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Abstract. We propose a Bayesian information-geometric approach to
the exploration–exploitation trade-off in stochastic multi-armed bandits.
The uncertainty on reward generation and belief is represented using
the manifold of joint distributions of rewards and beliefs. Accumulated
information is summarised by the barycentre of joint distributions, the
pseudobelief-reward. While the pseudobelief-reward facilitates informa-
tion accumulation through exploration, another mechanism is needed
to increase exploitation by gradually focusing on higher rewards, the
pseudobelief-focal-reward. Our resulting algorithm, BelMan, alternates
between projection of the pseudobelief-focal-reward onto belief-reward
distributions to choose the arm to play, and projection of the updated
belief-reward distributions onto the pseudobelief-focal-reward. We the-
oretically prove BelMan to be asymptotically optimal and to incur a
sublinear regret growth. We instantiate BelMan to stochastic bandits
with Bernoulli and exponential rewards, and to a real-life application of
scheduling queueing bandits. Comparative evaluation with the state of
the art shows that BelMan is not only competitive for Bernoulli bandits
but in many cases also outperforms other approaches for exponential and
queueing bandits.

1 Introduction

The multi-armed bandit problem [30] is a sequential decision-making problem [11]
in which a gambler plays a set of arms to obtain a sequence of rewards. In the
stochastic bandit problem [7], the rewards are obtained from reward distributions
on arms. These reward distributions belong to the same family of distributions
but vary in the parameters. These parameters are unknown to the gambler. In the
classical setting, the gambler devises a strategy, choosing a sequence of arm draws,
that maximises the expected cumulative reward [30]. In an equivalent formulation,
the gambler devises a strategy that minimises the expected cumulative regret [26],
that is the expected cumulative deficit of reward caused by the gambler not
always playing the optimal arm. In order to achieve this goal, the gambler must
simultaneously learn the parameters of the reward distributions of arms. Thus,
solving the stochastic bandit problem consists in devising strategies that combine
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both the accumulation of information to reduce the uncertainty of decision
making, exploration, and the accumulation of rewards, exploitation [27]. We refer
to the stochastic bandit problem as the exploration–exploitation bandit problem
to highlight this trade-off. If a strategy relies on independent phases of exploration
and exploitation, it necessarily yields a suboptimal regret bound [15]. Gambler
has to adaptively balance and intertwine exploration and exploitation [3].

In a variant of the stochastic bandit problem, called the pure exploration
bandit problem [8], the goal of the gambler is solely to accumulate information
about the arms. In another variant of the stochastic bandit problem, the gambler
interacts with the bandit in two consecutive phases of pure exploration and
exploration–exploitation. The authors of [29] named this variant the two-phase
reinforcement learning problem.

Although frequentist algorithms with optimism in the face of uncertainty
such as UCB [3] and KL-UCB [14] work considerably well for the exploration–
exploitation bandit problem, their frequentist nature prevents effective assim-
ilation of a priori knowledge about the reward distributions of the arms [23].
Bayesian algorithms for the exploration–exploitation problem, such as Thompson
sampling [34] and Bayes-UCB [21], leverage a prior distribution that summarises
a priori knowledge. However, as argued in [22], there is a need for Bayesian
algorithms that also cater for pure exploration. Neither Thompson sampling nor
Bayes-UCB are able to do so.

Our contribution. We propose a unified Bayesian approach to address the
exploration–exploitation, pure exploration, and two-phase reinforcement learning
problems. We address these problems from the perspective of information repre-
sentation, accumulation, and balanced induction of bias. Here, the uncertainty is
two fold. Sampling reward from the reward distributions is inherently stochastic.
The other layer is due to the incomplete information about the true paramaters
of the reward distributions. Following Bayesian algorithms [34], we maintain a
parameterised belief distribution for each arm representing the uncertainty on
the parameter of its reward distribution. Extending this representation, we use a
joint distribution to express the two-fold uncertainty induced by both the belief
and the reward distributions of each arm. We refer to these joint distributions
as the belief-reward distributions of the arms. We set the learning problem in
the statistical manifold [2] of the belief-reward distributions, which we call the
belief-reward manifold. The belief-reward manifold provides a representation
for controlling pure exploration and exploration–exploitation, and to design a
unifying algorithmic framework.

