.g., it cannot deal with inconsistent
or different formats in the same set of input data). The last problem of Trifacta
Wrangler is that the user needs to know the language behind the tool or some
regular expressions in order to solve more complex examples. On the contrary
our system is able to solve most of the problems using only one example given by
the user in the same way one can fill data in a spreadsheet, having into account
that the user does not need to know any technical knowledge related to the
system or the language behind it.

The authors of TDE have also created a benchmark of stackoverflow-related
questions7 that can also be used in order to test data transformation systems.
We have tested our system with the 225 datasets of this benchmark in the same
conditions as our system, i.e., using the first instance of each dataset as the
input example for our system. In this way, our system solves 35.1% of these
datasets, using the functions that we have defined. We have to consider that
this benchmarck includes domains not defined in our system and some specific
problems that need ad-hoc functions in order to be solved. Having in mind the
examples not solved, we can include new functions in our system, for instance,
new unit conversions or the extraction of plain text from languages such as
HTML.

Finally, we can also compare our system with the Neuro-Symbolic Program
Synthesis system of [21], at least conceptually, as it cannot be applied directly
to the data wrangling repository. As we already discussed in the related work
section, Parisotto et al. describe some problems that their system is not able to
solve since they require four or more Concat operations. One of these problems
is transforming phone numbers into a consistent format. For instance, given the
input “(425) 221 6767” the expected output would be “425-221-6767”, and given
the input “206.225.1298” the expected output would be “206-225-1298”. In this
case, our system is able to solve this problem by using three basic primitives of
the freetext domain. Besides this example, our system is able to solve some other
examples that this kind of system does not solve since input and output have
nothing in common. For instance, given the input “2pm” the expected output
would be “14:00”. This example implies knowledge of times and, in this case,
our system is also able to solve the problem.

The comparisons above may look non-systematic, but all these approaches
use different settings and additional data, apart from a very different number
of examples, which makes the results not really comparable. This is one of the
reasons why the presented benchmark and the minimum requirements of our
method can be set as a baseline to beat by future variants of these and other
approaches.

7 TDE Benchmark: https://github.com/Yeye-He/Transform-Data-by-Example

https://github.com/Yeye-He/Transform-Data-by-Example


Automated Data Transformation 15

6 Conclusions

Most data science applications require the manipulation of data that is in dif-
ferent formats. One key issue that humans rely on is their domain knowledge,
which allows them to use primitives that are specific to the domain, when coding
transformations. However, if a large number of primitives is included in the back-
ground knowledge to cover a variety of situations we get an intractable problem,
as we have too many to choose from. In this paper, we have proposed different
strategies that try to reduce the size of the background knowledge, based on
an automated selection of the domain and/or a ranking of primitives to build
the BK dynamically for each example. We have illustrated all this in the real
problem of formatting data of very different domains from just one example.

To properly evaluate our system (and other existing and future data wran-
gling systems), We have introduced a new repository of 95 data wrangling
datasets, which we make available for the community. We have performed exper-
iments over this benchmark to illustrate the several strategies to the dynamic
selection or construction of background knowledge, showing that they greatly
improve accuracy and reduce time, especially strategy 6, the ranking approach.

Summing up, we have presented a data wrangling system that (1) uses off-
the-shelf (and open) IP and ML techniques, (2) learns from one example, (3) is
automated and does not require the user’s input for the domain selection, and
(4) covers a wide range of string manipulation problems, with results well above
other approaches.

As future work, we plan to study the proposed strategies for other IP systems
and domains to improve the system. We also want to consider other ways to solve
the ranking of functions to avoid a fixed value of k, for instance, using a threshold
based on the probabilities returned by the primitive estimator.

