
Learning with Random Learning Rates

Léonard Blier1,2 [�], Pierre Wolinski1, and Yann Ollivier2

1 TAU, LRI, Inria, Université Paris Sud
pierre.wolinski@u-psud.fr

2 Facebook AI Research
{leonardb,yol}@fb.com

Abstract. In neural network optimization, the learning rate of the gra-
dient descent strongly affects performance. This prevents reliable out-
of-the-box training of a model on a new problem. We propose the All
Learning Rates At Once (Alrao) algorithm for deep learning architec-
tures: each neuron or unit in the network gets its own learning rate,
randomly sampled at startup from a distribution spanning several or-
ders of magnitude. The network becomes a mixture of slow and fast
learning units. Surprisingly, Alrao performs close to SGD with an opti-
mally tuned learning rate, for various tasks and network architectures.
In our experiments, all Alrao runs were able to learn well without any
tuning.

1 Introduction

Deep learning models require delicate hyperparameter tuning [1]: when facing
new data or new model architectures, finding a configuration that enables fast
learning requires both expert knowledge and extensive testing. This prevents
deep learning models from working out-of-the-box on new problems without hu-
man intervention (AutoML setup, [2]). One of the most critical hyperparameters
is the learning rate of the gradient descent [3, p. 892]. With too large learning
rates, the model does not learn; with too small learning rates, optimization is
slow and can lead to local minima and poor generalization [4–7].

Efficient methods with no learning rate tuning are a necessary step towards
more robust learning algorithms, ideally working out of the box. Many methods
were designed to directly set optimal per-parameter learning rates [8–12], such
as the popular Adam optimizer. The latter comes with default hyperparameters
which reach good performance on many problems and architectures; yet fine-
tuning and scheduling of its learning rate is still frequently needed [13], and
the default setting is specific to current problems and architecture sizes. Indeed
Adam’s default hyperparameters fail in some natural setups (Section 6.2). This
makes it unfit in an out-of-the-box scenario.

We propose All Learning Rates At Once (Alrao), a gradient descent method
for deep learning models that leverages redundancy in the network. Alrao uses
multiple learning rates at the same time in the same network, spread across sev-
eral orders of magnitude. This creates a mixture of slow and fast learning units.

2 L. Blier et al.

Alrao departs from the usual philosophy of trying to find the “right” learning
rates; instead we take advantage of the overparameterization of network-based
models to produce a diversity of behaviors from which good network outputs
can be built. The width of the architecture may optionally be increased to get
enough units within a suitable learning rate range, but surprisingly, performance
was largely satisfying even without increasing width.

Our contributions are as follows:

– We introduce Alrao, a gradient descent method for deep learning models
with no learning rate tuning, leveraging redundancy in deep learning models
via a range of learning rates in the same network. Surprisingly, Alrao does
manage to learn well over a range of problems from image classification, text
prediction, and reinforcement learning.

– In our tests, Alrao’s performance is always close to that of SGD with the
optimal learning rate, without any tuning.

– Alrao combines performance with robustness: not a single run failed to learn
with the default learning rate range we used. In contrast, our parameter-
free baseline, Adam with default hyperparameters, is not reliable across the
board.

– Alrao vindicates the role of redundancy in deep learning: having enough
units with a suitable learning rate is sufficient for learning.

Acknowledgments. We would like to thank Corentin Tallec for his technical help
and extensive remarks. We thank Olivier Teytaud for pointing useful references,
Hervé Jégou for advice on the text, and Léon Bottou, Guillaume Charpiat, and
Michèle Sebag for their remarks on our ideas.

2 Related Work

Redundancy in deep learning. Alrao specifically exploits the redundancy of units
in network-like models. Several lines of work underline the importance of such
redundancy in deep learning. For instance, dropout [14] relies on redundancy
between units. Similarly, many units can be pruned after training without af-
fecting accuracy [15–18]. Wider networks have been found to make training eas-
ier [19–21], even if not all units are useful a posteriori.

The lottery ticket hypothesis [22, 23] posits that “large networks that train
successfully contain subnetworks that—when trained in isolation—converge in
a comparable number of iterations to comparable accuracy’. This subnetwork is
the lottery ticket winner : the one which had the best initial values. In this view,
redundancy helps because a larger network has a larger probability to contain a
suitable subnetwork. Alrao extends this principle to the learning rate.