The authors of [8] proved that, for Bernoulli bandits, if an exploration–
exploitation algorithm achieves an upper-bounded regret, it cannot reduce the
expected simple regret by more than a fixed lower bound. This drives us to first
devise a pure exploration algorithm, which requires a collective representation of
the accumulated knowledge about the arm. From an information-geometric point
of view [4,1], the barycentre of the belief-reward distributions in the belief-reward
manifolds serves as a succinct summary. We refer to this barycentre as the
pseudobelief-reward. We prove the pseudobelief-reward to be a unique representa-
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tion in the manifold. Though pseudobelief-reward facilitates the accumulation
of knowledge, it is essential for the exploration–exploitation bandit problem to
also incorporate a mechanism that gradually concentrates on higher rewards [27].
We introduce a distribution that induces such an increasing exploitative bias.
We refer to this distribution as the focal distribution. We incorporate it into the
definition of the pseudobelief-reward distribution to construct the pseudobelief-
focal-reward distribution. This pushes the summarised representation towards the
arms having higher expected rewards. We implement the focal distribution using
an exponential function of the form exp(X/τ(t)), where X is the reward, and a
parameter τ(t) dependent on time t and named as exposure. Exposure controls
the exploration–exploitation trade-off.

In Section 2, we apply these information-geometric constructions to develop
the BelMan algorithm. BelMan projects the pseudobelief-focal-reward onto belief-
rewards to select an arm. As it is played and a reward is collected, BelMan
updates the belief-reward distribution of the corresponding arm by projecting
of the updated belief-reward distributions onto the pseudobelief-focal-reward.
Information geometrically these two projections are studied as information (I-) and
reverse information (rI-) projections [10], respectively. BelMan alternates I- and rI-
projections between belief-reward distributions of the arms and the pseudobelief-
focal-reward distribution for arm selection and information accumulation. We
prove the law of convergence of the pseudobelief-focal-reward distribution for
BelMan, and that BelMan asymptotically converges to the choice of the optimal
arm. BelMan can be tuned, using the exposure, to support a continuum from
pure exploration to exploration–exploitation, as well as two-phase reinforcement
learning.

We instantiate BelMan for distributions of the exponential family [6]. These
distributions lead to analytical forms that allows derivation of well-defined and
unique I- and rI-projections as well as to devise an effective and fast computation.
In Section 3, we empirically evaluate the performance of BelMan on different sets
of arms and parameters for Bernoulli and exponential distributions, thus showing
its applicability to both discrete and continuous rewards. Experimental results
validate that BelMan asymptotically achieves logarithmic regret. We compare
BelMan with state-of-the-art algorithms: UCB [3], KL-UCB, KL-UCB-Exp [14],
Bayes-UCB [21], Thompson sampling [34], and Gittins index [17], in these different
settings. Results demonstrate that BelMan is not only competitive but also
outperforms existing algorithms for challenging setups such as those involving
many arms and continuous rewards. For the two-phase reinforcement learning,
results show that BelMan spontaneously adapts to the explored information,
improving the efficiency.

We also instantiate BelMan to the application of queueing bandits [24].
Queueing bandits represent the problem of scheduling jobs in a multi-server
queueing system with unknown service rates. The goal of the corresponding
scheduling algorithm is to minimise the number of jobs in hold while also learning
the service rates. A comparative performance evaluation for queueing systems
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with Bernoulli service rates show that BelMan performs significantly better than
the existing algorithms, such as Q-UCB, Q-ThS, and Thompson sampling.

2 Methodology

Bandit Problem. We consider a finite number K > 1 of independent arms.
An arm a corresponds to a reward distribution faθ (X). We assume that the
form of the probability distribution f·(X) is known to the algorithm but the
parametrisation θ ∈ Θ is unknown. We assume the reward distributions of all
arms to be identical in form but to vary over the parametrisation θ. Thus,
we refer to faθ (X) as fθa(X) for specificity. The agent sequentially chooses an
arm at at each time step t that generates a sequence of rewards [xt]

T
t=1, where

T ∈ N is the time horizon. The algorithm computes a policy or strategy that
sequentially draws a set of arms depending on her previous actions, observations
and intended goal. The algorithm does not know the ‘true’ parameters of the
arms {θtrue

a }Ka=1 a priori. Thus, the uncertainty over the estimated parameters
{θa}Ka=1 is represented using a probability distribution B(θ1, . . . , θK). We call
B(θ1, . . . , θK) the belief distribution. In the Bayesian approach, the algorithm
starts with a prior belief distribution B0(θ1, . . . , θK) [19]. The actions taken and
rewards obtained by the algorithm till time t create the history of the bandit
process, Ht , [(a1, x1), . . . , (at−1, xt−1)]. This history Ht is used to sequentially
update the belief distribution over the parameter vector as Bt(θ1, . . . , θK) ,
P(θ1, . . . , θK | Ht). We define the space consisting of all such distributions over
{θa}Ka=1 as the belief space B. Following the stochastic bandit literature, we
assume the arms to be independent, and perform Bayesian updates of beliefs.

Assumption 1 (Independence of Arms). The parameters {θa}Ka=1 are drawn
independently from K belief distributions {bat (.)}Ka=1, such that Bt(θ1, . . . , θK) =∏K
a=1 b

a
t (θa) ,

∏K
a=1 P(θa | Ht).

