
Sequential Learning over Implicit Feedback for
Robust Large-Scale Recommender Systems

Aleksandra Burashnikova1,2, Yury Maximov3,1, and Massih-Reza Amini2

1 Skolkovo Institute of Science and Technology, Russia
a.burahnikova@skoltech.ru, y.maximov@skoltech.ru

2 Université Grenoble Alpes, Grenoble, France
Firstname.Lastname@univ-grenoble-alpes.fr

3 Theoretical Division T-5 and CNLS, Los Alamos National Laboratory, USA
yury@lanl.gov

Abstract. In this paper, we propose a theoretically founded sequen-
tial strategy for training large-scale Recommender Systems (RS) over
implicit feedback mainly in the form of clicks. The proposed approach
consists in minimizing pairwise ranking loss over blocks of consecutive
items constituted by a sequence of non-clicked items followed by a clicked
one for each user. Parameter updates are discarded if for a given user the
number of sequential blocks is below or above some given thresholds es-
timated over the distribution of the number of blocks in the training set.
This is to prevent from updating the parameters for an abnormally high
number of clicks over some targeted items, mainly due to bots; or very
few user interactions. Both scenarios affect the decision of RS and imply
a shift over the distribution of items that are shown to the users. We
provide a proof of convergence of the algorithm to the minimizer of the
ranking loss, in the case where the latter is convex. Furthermore, experi-
mental results on five large-scale collections demonstrate the efficiency of
the proposed algorithm concerning the state-of-the-art approaches, both
regarding different ranking measures and computation time.

1 Introduction

With the increasing number of products available online, there is a surge of
interest in the design of automatic systems — generally referred to as Recom-
mender Systems (RS) — that provide personalized recommendations to users
by adapting to their taste. The study of RS has become an active area of re-
search these past years, especially since the Netflix Prize [1]. One characteristic
of online recommendation is the huge unbalance between the available number
of products and those shown to the users. Another aspect is the existence of bots
that interact with the system by providing too many feedback over some tar-
geted items; or many users that do not interact with the system over the items
that are shown to them. In this context, the main challenges concern the design
of a scalable and an efficient online RS in the presence of noise and unbalanced
data. These challenges have evolved in time with the continuous development

2 A. Burashnikova et al.

of data collections released for competitions or issued from e-commerce4. New
approaches for RS now primarily consider implicit feedback, mostly in the form
of clicks, that are easier to collect than explicit feedback which is in the form
of scores. Implicit feedback is more challenging to deal with as they do not de-
pict the preference of a user over items, i.e., (no)click does not necessarily mean
(dis)like [10]. For this case, most of the developed approaches are based on the
Learning-to-rank paradigm and focus on how to leverage the click information
over the unclick one without considering the sequence of users’ interactions.

In this paper, we propose a new SequentiAl RecOmmender System for im-
plicit feedback (called SAROS), that updates the model parameters user per user
over blocks of items constituted by a sequence of unclicked items followed by a
clicked one. The parameter updates are discarded for users who interact very
little or a lot with the system. For other users, the update is done by minimizing
the average ranking loss of the current model that scores the clicked item below
the unclicked ones in a corresponding block. Recently, many other approaches
that model the sequences of users feedback have been proposed, but they all suf-
fer from a lack of theoretical analysis formalizing the overall learning strategy.
In this work, we analyze the convergence property of the proposed approach and
show that in the case where the global ranking loss estimated over all users and
items is convex; then the minimizer found by the proposed sequential approach
converges to the minimizer of the global ranking loss. Experimental results con-
ducted on five large publicly available datasets show that our approach is highly
competitive compared to the state-of-the-art models and, it is significantly faster
than both the batch and the online versions of the algorithm.

The rest of this paper is organized as follows. Section 2 relates our work to
previously proposed approaches. Section 3 introduces the general ranking learn-
ing problem that we address in this study. Then, in Section 3.3, we present the
SAROS algorithm and provide an analysis of its convergence. Section 4 presents
the experimental results that support this approach. Finally, in Section 5, we
discuss the outcomes of this study and give some pointers to further research.