Learning rate tuning. Automatically using the “right” learning rate for each pa-
rameter was one motivation behind “adaptive” methods such as RMSProp [8],
AdaGrad [9] or Adam [10]. Adam with its default setting is currently considered
the default method in many works [24]. However, further global adjustment of

Learning with Random Learning Rates 3

the Adam learning rate is common [25]. Other heuristics for setting the learning
rate have been proposed [11]; these heuristics often start with the idea of ap-
proximating a second-order Newton step to define an optimal learning rate [12].
Indeed, asymptotically, an arguably optimal preconditioner is either the Hessian
of the loss (Newton method) or the Fisher information matrix [26]. Another
approach is to perform gradient descent on the learning rate itself through the
whole training procedure [27–32]. Despite being around since the 80’s [27], this
has not been widely adopted, because of sensitivity to hyperparameters such
as the meta-learning rate or the initial learning rate [33]. Of all these meth-
ods, Adam is probably the most widespread at present [24], and we use it as a
baseline.

The learning rate can also be optimized within the framework of architecture
or hyperparameter search, using methods from from reinforcement learning [1,34,
35], evolutionary algorithms [36–38], Bayesian optimization [39], or differentiable
architecture search [40]. Such methods are resource-intensive and do not allow
for finding a good learning rate in a single run.

3 Motivation and Outline

We first introduce the general ideas behind Alrao. The detailed algorithm is
explained in Section 4 and in Algorithm 1. We also release a Pytorch [41] imple-
mentation, including tutorials: http://github.com/leonardblier/alrao.

Different learning rates for different units. Instead of using a single learning rate
for the model, Alrao samples once and for all a learning rate for each unit in the
network. These rates are taken from a log-uniform distribution in an interval
[ηmin; ηmax]. The log-uniform distribution produces learning rates spread over
several order of magnitudes, mimicking the log-uniform grids used in standard
grid searches on the learning rate.

A unit corresponds for example to a feature or neuron for fully connected net-
works, or to a channel for convolutional networks. Thus we build “slow-learning”
and “fast-learning” units. In contrast, with per-parameter learning rates, every
unit would have a few incoming weights with very large learning rates, and
possibly diverge.

Intuition. Alrao is inspired by the fact that not all units in a neural network end
up being useful. Our idea is that in a large enough network with learning rates
sampled randomly per unit, a sub-network made of units with a good learning
rate will learn well, while the units with a wrong learning rate will produce
useless values and just be ignored by the rest of the network. Units with too
small learning rates will not learn anything and stay close to their initial values;
this does not hurt training (indeed, even leaving some weights at their initial
values, corresponding to a learning rate 0, does not hurt training). Units with
a too large learning rate may produce large activation values, but those will be
mitigated by subsequent normalizing mechanisms in the computational graph,
such as sigmoid/tanh activations or BatchNorm.

http://github.com/leonardblier/alrao

4 L. Blier et al.

In
te

rn
a
l
la

y
er

s
C

la
ss

if
ie

r
la

y
er

Input

Output

...

...

Softmax

In
te

rn
a
l
la

y
er

s
C

la
ss

if
ie

r
la

y
er

Input

Output

Softmax Softmax Softmax

Model Averaging

...

...

...

Fig. 1: Left: a standard fully connected neural network for a classification task
with three classes, made of several internal layers and an output layer. Right:
Alrao version of the same network. The single classifier layer is replaced with a
set of parallel copies of the original classifier, averaged with a model averaging
method. Each unit uses its own learning rate for its incoming weights (repre-
sented by different styles of arrows).

Alrao can be interpreted within the lottery ticket hypothesis [22]: viewing
the per-unit learning rates of Alrao as part of the initialization, this hypothesis
suggests that in a wide enough network, there will be a sub-network whose
initialization (both values and learning rate) leads to good convergence.

Slow and fast learning units for the output layer. Sampling a learning rate per
unit at random in the last layer would not make sense. For classification, each
unit in the last layer represents a single category: using different learning rates
for these units would favor some categories during learning. Moreover for scalar
regression tasks there is only one output unit, thus we would be back to selecting
a single learning rate.

The simplest way to obtain the best of several learning rates for the last
layer, without relying on heuristics to guess an optimal value, is to use model
averaging over several copies of the output layer (Fig. 1), each copy trained
with its own learning rate from the interval [ηmin; ηmax]. All these untied copies
of the output layer share the same Alrao internal layers (Fig. 1). This can be
seen as a smooth form of model selection or grid-search over the output layer
learning rate; actually, this part of the architecture can even be dropped after a
few epochs, as the model averaging quickly concentrates on one model.

Learning with Random Learning Rates 5

Increasing network width. With Alrao, neurons with unsuitable learning rates
will not learn: those with too large learning rates might learn no useful signal,
while those with too small learning rates will learn too slowly. Thus, Alrao may
reduce the effective width of the network to only a fraction of the actual architec-
ture width, depending on [ηmin; ηmax]. This may be compensated by multiplying
the width of the network by a factor γ. Our first intuition was that γ > 1 would
be necessary; still Alrao turns out to work well even without width augmenta-
tion.

4 All Learning Rates At Once: Description

4.1 Notation

We now describe Alrao more precisely for deep learning models with softmax
output, on classification tasks; the case of regression is similar.