References

1. Bhupatiraju, S., Singh, R., Mohamed, A.r., Kohli, P.: Deep API programmer: Learn-
ing to program with APIs. arXiv preprint arXiv:1704.04327 (2017)

2. Contreras-Ochando, L.: DataWrangling-DSI: BETA - Extended Results (2019).
https://doi.org/10.5281/zenodo.2557385

3. Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Mart́ınez-Plumed, F.,
Ramı́rez-Quintana, M.J., Katayama, S.: General-purpose declarative inductive pro-
gramming with domain-specific background knowledge for data wrangling automa-
tion. arXiv preprint arXiv:1809.10054 (2018)

4. Cropper, A., Tamaddoni, A., Muggleton, S.H.: Meta-interpretive learning of data
transformation programs. In: Inductive Logic Programming. pp. 46–59 (2015)

5. Devlin, J., Bunel, R.R., Singh, R., Hausknecht, M., Kohli, P.: Neural program meta-
induction. In: NIPS. pp. 2077–2085 (2017)

6. Ferri-Ramı́rez, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Incremental
learning of functional logic programs. In: FLOPS. pp. 233–247. Springer (2001)

7. Flener, P., Schmid, U.: An introduction to inductive programming. Artificial Intel-
ligence Review 29(1), 45–62 (2008)

https://doi.org/10.5281/zenodo.2557385


16 L. Contreras-Ochando et al.

8. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: Procs. 38th Principles of Programming Languages. pp. 317–330 (2011)

9. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Communications of the ACM 55(8), 97–105 (2012)

10. Gulwani, S., Hernandez-Orallo, J., Kitzelmann, E., Muggleton, S.H., Schmid, U.,
Zorn, B.: Inductive programming meets the real world. Communications of the ACM
58(11), 90–99 (2015)

11. He, Y., Chu, X., Ganjam, K., Zheng, Y., Narasayya, V., Chaudhuri, S.: Transform-
data-by-example (tde): an extensible search engine for data transformations. Pro-
ceedings of the VLDB Endowment 11(10), 1165–1177 (2018)

12. Henderson, R.: Incremental learning in inductive programming. In: Int. WS on
Approaches and Applications of Inductive Programming. pp. 74–92. Springer (2009)

13. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: Interactive visual spec-
ification of data transformation scripts. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. pp. 3363–3372. ACM (2011)

14. Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver,
C., Lee, B., Brodbeck, D., Buono, P.: Research directions in data wrangling: Visual-
izations and transformations for usable and credible data. Inf. Visualization 10(4),
271–288 (2011)

15. Katayama, S.: An analytical inductive functional programming system that avoids
unintended programs. In: Procs. PEPM. pp. 43–52. ACM (2012)

16. Kietz, J.U., Wrobel, S.: Controlling the complexity of learning in logic through
syntactic and task-oriented models. In: Inductive logic programming. Citeseer (1992)

17. Menon, A., Tamuz, O., Gulwani, S., Lampson, B., Kalai, A.: A machine learning
framework for programming by example. In: ICML. pp. 187–195 (2013)

18. Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J.,
Carlson, A., Dalvi, B., Gardner, M., Kisiel, B., et al.: Never-ending learning. Com-
munications of the ACM 61(5), 103–115 (2018)

19. Mitchell, T.M.: The need for biases in learning generalizations. Rutgers Univ. New
Jersey (1980)

20. Mitchell, T.M., Allen, J., Chalasani, P., Cheng, J., Etzioni, O., Ringuette, M.,
Schlimmer, J.C.: Theo: A framework for self-improving systems. Architectures for
intelligence pp. 323–355 (1991)

21. Parisotto, E., Mohamed, A.r., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic
program synthesis. arXiv preprint arXiv:1611.01855 (2016)

22. Shu, C., Zhang, H.: Neural programming by example. In: AAAI. pp. 1539–1545
(2017)

23. Singh, R., Gulwani, S.: Predicting a correct program in programming by example.
In: Int. Conf. Computer Aided Verification. pp. 398–414. Springer (2015)

24. Singh, R., Gulwani, S.: Transforming spreadsheet data types using examples. In:
Procs. 43rd Principles of Programming Languages. pp. 343–356 (2016)

25. Srinivasan, A., King, R.D., Bain, M.E.: An empirical study of the use of relevance
information in inductive logic programming. JMLR 4(Jul), 369–383 (2003)

26. Wu, B., Szekely, P., Knoblock, C.A.: Learning data transformation rules through
examples: Preliminary results. In: Information Integration on the Web. p. 8 (2012)