2 Related work

Two main approaches have been proposed for recommender systems. The first
one, referred to as Content-Based recommendation or cognitive filtering [18],
makes use of existing contextual information about the users (e.g., demographic
information) or items (e.g., textual description) for the recommendation. The
second approach referred to as Collaborative Filtering and undoubtedly the
most popular one [26], relies on past interactions and recommends items to users
based on the feedback provided by other similar users. Traditionally, collabora-
tive filtering systems were designed using explicit feedback, mostly in the form
of rating [12]. However, rating information is non-existent on most e-commerce
websites and is challenging to collect, and user interactions are often done se-
quentially. Recent RS systems focus on learning scoring functions using implicit

4 https://www.kaggle.com/c/outbrain-click-prediction

SAROS: Sequential Recommender System for Implicit Feedback 3

feedback, in order to assign higher scores to clicked items than to unclicked ones
rather than to predict the clicks as it is usually the case when we are dealing
with explicit feedback [7, 19, 31]. The idea here is that even a clicked item does
not necessarily express the preference of a user for that item, it has much more
value than a set of unclicked items for which no action has been made. In most
of these approaches, the objective is to rank the clicked item higher than the
unclicked ones by finding a suitable representation of users and items in a way
that for each user the ordering of the clicked items over unclicked ones is re-
spected by dot product in the joint learned space. One common characteristic
of publicly available collections for recommendation systems is the huge unbal-
ance between positive (click) and negative feedback (no-click) in the set of items
displayed to the users, making the design of an efficient online RS extremely
challenging. Some works propose to weight the impact of positive and negative
feedback directly in the objective function [17] to improve the quality. Another
approach is to sample the data over a predefined buffer before learning [14], but
these approaches do not model the shift over the distribution of positive and
negative items, and the system’s performance on new test data may be affected.
Many new approaches tackle the sequential learning problem for RS by taking
into account the temporal aspect of interactions directly in the design of a ded-
icated model and are mainly based on Markov Models (MM), Reinforcement
Learning (RL) and Recurrent Neural Networks (RNN) [3]. Recommender sys-
tems based on Markov Models, consider the sequential interaction of users as a
stochastic process over discrete random variables related to predefined user be-
havior. These approaches suffer from some limitations mainly due to the sparsity
of the data leading to a poor estimation of the transition matrix [23]. Various
strategies have been proposed to leverage the impact of sparse data, for example
by considering only the last frequent sequences of items and using finite mixture
models [23], or by combining similarity-based methods with high-order Markov
Chains [20]. Although it has been shown that in some cases the proposed ap-
proaches can capture the temporal aspect of user interactions but these models
suffer from high complexity and generally they do not pass the scale. Some other
methods consider RS as a Markov decision process (MDP) problem and solve it
using reinforcement learning (RL) [16, 28]. The size of discrete actions bringing
the RL solver to a larger class of problems is also a bottleneck for these ap-
proaches. Very recently Recurrent neural networks such as GRU or LSTM, have
been proposed for personalized recommendations [8, 27, 11], where the input of
the network is generally the current state of the session, and the output is the
predicted preference over items (probabilities for each item to be clicked next).
Our proposed strategy differs from other sequential based approaches in the way
that the model parameters are updated, at each time a block of unclicked items
followed by a clicked one is constituted; and by controlling the number of blocks
per user interaction. If for a given user, this number is below or above two prede-
fined thresholds found over the distribution of the number of blocks, parameter
updates for that particular user are discarded. Ultimately, we provide a proof of
convergence of the proposed approach.

4 A. Burashnikova et al.

3 Framework and Problem Setting

Throughout, we use the following notation. For any positive integer n, [n] de-
notes the set [n]

.
= {1, . . . , n}. We suppose that I .

= [M] and U .
= [N] are two

sets of indexes defined over items and users. Further, we assume that each pair
constituted by a user u and an item i is identically and independently distributed
according to a fixed yet unknown distribution DU,I .

At the end of his or her session, a user u ∈ U has reviewed a subset of
items Iu ⊆ I that can be decomposed into two sets: the set of preferred and
non-preferred items denoted by I+u and I−u , respectively. Hence, for each pair of
items (i, i′) ∈ I+u ×I−u , the user u prefers item i over item i′; symbolized by the
relation i�u i′. From this preference relation a desired output yu,i,i′ ∈ {−1,+1} is
defined over the pairs (u, i) ∈ U ×I and (u, i′) ∈ U ×I, such that yu,i,i′ = +1 if
and only if i�u i′. We suppose that the indexes of users as well as those of items
in the set Iu, shown to the active user u ∈ U , are ordered by time.

Finally, for each user u, parameter updates are performed over blocks of
consecutive items where a block Btu = Nt

u tΠt
u, corresponds to a time-ordered

sequence (w.r.t. the time when the interaction is done) of no-preferred items, Nt
u,

and at least one preferred one, Πt
u. Hence, I+u =

⋃
tΠ

t
u and I−u =

⋃
t Nt

u;∀u ∈ U .