Though Assumption 1 is followed throughout this paper, we note it is not
essential to develop the framework BelMan relies on, though it makes calculations
easier.

Assumption 2 (Bayesian Evolution). When conditioned over {θa}Ka=1 and
the choice of arm, the sequence of rewards [x1, . . . , xt] is jointly independent.
Thus, the Bayesian update at the t-th iteration is given by

bat+1(θa) ∝ fθa(xt)× bat (θa) (1)

if at = a and a reward xt is obtained. For all other arms, the belief remains
unchanged.

Belief-reward Manifold. We use the joint distributions P(X, θ) on reward
X and parameter θ in order to represent the uncertainties of partial information
about the reward distributions along with the stochastic nature of reward.
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Definition 1 (Belief-reward distribution). The joint distribution Pat (X, θ)
on reward X and parameter θa for the ath arm at the tth iteration is defined as
the belief-reward distribution.

Pat (X, θ) ,
bat (θ)fθ(X)∫

X∈R

∫
θ∈Θ

bat (θ)fθ(X)dθdx
=

1

Z
bat (θ)fθ(X).

If f·(X) is a smooth function of θa’s, the space of all reward distributions
constructs a smooth statistical manifold [2], R. We call R the reward manifold.
If belief B is a smooth function of its parameters, the belief space B constructs
another statistical manifold. We call B the belief manifold of the multi-armed
bandit process. Assumption 1 implies that the belief manifold B is a product
of K manifolds Ba , {ba(θa)}. Here, Ba is the statistical manifold of belief
distributions for the ath arm. Due to the identical parametrization, the Ba’s can
be represented by a single manifold Bθ.
Lemma 1 (Belief-Reward Manifold). If the belief-reward distributions P(X, θ)
have smooth probability density functions, their set defines a manifold BθR . We
refer to it as the belief-reward manifold. Belief-reward manifold is the product
manifold of the belief manifold and the reward manifold, i.e. BθR = Bθ ×R.

The Bayesian belief update after each of the iteration is a movement on the
belief manifold from a point bat to another point bat+1 with maximum information
gain from the obtained reward. Thus, the belief-reward distributions of the played
arms evolve to create a set of trajectories on the belief-reward manifold. The
goal of pure exploration is to control such trajectories collectively such that after
a long enough time each of the belief-rewards accumulate enough information
to resemble the ‘true’ reward distributions well enough. The goal of exploration–
exploitation is to gain enough information about the ‘true’ reward distributions
while increasing the cumulative reward in the path, i.e, by inducing a bias towards
playing the arms with higher expected rewards.

Pseudobelief: Summary of Explored Knowledge. In order to control
the exploration, the algorithm has to construct a summary of the collective
knowledge on the belief-rewards of the arms. Since the belief-reward distribution
of each arm is a point on the belief-reward manifold, geometrically their barycentre
on the belief-reward manifold represents a valid summarisation of the uncertainty
over all the arms [1]. Since the belief-reward manifold is a statistical manifold,
we obtain from information geometry that this barycentre is the point on the
manifold that minimises the sum of KL-divergences from the belief-rewards of
all the arms [4,2]. We refer to this minimising belief-reward distribution as the
pseudobelief-reward distribution of all the arms.

Definition 2 (Pseudobelief-reward distribution). A pseudobelief-reward
distribution P̄t(X, θ) is a point in the belief-reward manifold that minimises the
sum of KL-divergences from the belief-reward distributions Pat (X, θ) of all the
arms.

P̄t(X, θ) , arg min
P∈BθR

K∑
a=1

DKL (Pat (X, θ) ‖P(X, θ)) . (2)
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We prove existence and uniqueness of the pseudobelief-reward for K given
belief-reward distributions. This proves the pseudobelief-reward to be an unam-
biguous representative of collective knowledge. We also prove that the pseudobelief-
reward distribution P̄t is the projection of the average belief-reward distribution
P̂t(X, θ) =

∑
a Pat (X, θ) on the belief-reward manifold. This result validates the

claim of pseudobelief-reward as the summariser of the belief-rewards of all the
arms.

Theorem 1. For given set of belief-reward distributions {Pat }Ka=1 defined on the
same support set and having a finite expectation, P̄t is uniquely defined, and is
such that its expectation parameter verifies µ̂t(θ) = 1

K

∑K
a=1 µ

a
t (θ).

Hereby, we establish as a unique summariser of all the belief–reward distribu-
tions. Using this uniqueness proof, we can prove that the pseudobelief–reward
distribution P̄ is projection of the average belief–reward distribution P̂ on the
belief–reward manifold.

Corollary 1. The pseudobelief-reward distribution P̄t(X, θ) is the unique point
on the belief-reward manifold that has minimum KL-divergence from the distribu-
tion P̂t(X, θ) , 1

K

∑K
a=1 Pat (X, θ).