Automated Data Transformation 17

Table 7: Results obtained by FlashFill, Trifacta Wrangler, TDE and our ap-
proach (Dynamic BK with ranking strategy), on a sample of datasets of six
different domains. Output is the expected output. The first row of each dataset
is the example given to FlashFill, MagicHaskeller and Trifacta Wrangler to gen-
erate the solution. For TDE the two first examples are used. Green colour means
correct result; Red colour means incorrect result.
id input expected− output FlashFill Trifacta Wrangler TDE Dynamic BK

8
03/29/86 29
74-03-31 31 03 03 31 31
99/12/13 13 12 12 /1 13
11.02.96 11 02 /1 11
31/05/17 31 05 05 31 31
25-08-85 25 08 08 25 25

Accuracy: 0 0 0.5 1

24
Nancy.FreeHafer@fourthcoffee.com fourthcoffee.com
Andrew.Cencici@north-trad.com north-trad.com north-trad.com north-trad.com north-trad.com north-trad.com
Jan.Kotas@litwareinc.com litwareinc.com litwareinc.com litwareinc.com litwareinc.com litwareinc.com
Mariya.Sergienko@graphics.com graphics.com graphics.com graphics.com graphics.com graphics.com
Steven.Thorpe@northwindtraders.com northwindtraders.com northwindtraders.com northwindtraders.com northwindtraders.com northwindtraders.com
Michael.Neipper@northwindtraders.com northwindtraders.com northwindtraders.com northwindtraders.com northwindtraders.com northwindtraders.com

Accuracy: 1 1 1 1

37
Dr. Eran Yahav Yahav, E.
Prof. Kathleen S. Fisher Fisher, K. Fisher, Kathleen S. S, K. Fisher, K. Fisher, K.
Bill Gates, Sr. Gates, B. Sr., G. Sr, G. Sr. Gates, B.
George Ciprian Necula Necula, G. Necula, C. Necula, C. Necula Necula, G.
Ken McMillan, II McMillan, K. II, M. II, M. II McMillan, K.
Mr. David Jones Jones, D. Jones, D. Jones, D. Jones, D. Jones, D.

Accuracy: 0.2 0.2 0.25 1

53
John DOE 3 . . . [TS]865-000-0000 . . . 865-000-0000
A GEDA-. . . 865-001-0020 - - 5941-00 . . . 865-001-0020 865-001-0020 865-001-0020 865-001-0020 865-001-0020
The quick, . . . 425-437-9620 69 11 60 20 425-437-9620 437-9620 69 425-437-9620 11 60 20 425-437-9620
425-457-2130, DJs flock by . . . : 18:95 425-457-2130 457-2130, DJs flock . . . : 18 425-457-2130 prog: 18:95 425-457-2130
425-618-4390 - 78 2642 425-618-4390 618-4390 425-618-4390 90 - 78 2642 425-618-4390
17:58-19:29, 425-743-1650 425-743-1650 58-19:29 425-743-1650 425-743-1650 425-743-1650

Accuracy: 0.2 1 0.25 1

84
1:34:00 PM CST 1:34:00
01:55 01:55 01:55 01:55 01:55 01:55
3:40 AM 3:40 3:40 3:40 h3:40 A:00 3:40
07:05:59 07:05:59 07:05:59 07:05:59 h7:05:5:59 07:05:59
08:40 UTC 08:40 08:40 08:40 r8:40 U 08:40
16:15:12 16:15:12 16:15:12 16:15:12 h6:15:1:12 16:15:12

Accuracy: 1 1 0 1

86
1441.8mg → g 1.4418001
84kg → g 84000.0 8.4418001 84000.0 84000.0
14300ms → s 8700000.0 1.4418001 s 14.3
87 s → ns 8700000.0 8.4418001 ns 8700000.0
12.20dg → mg 1220.0 1.4418001 mg 1220.0
1854 dam → dm 185400.0 1.4418001 dm 185400.0

Accuracy: 0 0 0 1


	Automated Data Transformation with Inductive Programming and Dynamic Background Knowledge