3.1 Learning Objective

Our objective here is to minimize an expected error penalizing the misordering
of all pairs of interacted items i and i′ for a user u. Commonly, this objective is
given under the Empirical Risk Minimization (ERM) principle, by minimizing
the empirical ranking loss estimated over the items and the final set of users who
interacted with the system :

L̂u(ω)=
1

|I+u ||I−u |
∑
i∈I+u

∑
i′∈I−u

`u,i,i′(ω), (1)

and L(ω) = Eu
[
L̂u(ω)

]
, where Eu is the expectation with respect to users cho-

sen randomly according to the uniform distribution, and L̂u(ω) is the pairwise
ranking loss with respect to user u’s interactions. As in other studies, we repre-
sent each user u and each item i respectively by vectors Uu ∈ Rk and Vi ∈ Rk

in the same latent space of dimension k [13]. The set of weights to be found
ω = (U,V), are then matrices formed by the vector representations of users
U = (Uu)u∈[N] ∈ RN×k and items V = (Vi)i∈[M] ∈ RM×k. The minimization
of the ranking loss above in the batch mode with the goal of finding user and
item embeddings, such that the dot product between these representations in
the latent space reflects the best the preference of users over items, is a com-
mon approach. Other strategies have been proposed for the minimization of the
empirical loss (1), among which the most popular one is perhaps the Bayesian
Personalized Ranking (BPR) model [19]. In this approach, the instantaneous loss,

SAROS: Sequential Recommender System for Implicit Feedback 5

`u,i,i′ , is the surrogate regularized logistic loss for some hyperparameter µ ≥ 0:

`u,i,i′(ω) = log
(

1 + e−yi,u,i′U
>
u (Vi−Vi′)

)
+ µ(‖Uu‖22 + ‖Vi‖22 + ‖Vi′‖22) (2)

The BPR algorithm proceeds by first randomly choosing a user u, and then re-
peatedly selecting two pairs (i, i′) ∈ Iu × Iu.

In the case where one of the chosen items is preferred over the other one (i.e.
yu,i,i′ ∈ {−1,+1}), the algorithm then updates the weights using the stochastic
gradient descent method over the instantaneous loss (2). In this case, the ex-
pected number of rejected pairs is proportional to O(|Iu|2) [22] which may be
time-consuming in general. Another drawback is that user preference over items
depend mostly on the context where these items are shown to the user. A user
may prefer (or not) two items independently one from another, but within a
given set of shown items, he or she may completely have a different preference
over these items. By sampling items over the whole set of shown items, this effect
of local preference is unclear.

3.2 Algorithm SAROS

Another particularity of online recommendation which is not explicitly taken
into account by existing approaches is the bot attacks in the form of excessive
clicks over some target items. They are made to force the RS to adapt its rec-
ommendations toward these target items, or a very few interactions which in
both cases introduce biased data for the learning of an efficient RS. In order to
tackle these points, our approach updates the parameters whenever the number
of constituted blocks per user is lower and upper-bounded (Figure 1).

Fig. 1: A pictorial depiction of the sequential updates of weights (ωtu)1≤t≤B for a
user u ∈ U . The horizontal axis represents the sequence of interactions over items
ordered by time. Each update of weights ωtu; t ∈ {b, . . . , B} occurs whenever the
corresponding sets of negative interactions, Nt

u, and positive ones, Πt
u, exist, and

that these number of interactions is lower and upper-bounded. For a new user
u+ 1, the initial weights ω0

u+1 = ωBu are the ones obtained from the last update
of the previous user’s interactions.

6 A. Burashnikova et al.

In this case, at each time a block Btu = Nt
u t Πt

u is formed; weights are
updated by miniminzing the ranking loss corresponding to this block :

L̂Bt
u
(ωtu) =

1

|Πt
u||N

t
u|
∑
i∈Πt

u

∑
i′∈Nt

u

`u,i,i′(ω
t
u). (3)

The pseudo-code of SAROS is shown in the following. Starting from initial
weights ω0

1 chosen randomly for the first user. For each current user u, having
been shown Iu items, the sequential update rule consists in updating the weights,
block by block where after t updates; where the (t+1)th update over the current
block Btu = Nt

u tΠt
u corresponds to one gradient descent step over the ranking

loss estimated on these sets and which with the current weights ωtu writes,

ωt+1
u ← ωtu − η∇L̂Bt

u
(ωtu) (4)