Focal Distribution: Inducing Exploitative Bias. Creating a succinct
pseudobelief-reward is essential for both pure exploration and exploration– ex-
ploitation but not sufficient for maximising the cumulative reward in case of
exploration–exploitation. If a reward distribution having such increasing bias
towards higher rewards is amalgamated with the pseudobelief-reward, the re-
sulting belief-reward distribution provides a representation in the belief-reward
manifold to balance the exploration–exploitation. Such a reward distribution
is called the focal distribution. The product of the pseudobelief-reward and the
focal distribution jointly represents the summary of explored knowledge and
exploitation bias using a single belief-reward distribution. We refer to this as the
pseudobelief-focal-reward distribution-reward distribution In this paper, we use

exp
(
X
τ(t)

)
with a time dependent and controllable parameter τ(t) as the reward

distribution inducing increasing exploitation bias.

Definition 3 (Focal Distribution). A focal distribution is a reward distribu-

tion of the form Lt(X) ∝ exp
(
X
τ(t)

)
, where τ(t) is a decreasing function of t > 1.

We term τ(t) the exposure of the focal distribution.

Thus, the pseudobelief-focal-reward distribution-reward distribution is rep-

resented as Q̄(X, θ) , 1
Z̄t
P̄(X, θ) exp

(
X
τ(t)

)
, where the normalisation factor

Z̄t =
∫
X∈R

∫
θ∈Θ P̄(X, θ) exp

(
X
τ(t)

)
dθdx. Following Equation (2), we compute

the pseudobelief-focal-reward distribution as

Q̄t(X, θ) , arg min
Q̄

K∑
a=1

DKL

(
Pat−1(X, θ) ‖ Q̄(X, θ)

)
.
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Algorithm 1 BelMan

1: Input: Time horizon T , Number of arms K, Prior on parameters B0, Reward
function f , Exposure τ(t).

2: for t = 1 to T do
3: /∗ I-projection ∗/
4: Draw arm at such that

at = arg min
a

DKL

(
Pat−1(X, θ) ‖ Q̄t−1(X, θ)

)
.

5: /∗ Accumulation of observables ∗/
6: Sample a reward xt out of fθat .
7: Update the belief-reward distribution of at to Pat (X, θ) using Bayes’ theorem.
8: /∗ Reverse I-projection ∗/
9: Update the pseudobelief-reward distribution to

Q̄t(X, θ) = arg min
Q̄∈BθR

K∑
a=1

DKL

(
Pat (X, θ) ‖ Q̄(X, θ)

)
.

10: end for

The focal distribution gradually concentrates on higher rewards as the exposure
τ(t) decreases with time. Thus, it constrains using KL-divergence to choose
distributions with higher rewards and induces the exploitive bias. From Theorem 3,
we obtain 1

τ(t) has to grow in the order Ω( 1√
t
) for exploration–exploitation bandit

problem independent of the family of reward distribution. Following the bounds
obtained in [14], we set the exposure τ(t) = [log(t) + C × log(log(t))]−1 for
experimental evaluation, where C is a constant (we choose the value C = 15 in
the experiments) . As the exposure τ(t) decreases with t, the focal distribution
gets more concentrated on higher reward values. For the pure exploration bandits,
we set the exposure τ(t) =∞ to remove any bias towards higher reward values
i.e, exploitation.

BelMan: An Alternating Projection Scheme. A bandit algorithm per-
forms three operations in each step– chooses an arm, samples from the reward
distribution of the chosen arm and incorporate the sampled reward to update the
knowledge-base. BelMan (Algorithm 1) performs the first and the last operations
by alternately minimising the KL-divergence DKL(. ‖ .) [25] between the belief-
reward distributions of the arms and the pseudobelief-focal-reward distribution-
reward distribution. BelMan chooses to play the arm whose belief-reward incurs
minimum KL-divergence with respect to the pseudobelief-focal-reward distri-
bution. Following that, BelMan uses the reward collected from the played arm
to do Bayesian update of the belief-reward and to update the pseudobelief-
focal-reward distribution-reward distribution to the point minimising the sum
of KL-divergences from the belief-rewards of all the arms. [10] geometrically
formulated such minimisation of KL-divergence with respect to a participating
distribution as a projection to the set of the other distributions. For a given t, the
belief-reward distributions of all the arms Pat (X,θ) form a set P ⊂ BθR and the
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pseudobelief-focal-reward distribution-reward distributions Q̄t(X,θ) constitute
another set Q ⊂ BθR.

Definition 4 (I-projection). The information projection (or I-projection) of
a distribution Q̄ ∈ Q onto a non-empty, closed, convex set P of probability distri-
butions, Pa’s, defined on a fixed support set is defined by the probability distribution
Pa∗ ∈ P that has minimum KL-divergence to q: Pa∗ , arg minPa∈P DKL(Pa ‖ Q̄).