Let D = {(x1, y1), ..., (xN , yN)}, with yi ∈ {1, ...,K}, be a classification
dataset. The goal is to predict the yi given the xi, using a deep learning model Φθ.
For each input x, Φθ(x) is a probability distribution over {1, ...,K}, and we want
to minimize the categorical cross-entropy loss ` over the dataset: 1

N

∑
i `(Φθ(xi), yi).

We denote log-U(·; ηmin, ηmax) the log-uniform probability distribution on an
interval [ηmin; ηmax]. Namely, if η ∼ log-U(·; ηmin, ηmax), then log η is uniformly
distributed between log ηmin and log ηmax. Its density function is log-U(η; ηmin, ηmax) =
1
η

1ηmin≤η≤ηmax

log(ηmax)−log(ηmin)
.

Algorithm 1 Alrao-SGD for model Φθ = Cθout ◦ φθr with Nout classifiers
and learning rates in [ηmin; ηmax]

1: aj ← 1/Nout for each 1 ≤ j ≤ Nout . Initialize the Nout model averaging weights
aj

2: ΦAlrao
θ (x) :=

∑Nout
j=1 aj Cθoutj

(φθint(x)) . Define the Alrao architecture

3: for all layers l, for all unit i in layer l do
4: Sample ηl,i ∼ log-U(.; ηmin, ηmax). . Sample a learning rate for each unit

5: for all Classifiers j, 1 ≤ j ≤ Nout do
6: Define log ηj = log ηmin + j−1

Nout−1
log ηmax

ηmin
. . Set a learning rate for each

classifier
7: while Stopping criterion is False do
8: zt ← φθint(xt) . Store the output of the last internal layer
9: for all layers l, for all unit i in layer l do

10: θl,i ← θl,i − ηl,i · ∇θl,i`(Φ
Alrao
θ (xt), yt) . Update the repr. netw. weights

11: for all Classifier j do
12: θoutj ← θoutj − ηj · ∇θoutj

`(Cθoutj
(zt), yt) . Update the classifiers’ weights

13: a← ModelAveraging(a, (Cθouti
(zt))i, yt) . Update the model averaging

weights.
14: t← t+ 1 mod N

6 L. Blier et al.

4.2 Alrao Architecture

Multiple Alrao output layers. A deep learning model Φθ for classification can
be decomposed into two parts: first, internal layers compute some function z =
φθint(x) of the inputs x, fed to a final output (classifier) layer Cθout , so that
the overall network output is Φθ(x) := Cθout(φθint(x)). For a classification task
with K categories, the output layer Cθout is defined by Cθout(z) := softmax ◦(
WT z + b

)
with θout := (W, b), and softmax(u1, ..., uK)k := euk/(

∑
i e
ui).

In Alrao, we build multiple copies of the original output layer, with different
learning rates for each, and then use a model averaging method among them.
The averaged classifier and the overall Alrao model are:

CAlrao
θout (z) :=

Nout∑
j=1

aj Cθoutj
(z), ΦAlrao

θ (x) := CAlrao
θout (φθint(x)) (1)

where the Cθout
j

are copies of the original classifier layer, with non-tied param-

eters, and θout := (θout1 , ..., θoutNout
). The aj are the parameters of the model av-

eraging, with 0 ≤ aj ≤ 1 and
∑
j aj = 1. The aj are not updated by gradient

descent, but via a model averaging method from the literature (see below).

Increasing the width of internal layers. As explained in Section 3, we may com-
pensate the effective width reduction in Alrao by multiplying the width of the
network by a factor γ. This means multiplying the number of units (or filters for
a convolutional layer) of all internal layers by γ.

4.3 Alrao Update for the Internal Layers: A Random Learning
Rate for Each Unit

In the internal layers, for each unit i in each layer l, a learning rate ηl,i is
sampled from the probability distribution log-U(.; ηmin, ηmax), once and for all
at the beginning of training. 1

The incoming parameters of each unit in the internal layers are updated in
the usual SGD way, only with per-unit learning rates (Eq. 2): for each unit i in
each layer l, its incoming parameters are updated as:

θl,i ← θl,i − ηl,i · ∇θl,i`(ΦAlrao
θ (x), y) (2)

where ΦAlrao
θ is the Alrao loss (1) defined above.

What constitutes a unit depends on the type of layers in the model. In a
fully connected layer, each component of a layer is considered as a unit for
Alrao: all incoming weights of the same unit share the same Alrao learning rate.
On the other hand, in a convolutional layer we consider each convolution filter

1 With learning rates resampled at each time, each step would be, in expectation,
an ordinary SGD step with learning rate Eηl,i, thus just yielding an ordinary SGD
trajectory with more variance.

Learning with Random Learning Rates 7

as constituting a unit: there is one learning rate per filter (or channel), thus
preserving translation-invariance over the input image. In LSTMs, we apply the
same learning rate to all components in each LSTM cell (thus the vector of
learning rates is the same for input gates, for forget gates, etc.).

We set a learning rate per unit, rather than per parameter. Otherwise, every
unit would have some parameters with large learning rates, and we would expect
even a few large incoming weights to be able to derail a unit. Having diverging
parameters within every unit is hurtful, while having diverging units in a layer
is not necessarily hurtful since the next layer can learn to disregard them.

4.4 Alrao Update for the Output Layer: Model Averaging from
Output Layers Trained with Different Learning Rates

Learning the output layers. The j-th copy Cθoutj
of the classifier layer is attributed

a learning rate ηj defined by log ηj := log ηmin + j−1
Nout−1 log

(
ηmax

ηmin

)
, so that the

classifiers’ learning rates are log-uniformly spread on the interval [ηmin; ηmax].
Then the parameters θoutj of each classifier j are updated as if this classifier
alone was the only output of the model:

θoutj ← θoutj − ηj · ∇θoutj
`(Cθoutj

(φθint(x)), y), (3)

(still sharing the same internal layers φθint). This ensures that classifiers with
low weights aj still learn, and is consistent with model averaging philosophy.
Algorithmically this requires differentiating the loss Nout times with respect to
the last layer, but no additional backpropagations through the internal layers.

Model averaging. To set the weights aj , several model averaging techniques are
available, such as Bayesian Model Averaging [42]. We use the Switch model
averaging [43], a Bayesian method which is both simple, principled, and very re-
sponsive to changes in performance of the various models. After each mini-batch,
the switch computes a modified posterior distribution (aj) over the classifiers.
This computation is directly taken from [43].

Additional experiments show that the model averaging method acts like a
smooth model selection procedure: after only a few hundreds gradient steps, a
single output layer is selected, with its parameter aj very close to 1. Actually, Al-
rao’s performance is unchanged if the extraneous output layer copies are thrown
away when the posterior weight aj of one of the copies gets close to 1.

5 Experimental Setup

We tested Alrao on various convolutional networks for image classification (Im-
agenet and CIFAR10), on LSTMs for text prediction, and on reinforcement
learning problems. We always use the same learning rate interval [10−5; 10], cor-
responding to the values we would have tested in a grid search, and 10 Alrao
output layer copies, for every task.

8 L. Blier et al.

Table 1: Performance of Alrao, SGD with tuned learning rate, and Adam with
its default setting. Three convolutional models are reported for image classifica-
tion on CIFAR10, three others for ImageNet, one recurrent model for character
prediction (Penn Treebank), and two experiments on RL problems. Four of the
image classification architectures are further tested with a width multiplication
factor γ = 3. Alrao learning rates are taken in a wide, a priori reasonable interval
[ηmin; ηmax] = [10−5; 10], and the optimal learning rate for SGD is chosen in the
set {10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}. Each experiment is run 10 times (CI-
FAR10 and RL), 5 times (PTB) or 1 time (ImageNet); the confidence intervals
report the standard deviation over these runs. For RL tasks, the return has to
be maximized, not minimized.

Model SGD with optimal LR Adam - Default Alrao

LR Loss Top1 (%) Loss Top1 (%) Loss Top1 (%)

CIFAR10
MobileNet 0.1 0.37± .01 90.2± .3 1.01± .95 78± 11 0.42± .02 88.1± .6
MobileNet, γ = 3 0.1 0.33± .01 90.3± .5 0.32± .02 90.8± .4 0.35± .01 89.0± .6
GoogLeNet 0.01 0.45± .05 89.6± 1. 0.47± .04 89.8± .4 0.47± .03 88.9± .8
GoogLeNet, γ = 3 0.1 0.34± .02 90.5± .8 0.41± .02 88.6± .6 0.37± .01 89.8± .8
VGG19 0.1 0.42± .02 89.5± .2 0.43± .02 88.9± .4 0.45± .03 87.5± .4
VGG19, γ = 3 0.1 0.35± .01 90.0± .6 0.37± .01 89.5± .8 0.381± .004 88.4± .7

ImageNet
AlexNet 0.01 2.15 53.2 6.91 0.10 2.56 43.2
Densenet121 1 1.35 69.7 1.39 67.9 1.41 67.3
ResNet50 1 1.49 67.4 1.39 67.1 1.42 67.5
ResNet50, γ = 3 - - - 1.99 60.8 1.33 70.9

Penn Treebank
LSTM 1 1.566± .003 66.1± .1 1.587± .005 65.6± .1 1.706± .004 63.4± .1

RL Return Return Return
Pendulum 0.0001 −372± 24 −414± 64 −371± 36
LunarLander 0.1 188± 23 155± 23 186± 45

We compare Alrao to SGD with an optimal learning rate selected in the set
{10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}, and, as a tuning-free baseline, to Adam
with its default setting (η = 10−3, β1 = 0.9, β2 = 0.999), arguably the current
default method [24].