BelMan decides which arm to pull by an I-projection of the pseudobelief-focal-
reward distribution onto the beliefs-rewards of each of the arms (Lines 3–4). This
operation amounts to computing

at , arg min
a

DKL

(
Pat−1(X, θ) ‖ Q̄t−1(X, θ)

)
= arg max

a

(
EPat−1(X,θ)

[
X

τ(t)

]
−DKL

(
bat−1(θ) ‖ bη̄t−1(θ)

))
The first term symbolises the expected reward of arm a. Maximising this term
alone is analogous to greedily exploiting the present information about the arms.
The second term quantifies the amount of uncertainty that can be decreased if
arm a is chosen on the basis of the present pseudobelief. The exposure τ(t) of the
focal distribution keeps a weighted balance between exploration and exploitation.
Decreasing τ(t) decreases the exploration with time which is quite an intended
property of an exploration–exploitation algorithm.

Following that (Line 5–7), the agent plays the chosen arm at and samples a
reward xt. This observation is incorporated in the belief of the arm using Bayes’
rule of Equation (1).

Definition 5 (rI-projection). The reverse information projection (or rI-
projection) of a distribution Pa ∈ P onto Q, which is also a non-empty, closed,
convex set of probability distributions on a fixed support set, is defined by the
distribution Q̄∗ ∈ Q that has minimum KL-divergence from Pa: Q̄∗ , arg minQ̄∈Q
DKL(Pa ‖ Q̄).

Theorem 2 (Central limit theorem). If ˜̄µT , 1
K

∑K
a=1 µ̃

a
taT

is estimator of

the expectation parameters of the pseudobelief distribution,
√
T (˜̄µT − µ̄) converges

in distribution to a centered normal random vector in N (0, Σ̄). The covariance

matrix Σ̄ =
∑K
a=1 λaΣ

a such that T
K2taT

tends to λa as T →∞.

Theorem 2 shows that the parameters of pseudobelief can be constantly
estimated and their estimation would depend on the accuracy of the estimators
of individual arms with a weight on the number of draws on the corresponding
arms. Thus, the uncertainty in the estimation of the parameter is more influenced
by the arm that is least drawn and less influenced by the arm most drawn. In
order to decrease the uncertainty corresponding to pseudobelief, we have to draw
the arms less explored.

We need an additional assumption before moving into the asymptotic consis-
tency claim in Theorem 3.
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Assumption 3 Bounded log-likelihood ratios. The log-likelihood of the
posterior belief distribution at time t with respect to the true posterior belief

distribution is bounded such that limt→∞

∣∣∣log Pa(X,θ)
Pat (X,θ)

∣∣∣ 6 C <∞ for all a.

This assumption helps to control the convergence of sample KL divergences
in to the true KL-divergences as the number of samples grow infinitely. This
is a relaxed version of Assumption 2 employed in [18] to bound the regret of
Thompson sampling. This is also often used in the statistics literature to control
the convergence rate of posterior distributions [33][35].

Theorem 3 (Asymptotic consistency). Given τ(t) = 1
log t+c×log log t for any

c > 0, BelMan will asymptotically converge to choosing the optimal arm in case
of a bandit with bounded reward and finite arms. Mathematically, if there exists
µ∗ , maxa µ(θa),

lim
T→∞

1

T
E

[
T∑
t=1

Xat

]
= µ∗. (3)

We intuitively validate this claim. We can show the KL-divergence between
belief-reward of arm a and the pseudobelief-focal-reward isDKL(Pat (X, θ) ‖ Q̄(X, θ))
= (1−λa)h(bat )− 1

τ(t)µ
a
t , for λa computed as per Theorem 2. Here, h(bat ) denotes

the entropy of belief distribution bat of arm a at time t. As t→∞, the entropy of
belief on each arm reduces to a constant dependent on its internal entropy. Thus,
when 1

τ(t) exceeds the entropy term for a large t, BelMan greedily chooses the

arm with highest expected reward. Hence, BelMan is asymptotically consistent.
BelMan is applicable to any belief-reward distribution for which KL-divergence

is computable and finite. Additionally for reward distributions belonging to the
exponential family of distributions, the belief distributions, being conjugate to
the reward distributions, also belong to the exponential family [6]. This makes
belief-reward distributions flat with respect to KL-divergence. Thus, both I-and
rI-projections in BelMan are well-defined and unique for exponential family
reward distributions. Furthermore, if we identify the belief-reward distributions
with expectation parameters, we obtain the pseudobelief as an affine sum of
them. This allows us to compute belief-reward distribution directly instead of
computing its dependence on each belief-reward separately. The exponential
family includes the majority of the distributions found in the bandit literature
such as Bernoulli, beta, Gaussian, Poisson, exponential, and χ2.