The results are presented in Table 1. Fig. 2 presents learning curves for
AlexNet and Resnet50 on ImageNet.

Learning with Random Learning Rates 9

5.1 Image Classification on ImageNet and CIFAR10

For image classification, we used the ImageNet [44] and CIFAR10 [45] datasets.
The ImageNet dataset is made of 1,283,166 training and 60,000 testing data; we
split the training set into a smaller training set and a validation set with 60,000
samples. We do the same on CIFAR10: the 50,000 training samples are split into
40,000 training samples and 10,000 validation samples.

For each architecture, training was stopped when the validation loss had
not improved for 20 epochs. The epoch with best validation loss was selected
and the corresponding model tested on the test set. The inputs are normalized,
and training used data augmentation: random cropping and random horizontal
flipping. For CIFAR10, each setting was run 10 times: the confidence intervals
presented are the standard deviation over these runs. For ImageNet, because of
high computation time, we performed only a single run per experiment.

We tested Alrao on several standard architectures. On ImageNet, we tested
Resnet50 [46], Densenet121 [47], and Alexnet [48], using the default Pytorch
implementation. On CIFAR10, we tested GoogLeNet [49], VGG19 [50], and Mo-
bileNet [51], as implemented in [52]. We also tested wider architectures, with a
width multiplication factor γ = 3. On the largest model, Resnet50 on ImageNet
with triple width, systematic SGD learning rate grid search was not performed
due to the excessive computational burden, hence the omitted value in Tab. 1.

5.2 Other Tasks: Text Prediction, Reinforcement Learning

Text prediction on Penn TreeBank. To test Alrao on other kinds of tasks, we
first used a recurrent neural network for text prediction on the Penn Treebank
(PTB) [53] dataset. The Alrao experimental procedure is the same as above.

The loss in Table 1 is given in bits per character and the accuracy is the
proportion of correct character predictions. The model is a two-layer LSTM
[54] with an embedding size of 100, and 100 hidden units. A dropout layer
with rate 0.2 is included before the decoder. The training set is divided into 20
minibatchs. Gradients are computed via truncated backprop through time [55]
with truncation every 70 characters.

The model was trained for character prediction rather than word prediction.
This is technically easier for Alrao implementation: since Alrao uses copies of the
output layer, memory issues arise for models with most parameters on the out-
put layer. Word prediction (10,000 classes on PTB) requires many more output
parameters than character prediction; see Section 7.

Reinforcement learning tasks. Next, we tested Alrao on two standard reinforce-
ment learning problems: the Pendulum and Lunar Lander environments from
OpenAI Gym [56]. We use standard deep Q-learning [57]. The Q-network is a
standard MLP with 2 hidden layers. The experimental setting is the same as
above, with regressors instead of classifiers on the output layer. For each envi-
ronment, we select the best epoch on validation runs, and then report the return
of the selected model on new test runs in that environment.

10 L. Blier et al.

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss rain
alrao: (10−5, 101)
alrao, wid h * 3
lr=1e-01
lr=1e-02
lr=1e-03
lr=1e-04
lr=1e-05
Adam
Adam, width * 3

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss test

(a) Resnet50 trained on ImageNet.

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss rain
alrao: (10−5, 101)
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01
lr=1e+00
lr=1e+01
Adam

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss test

(b) AlexNet trained on ImageNet

Fig. 2: Learning curves for Alrao, SGD with various learning rates, and Adam
with its default setting, on ImageNet. Left: training loss; right: test loss. Curves
are interrupted by the early stopping criterion. Alrao’s performance is compara-
ble to the optimal SGD learning rate.

6 Performance and Robustness of Alrao

6.1 Alrao Compared to SGD with Optimal Learning Rate

First, Alrao does manage to learn; this was not obvious a priori.
Second, SGD with an optimally tuned learning rate usually performs better

than Alrao. This can be expected when comparing a tuning-free method with a
method that tunes the hyperparameter in hindsight.

Still, the difference between Alrao and optimally-tuned SGD is reasonably
small across every setup, even with wide intervals [ηmin; ηmax], with a somewhat
larger gap in one case (AlexNet on ImageNet). Notably, this occurs even though
SGD achieves good performance only for a few learning rates within the interval
[ηmin; ηmax]. With ηmin = 10−5 and ηmax = 10, among the 7 SGD learning rates
tested (10−5, 10−4, 10−3, 10−2, 10−1, 1, and 10), only three are able to learn with

Learning with Random Learning Rates 11

AlexNet, and only one is better than Alrao (Fig. 2b); with ResNet50, only three
are able to learn well, and only two of them achieve performance similar to Alrao
(Fig. 2a); on the Pendulum environment, only two are able to learn well, only
one of which converges as fast as Alrao.