3 Empirical Performance Analysis

Exploration–exploitation bandit problem. We evaluate the performance of BelMan
for two exponential family distributions – Bernoulli and exponential. They
stand for discrete and continuous rewards respectively. We use the pymaBandits
library [9] for implementation of all the algorithms except ours, and run it on
MATLAB 2014a. We plot the evolution of the mean and the 75 percentile of
cumulative regret and number of suboptimal draws. For each instance, we run
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Fig. 1. Evolution of number of suboptimal draws for 2-arm Bernoulli bandit with
expected rewards 0.8 and 0.9 for 1000 iterations. The dark black line shows the average
over 25 runs. The grey area shows the 75 percentile.
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Fig. 2. Evolution of number of suboptimal draws for 20-arm Bernoulli bandit with
expected rewards [0.25 0.22 0.2 0.17 0.17 0.2 0.13 0.13 0.1 0.07 0.07 0.05 0.05 0.05 0.02
0.02 0.02 0.01 0.01 0.01] for 1000 iterations.

0 500 1000

time

0

50

100

150

200

250

300

350

400

450

500

S
u
b
o
p
ti
m

a
l 
d
ra

w
s

BelMan

0 500 1000

time

0

50

100

150

200

250

300

350

400

450

500
Thompson

0 500 1000

time

0

50

100

150

200

250

300

350

400

450

500
UCBtuned

0 500 1000

time

0

50

100

150

200

250

300

350

400

450

500
KLUCB

0 500 1000

time

0

50

100

150

200

250

300

350

400

450

500
KLUCBexp

0 500 1000

time

0

50

100

150

200

250

300

350

400

450

500
Random

Fig. 3. Evolution of number of suboptimal draws for 5-arm bounded exponential bandit
with expected rewards 0.2, 0.25, 0.33, 0.5, and 1.0 for 1000 iterations.

experiments for 25 runs each consisting of 1000 iterations. We begin with uniform
distribution over corresponding parameters as the initial prior distribution for all
the Bayesian algorithms.

We compare the performance of BelMan with frequentist methods like UCB [3]
and KL-UCB [14], and Bayesian methods like Thompson sampling [34] and Bayes-
UCB [21]. For Bernoulli bandits, we also compare with Gittins index [17] which
is the optimal algorithm for Markovian finite arm independent bandits with
discounted rewards. Though we are not specifically interested in the discounted
case, Gittins’ algorithm is indeed transferable to the finite horizon setting with
slight manipulation. Though it is often computationally intractable, we use it
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Fig. 4. Evolution of (mean) regret for
exploration–exploitation 20-arm Bernoulli
bandit setting of Figure 2 with hori-
zon=50,000.

Fig. 5. Evolution of (mean) cumulative
regret for two-phase 20-arm Bernoulli ban-
dits.

as the optimal baseline for Bernoulli bandits. We also plot performance of the
uniform sampling method (Random), as a näıve baseline.

From Figures 1, 2, and 3, we observe that at the very beginning the number
of suboptimal draws of BelMan grows linearly and then transitions to a state
of slow growth. This initial linear growth of suboptimal draws followed by a
logarithmic growth is an intended property of any optimal bandit algorithm as
can be seen in the performance of competing algorithms and also pointed out
by [16]: an initial phase dominated by exploration and a second phase dominated
by exploitation. The phase change indicates the ability of the algorithm to
reduce uncertainty by learning after a certain number of iterations, and to find a
trade-off between exploration and exploitation. For the 2-arm Bernoulli bandit
(θ1 = 0.8, θ2 = 0.9), BelMan performs comparatively well with respect to the
contending algorithms, achieving the phase of exploitation faster than others,
with significantly less variance. Figure 2 depicts similar features of BelMan for
20-arm Bernoulli bandits (with means 0.25, 0.22, 0.2, 0.17, 0.17, 0.2, 0.13, 0.13,
0.1, 0.07, 0.07, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, and 0.01). Since more
arms ask for more exploration and more suboptimal draws, all algorithms show
higher regret values. On all experiments performed, BelMan outperforms the
competing approaches. We also simulated BelMan on exponential bandits: 5 arms
with expected rewards {0.2, 0.25, 0.33, 0.5, 1.0}. Figure 3 shows that BelMan
performs more efficiently than state-of-the-art methods for exponential reward
distributions- Thompson sampling, UCBtuned [3], KL-UCB, and KL-UCB-exp,
a method tailored for exponential distribution of rewards [14]. This demonstrates
BelMan’s broad applicability and efficient performance in complex scenarios.

We have also run the experiments 50 times with horizon 50 000 for the 20
arm Bernoulli bandit setting of Figure 2 to verify the asymptotic behaviour of
BelMan. Figure ?? shows that BelMan’s regret gradually becomes linear with
respect to the logarithmic axis. Figure ?? empirically validates BelMan to achieve
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logarithmic regret like the competitors which are theoretically proven to reach
logarithmic regret.

Two-phase reinforcement learning problem. In this experiment, we
simulate a two-phase setup, as in [29]: the agent first does pure exploration
for a fixed number of iterations, then move to exploration–exploitation. This
is possible since BelMan supports both modes and can transparently switch.
The setting is that of the 20-arm Bernoulli bandit in Figure 2. The two-phase
algorithm is exactly BelMan (Algorithm 1) with τ(t) =∞ for an initial phase
of length TEXP followed by the decreasing function of t as indicated previously.
Thus, BelMan gives us a single algorithmic framework for three setups of bandit
problems– pure exploration, exploration–exploitation, and two-phase learning.
We only have to choose a different τ(t) depending on the problem addressed.
This supports BelMan’s claim as a generalised, unified framework for stochastic
bandit problems.

We observe a sharp phase transition in Figure 5. While the pure exploration
version acts in the designated window length, it explores almost uniformly to
gain more information about the reward distributions. We know for such pure
exploration the cumulative regret grows linearly with iterations. Following this,
the growth of cumulative regret decreases and becomes sublinear. If we also
compare it with the initial growth in cumulative regret and suboptimal draws of
BelMan in Figure 2, we observe that the regret for the exploration–exploitation
phase is less than that of regular BelMan exploration–exploitation. Also, with
increase in the window length the phase transition becomes sharper as the growth
in regret becomes very small. In brief, there are three major lessons of this
experiment. First, Bayesian methods provide an inherent advantage in leveraging
prior knowledge (here, accumulated in the first phase). Second, a pure exploration
phase helps in improving the performance during the exploration–exploitation
phase. Third, we can leverage the exposure to control the exploration–exploitation
trade-off.

4 Application to Queueing Bandits

We instantiate BelMan for the problem of scheduling jobs in a multiple-server
multiple-queue system with known arrival rates and unknown service rates. The
goal of the agent is to choose such a server for the given system such that the
total queue length, i.e. the jobs waiting in the queue, will be as less as possible.
This problem is referred as the queueing bandit [24].

We consider a discrete-time queueing system with 1 queue and K servers.
The servers are indexed by a ∈ {1, . . . ,K}. Arrivals to the queue and service
offered by the servers are assumed to be independent and identically distributed
across time. The mean arrival rate is λ ∈ R+. The mean service rates are denoted
by µ ∈ {µa}Ka=1, where µa is the service rate of server a. At a time, a server can
serve the jobs coming from a queue only. We assume the queue to be stable i.e,
λ < max

a∈[K]
µa. Now, the problem is to choose a server at each time t ∈ [T ] such

that the number of jobs waiting in queues is as less as possible. The number of
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(c) Thompson sampling
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Fig. 6. Queue regret for single queue and 5 server setting with Poisson arrival with arrival
rate 0.35 and Bernoulli service distribution with service rates [0.5,0.33,0.33,0.33,0.25],
[0.33,0.5,0.25,0.33,0.25], and [0.25,0.33,0.5,0.25,0.25] respectively. Each experiment is
performed 50 times for a horizon of 10,000.

jobs waiting in queues is called the queue length of the system. If the number
of arrivals to the queues at time t is A(t) and S(t) is the number of jobs served,
the queue length at time t is defined as Q(t) , Q(t − 1) + A(t) − S(t), where
Q : [T ] → R>0, A : [T ] → R>0, and S : [T ] → R>0. The agent, which is the
scheduling algorithm in this case, tries to minimise this queue length for a given
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horizon T > 0. The arrival rates are known to the scheduling algorithm but the
service rates are unknown to it. This create the need to learn about the service
distributions, and in turn, engenders the exploration-exploitation dilemma.

Following the bandit literature, [24] proposed to use queue regret as the
performance measure of a queueing bandit algorithm. Queue regret is defined
as the difference in the queue length if a bandit algorithm is used instead of an
optimal algorithm with full information about the arrival and service rates. Thus,
the optimal algorithm OPT knows all the arrival and service rates, and allocates
the queue to servers with the best service rate. Hence, we define the queue regret
of a queueing bandit algorithm Ψ(t) , E

[
Q(t)−QOPT(t)

]
. In order to keep the

bandit structure, we assume that both the queue length Q(t) of algorithm A
and that of the optimal algorithm QOPT(t) starts with the same stationary state
distribution ν(λ,µ).