Thus, surprisingly, Alrao manages to learn at a nearly optimal rate, even
though most units in the network have learning rates unsuited for SGD.

6.2 Robustness of Alrao, and Comparison to Default Adam

Overall, Alrao learns reliably in every setup in Table 1. Moreover, this is quite
stable over the course of learning: Alrao curves shadow optimal SGD curves over
time (Fig. 2).

Often, Adam with its default parameters almost matches optimal SGD, but
this is not always the case. Over the 13 setups in Table 1, default Adam gives a
significantly poor performance in three cases. One of those is a pure optimization
issue: with AlexNet on ImageNet, optimization does not start with the default
parameters (Fig. 2b). The other two cases are due to strong overfit despite good
train performance: MobileNet on CIFAR and ResNet with increased width on
ImageNet.

In two further cases, Adam achieves good validation performance in Table 1,
but actually overfits shortly after its peak score: ResNet (Fig. 2a) and DenseNet,
[24,58].

Overall, default Adam tends to give slightly better results than Alrao when
it works, but does not learn reliably with its default hyperparameters. It can
exhibit two kinds of lack of robustness: optimization failure, and overfit or non-
robustness over the course of learning. On the other hand, every single run
of Alrao reached reasonably close-to-optimal performance. Alrao also performs
steadily over the course of learning (Fig. 2).

6.3 Sensitivity Study to [ηmin; ηmax]

We claim to remove a hyperparameter, the learning rate, but replace it with two
hyperparameters ηmin and ηmax. Formally, this is true. But a systematic study
of the impact of these two hyperparameters (Fig. 3) shows that the sensitivity
to ηmin and ηmax is much lower than the original sensitivity to the learning rate.

To assess this, we tested every combination of ηmin and ηmax in a grid from
10−9 to 107 on GoogLeNet for CIFAR10 (left plot in Fig. 3, with SGD on the
diagonal). The largest satisfactory learning rate for SGD is 1 (diagonal on Fig. 3).
Unsurprisingly, if all the learning rates in Alrao are too large, or all too small,
then Alrao fails (rightmost and leftmost zones in Fig. 3). Extremely large learning
rates diverge numerically, both for SGD and Alrao.

On the other hand, Alrao converges as soon as [ηmin; ηmax] contains a rea-
sonable learning rate (central zone Fig. 3), even with values of ηmax for which
SGD fails. A wide range of choices for [ηmin; ηmax] will contain one good learn-
ing rate and achieve close-to-optimal performance. Thus, as a general rule, we

12 L. Blier et al.

1e
-9
1e

-8
1e

-7
1e

-6
1e

-5
1e

-4
1e

-3
1e

-2
1e

-11e
0
1e

1
1e

2
1e

3
1e

4
1e

5
1e

6
1e

7

Maximum learning rate ηmax

1e7
1e6
1e5
1e4
1e3
1e2
1e1
1e0
1e-1
1e-2
1e-3
1e-4
1e-5
1e-6
1e-7
1e-8
1e-9

M
in

im
um

 le
ar

ni
ng

 ra
te

 η
m

in

1/8 1/4 1/2 1 2 4 8

Width multiplication factor γ

1e-15;1e7
1e-14;1e6
1e-13;1e5
1e-12;1e4
1e-11;1e3
1e-10;1e2
1e-9;1e1
1e-8;1e0
1e-7;1e-1
1e-6;1e-2
1e-5;1e-3
1e-4;1e-4

Al
ra

o
in

te
rv

al

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 3: Influence of [ηmin; ηmax] and of network width on Alrao performance, with
GoogLeNet on CIFAR10. Results are reported after 15 epochs, and averaged on
three runs. Left plot: each point with coordinates [ηmin; ηmax] below the diago-
nal represents the loss for Alrao with this interval. Points (η, η) on the diagonal
represent standard SGD with learning rate η. Grey squares represent numeri-
cal divergence (NaN). Alrao works as soon as [ηmin; ηmax] contains at least one
suitable learning rate. Right plot: varying network width.

recommend to just use an interval containing all the learning rates that would
have been tested in a grid search, e.g., 10−5 to 10.

For a fixed network size, one might expect Alrao to perform worse with large
intervals [ηmin; ηmax], as most units would become useless. On the other hand,
in a larger network, many units would have extreme learning rates, which might
disturb learning. We tested how increasing or decreasing network width changes
Alrao’s sensitivity to [ηmin; ηmax] (right plot of Fig. 3 for Alrao). The sensitivity
of Alrao to [ηmin; ηmax] decreases markedly with network width. For instance,
a wide interval [ηmin; ηmax] = [10−12; 104] works reasonably well with an 8-fold
network, even though most units receive unsuitable learning rates.