We show experimental results for the M/B/K queueing bandits. We assume
the arrival process to be Markovian, and the service process to be Bernoulli. The
arrival process being Markovian implies that the stochastic process describing the
number of arrivals is therefore A (t) have increments independent of time. This
makes the distribution of A(t) to be a Poisson distribution [12] with mean arrival
rate λ. We denote Ba(µa) is the Bernoulli distribution of the service time of
server a. It implies that the server processes a job with probability µa ∈ (0, 1) and
refuses to serve it with probability 1− µa. The goal is to perform the scheduling
in such a way that the queue regret will be minimised. The experimental results
in Figure 6 depict that BelMan is more stable and efficient than the competing
algorithms: Q-UCB, Q-Thompson sampling, and Thompson sampling. We observe
that in queues 2 and 3 the average service rates are lower than the corresponding
arrival rates. Due to this inherent constraint, the queue 2 and 3 can have unstable
queueing systems if the initial exploration of the algorithm does not damp fast
enough. Though the randomisation of Thompson sampling is good for exploration
but in this case playing the suboptimal servers can induce instability which affects
the total performance in future.

5 Related Work

[5] posed the problem of discounted reward bandits with infinite horizon as a
single-state Markov decision process [17] and proposed an algorithm for com-
puting deterministic Gittins indices to choose the arm to play. Though Gittins
index is proven to be optimal for discounted Bayesian bandits with Bernoulli
rewards [17], explicit computation of the indices is not always tractable and
does not provide clear insights into what they look like and how they change as
sampling proceeds [28]. This motivated researchers to design computationally
tractable algorithms [7] that still retain the asymptotic efficiency [26].

These algorithms can be classified into two categories: frequentist and Bayesian.
Frequentist algorithms use the history obtained as the number of arm plays and
corresponding rewards obtained to compute point estimates of the fitness index
to choose an arm. UCB [3], UCB-tuned [3], KL-UCB [14], KL-UCB-Exp [14],
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KL-UCB+ [20] are examples of frequentist algorithms. These algorithms are
designed by the philosophy of optimism in face of uncertainty. This methodology
prescribes to act as if the empirically best choice is truly the best choice. Thus,
all these algorithms overestimate the expected reward of the corresponding arms
in form of frequentist indices.

Bayesian algorithms encode available information on the reward generation
process in form of a prior distribution. For stochastic bandits, this prior consists
of K belief distributions on the arms. The history obtained by playing the bandit
game is used to update the posterior distribution. This posterior distribution is
further used to choose the arm to play. Thompson sampling [34], information-
directed sampling [32], Bayes-UCB [20], and BelMan are Bayesian algorithms.

In a variant of the stochastic bandit problem, called the pure exploration
bandit problem [8], the goal of the gambler is solely to accumulate information
about the arms. In another variant of the stochastic bandit problem, the gambler
interacts with the bandit in two consecutive phases of pure exploration and
exploration–exploitation. [29] named this variant the two-phase reinforcement
learning problem. Two-phase reinforcement learning gives us a middle ground
between model-free and model-dependent approaches in decision making which is
often the path taken by a practitioner [13]. As frequentist methods are well-tuned
for exploration-exploitation bandits, a different set of algorithms need to be
developed for pure exploration bandits [8]. [23] pointed out the lack of Bayesian
methods to do so. This motivated recent developments of Bayesian algorithms [31]
which are modifications of their exploration–exploitation counterparts such as
Thompson sampling. BelMan leverages its geometric insight to manage the pure
exploration bandits only by turning the exposure to infinity. Thus, it provides a
single framework to manage the pure exploration, exploration–exploitation, and
two-phase reinforcement learning problems only by tuning the exposure.

6 Conclusion

BelMan implements a generic Bayesian information-geometric approach for
stochastic multi-armed bandit problems. It operates in a statistical manifold
constructed by the joint distributions of beliefs and rewards. Their barycentre,
the pseudobelief-reward, summaries the accumulated information and forms
the basis of the exploration component. The algorithm is further extended by
composing the pseudobelief-reward distribution with a reward distribution that
gradually concentrates on higher rewards by means of a time-dependent function,
the exposure. In short, BelMan addresses the issue of the adaptive balance of
exploration–exploitation from the perspective of information representation, ac-
cumulation, and balanced induction of exploitative bias. Consequently, BelMan
can be uniformly tuned to support pure exploration, exploration–exploitation,
and two-phase reinforcement learning problems. BelMan, when instantiated to
rewards modelled by any distribution of the exponential family, conveniently
leads to analytical forms that allow derivation of a well-defined and unique
projection as well as to devise an effective and fast computation. In queueing
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bandits, the agent tries and minimises the queue length while also learning the
unknown service rates of multiple servers. Comparative performance evaluation
shows BelMan to be more stable and efficient than existing algorithms in the
queueing bandit literature.

We are investigating the analytical asymptotic efficiency and stability of
BelMan. We are also investigating how BelMan can be extended to other settings
such as dependent arms, non-parametric distributions and continuous arms.
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