So, even if the choice of ηmin and ηmax is important, the results are much
more stable to varying these two hyperparameters than to the original learning
rate, especially with large networks.

7 Discussion, Limitations, and Perspectives

Alrao specifically exploits redundancy between units in deep learning models,
relying on the overall network approach of combining a large number of units
built for diversity of behavior. Alrao would not make sense in a classical convex
optimization setting. That Alrao works at all is already informative about some
phenomena at play in deep neural networks.

Alrao can make lengthy SGD learning rate sweeps unnecessary on large mod-
els, such as the triple-width ResNet50 for ImageNet above. Incidentally, in our
experiments, wider networks provided increased performance both for SGD and

Learning with Random Learning Rates 13

Alrao (Table 1 and Fig. 3): network size is still a limiting factor for the models
used, independently of the algorithm.

Increased number of parameters for the classification layer. Since Alrao modifies
the output layer of the optimized model, the number of parameters in the clas-
sification layer is multiplied by the number of classifier copies. (The number of
parameters in the internal layers is unchanged.) This is a limitation for models
with most parameters in the classifier layer.

On CIFAR10 (10 classes), the number of parameters increases by less than
5% for the models used. On ImageNet (1000 classes), it increases by 50–100%
depending on the architecture. On Penn Treebank, the number of parameters
increased by 26% in our setup (at character level); working at word level it would
have increased fivefold.

This can be mitigated by handling the copies of the classifiers on distinct
computing units: in Alrao these copies work in parallel given the internal lay-
ers. Moreover, the additional output layer copies may be thrown away early in
training. Finally, models with a large number of output classes usually rely on
other parameterizations than a direct softmax, such as a hierarchical softmax
(see references in [59]); Alrao can be used in conjunction with such methods.

Multiple output layer copies and expressiveness. Using several copies of the out-
put layer in Alrao formally provides more expressiveness to the model, as it
creates a larger architecture with more parameters. We performed two control
experiments to check that Alrao’s performance does not just stem from this.
First, we performed ablation of the output layer copies in Alrao after one epoch,
only keeping the copy with the highest model averaging weight ai: the learning
curves are identical. Second, we trained default Adam using copies of the out-
put layer (all with the same Adam default learning rate): the learning curves
are identical to Adam on the unmodified architecture. Thus, the copies of the
output layer do not bring any useful added expressiveness.

Learning rate schedules, other optimizers, other hyperparameters... Learning
rate schedules are often effective [60]. We did not use them here: this may par-
tially explain why the results in Table 1 are worse than the state-of-the-art. One
might have hoped that the diversity of learning rates in Alrao would effortlessly
bring it to par with step size schedules, but the results above do not support this.
Still, nothing prevents using a scheduler together with Alrao, e.g., by dividing
all Alrao learning rates by a time-dependent constant.

The Alrao idea can also be used with other optimizers than SGD, such as
Adam. We tested combining Alrao and Adam, and found the combination less
reliable than standard Alrao: curves on the training set mostly look good, but
the method quickly overfits.

The Alrao idea could be used on other hyperparameters as well, such as
momentum. However, with more hyperparameters initialized randomly for each
unit, the fraction of units having suitable values for all their hyperparameters
simultaneously will quickly decrease.

14 L. Blier et al.

8 Conclusion

Applying stochastic gradient descent with multiple learning rates for different
units is surprisingly resilient in our experiments, and provides performance close
to SGD with an optimal learning rate, as soon as the range of random learning
rates is not excessive. Alrao could save time when testing deep learning models,
opening the door to more out-of-the-box uses of deep learning.

References

1. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

2. Guyon, I., Chaabane, I., Escalante, H.J., Escalera, S., Jajetic, D., Lloyd, J.R.,
Macià, N., Ray, B., Romaszko, L., Sebag, M., et al.: A brief review of the ChaLearn
AutoML challenge: any-time any-dataset learning without human intervention. In:
Workshop on Automatic Machine Learning. (2016) 21–30

3. Theodoridis, S.: Machine learning: a Bayesian and optimization perspective. Aca-
demic Press (2015)

4. Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A., Bengio, Y., Storkey,
A.: Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623
(2017)

5. Kurita, K.: Learning Rate Tuning in Deep Learning: A Practical Guide — Machine
Learning Explained (2018)

6. Mack, D.: How to pick the best learning rate for your machine learning project
(2016)

7. Surmenok, P.: Estimating an Optimal Learning Rate For a Deep Neural Network
(2017)

8. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural networks for machine
learning 4(2) (2012) 26–31

9. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. JMLR 12 (2011) 2121–2159

10. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Interna-
tional Conference on Learning Representations. (2015)

11. Schaul, T., Zhang, S., LeCun, Y.: No more pesky learning rates. In: International
Conference on Machine Learning. (2013) 343–351

12. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Neural
Networks: Tricks of the Trade. Springer (1998) 9–50

13. Denkowski, M., Neubig, G.: Stronger baselines for trustable results in neural ma-
chine translation. arXiv preprint arXiv:1706.09733 (2017)

14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15 (2014) 1929–1958

15. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In Touretzky, D.S.,
ed.: NIPS 2. Morgan-Kaufmann (1990) 598–605

16. Han, S., Mao, H., Dally, W.J.: Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. arXiv preprint
arXiv:1510.00149 (2015)

Learning with Random Learning Rates 15

17. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both Weights and Connections
for Efficient Neural Networks. In: NIPS. (2015)

18. See, A., Luong, M.T., Manning, C.D.: Compression of neural machine translation
models via pruning. CoNLL 2016 (2016) 291

19. Bengio, Y., Roux, N.L., Vincent, P., Delalleau, O., Marcotte, P.: Convex neu-
ral networks. In Weiss, Y., Schölkopf, B., Platt, J.C., eds.: Advances in Neural
Information Processing Systems 18. MIT Press (2006) 123–130

20. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

21. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. (2017)

22. Frankle, J., Carbin, M.: The Lottery Ticket Hypothesis: Finding Small, Trainable
Neural Networks. arXiv preprint arXiv:1704.04861 (mar 2018)

23. Frankle, J., Dziugaite, G.K., Roy, D.M., Carbin, M.: The lottery ticket hypothesis
at scale (2019)

24. Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht, B.: The marginal value of
adaptive gradient methods in machine learning. In: NIPS. (2017) 4148–4158

25. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Proceedings
of the European Conference on Computer Vision (ECCV). (2018) 19–34

26. Amari, S.i.: Natural gradient works efficiently in learning. Neural Comput. 10
(February 1998) 251–276

27. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation.
Neural networks 1(4) (1988) 295–307

28. Schraudolph, N.N.: Local gain adaptation in stochastic gradient descent. (1999)
29. Mahmood, A.R., Sutton, R.S., Degris, T., Pilarski, P.M.: Tuning-free step-size

adaptation. In: Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on, IEEE (2012) 2121–2124

30. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter op-
timization through reversible learning. In: International Conference on Machine
Learning. (2015) 2113–2122

31. Massé, P.Y., Ollivier, Y.: Speed learning on the fly. arXiv preprint
arXiv:1511.02540 (2015)

32. Baydin, A.G., Cornish, R., Rubio, D.M., Schmidt, M., Wood, F.: Online learn-
ing rate adaptation with hypergradient descent. In: International Conference on
Learning Representations. (2018)

33. Erraqabi, A., Le Roux, N.: Combining adaptive algorithms and hypergradient
method: a performance and robustness study. (2018)

34. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

35. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A
novel bandit-based approach to hyperparameter optimization. JMLR 18(1) (2017)
6765–6816

36. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary computation 10(2) (2002) 99–127

37. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent
network architectures. In: International Conference on Machine Learning. (2015)
2342–2350

38. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Ku-
rakin, A.: Large-scale evolution of image classifiers. In: Proceedings of the 34th

16 L. Blier et al.

International Conference on Machine Learning-Volume 70, JMLR. org (2017) 2902–
2911

39. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. (2013)

40. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

41. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NIPS-W. (2017)

42. Wasserman, L.: Bayesian Model Selection and Model Averaging. Journal of Math-
ematical Psychology 44 (2000)

43. Van Erven, T., Grünwald, P., De Rooij, S.: Catching up faster by switching sooner:
A predictive approach to adaptive estimation with an application to the AIC-BIC
dilemma. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 74(3) (2012) 361–417

44. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: CVPR09. (2009)

45. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. (2009)
46. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: ICCV. (2016) 770–778
47. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected

convolutional networks. In: CVPR. Volume 1. (2017) 3
48. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.

arXiv preprint arXiv:1404.5997 (2014)
49. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: ICCV. (2015)
1–9

50. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

51. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

52. Kianglu: pytorch-cifar (2018)
53. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated

corpus of english: The penn treebank. Comput. Linguist. 19(2) (June 1993) 313–
330

54. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8) (1997) 1735–1780

55. Werbos, P.J.: Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE 78(10) (1990) 1550–1560

56. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym (2016)

57. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540) (2015) 529

58. Keskar, N.S., Socher, R.: Improving generalization performance by switching from
Adam to SGD. arXiv preprint arXiv:1712.07628 (2017)

59. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits
of language modeling. arXiv preprint arXiv:1602.02410 (2016)

60. Bengio, Y.: Practical recommendations for gradient-based training of deep archi-
tectures. In: Neural networks: Tricks of the trade. Springer (2012) 437–478

	Learning with Random Learning Rates