Algorithm SAROS: SequentiAl RecOmmender System

Input: A time-ordered sequence (user and items)
{(u, (i1, . . . , i|Iu|)}Nu=1 drawn i.i.d. from DU,I
Input: maximal B and minimal b number of blocks allowed per
user u
Input: number of epochs E
Input: initial parameters ω0

1 , and (possibly non-convex) surro-
gate loss function `(ω)
for e ∈ E do

for u ∈ U do
Let Nt

u = ∅, Πt
u = ∅ be the sets of positive and negative

items, counter t = 0
for ik ∈ Iu do . Consider all items displayed to user u

while t ≤ B do
if u provides a negative feedback on item ik then

Nt
u ← Nt

u ∪ {ik}
else

Πt
u ← Πt

u ∪ {ik}
end if
if Nt

u 6= ∅ and Πt
u 6= ∅ and t ≤ B then

ωt+1
u ← ωtu − η

|Nt
u||Πt

u|

∑
i∈Πt

u

∑
i′∈Nt

u

∇`u,i,i′(ωtu)

t = t+ 1,Nt
u = ∅, Πt

u = ∅
end if

end while
end for
if t ≥ b then

ω0
u+1 = ωtu

else
ω0
u+1 = ω0

u

end if
end for

end for
Return: ω̄N =

∑
u∈U ω

0
u

To prevent from a very few
interactions or from bot at-
tacks, two thresholds b and B
are fixed over the parameter
updates. For a new user u+1,
the parameters are initialized
as the last updated weights
from the previous user’s in-
teractions in the case where
the corresponding number of
updates t was in the interval
[b, B]; i.e. ω0

u+1 = ωtu. On the
contrary case, they are set to
the same previous initial pa-
rameters; i.e., ω0

u+1 = ω0
u.

3.3 Convergence
analysis

We provide proofs of con-
vergence for the SAROS algo-
rithm under the typical hy-
pothesis that the system is
not instantaneously affected
by the sequential learning of
the weights. This hypothe-
sis stipulates that the gener-
ation of items shown to users
is independently and identi-
cally distributed with respect
to some stationary in time un-
derlying distribution DI , and

SAROS: Sequential Recommender System for Implicit Feedback 7

constitutes the main hypoth-
esis of almost all the exist-
ing studies. Furthermore, we
make the following technical
assumption.

Assumption 1 Let the loss
functions `u,i,i′(ω) and L(ω),
ω ∈ Rd be such that for some
absolute constants γ ≥ β > 0
and σ > 0 :

1. `u,i,i′(ω) is non-negative for any user u and a pair of items (i, i′);
2. `u,i,i′(ω) is twice continuously differentiable, and for any user u and a pair

of items (i, i′) one has γ‖ω − ω′‖2 ≥ ‖∇`u,i,i′(ω)−∇`u,i,i′(ω′)‖2, as well as
β‖ω − ω′‖2 ≥ ‖∇L(ω)−∇L(ω′)‖2,.

3. Variance of the empirical loss is bounded ED
∥∥∥∇L̂u(ω)−∇L(ω)

∥∥∥2
2
≤ σ2.

Moreover, there exist some positive lower and upper bounds b and B, such that
the number of updates for any u is within the interval [b, B] almost surely.

Our main result is the following theorem which provides a bound over the
deviation of the ranking loss with respect to the sequence of weights found by
the SAROS algorithm and its minimum in the case where the latter is convex.

Theorem 1. Let `u,i,i′(ω) and L(ω) satisfy Assumption 1. Then for any con-

stant step size η, verifying 0 < η ≤ min(1
βB , 1/

√
UB(σ2 + 3γ2/b)), and any set

of users U .
= [U]; algorithm SAROS iteratively generates a sequence {ω0

u}u∈U such
that

1

β
E‖∇L(ω0

u)‖22 ≤
βB∆2

L
u

+ 2∆L

√
Bσ2 + 3Bγ2/b

u
,

where ∆2
L = 2

β (L(ω0)− L(ω∗)), and the expectation is taken with respect to users

chosen randomly according to the uniform distribution pu = 1
N .

Furthermore, if the ranking loss L(ω) is convex, then for the sequence
{ω0

u}u∈U generated by algorithm SAROS and ω̄u =
∑
j≤u ω

0
j we have

L(ω̄u)− L(ω∗) ≤
βB∆2

ω

u
+ 2∆ω

√
Bσ2 + 3Bγ2/b

u
,

where ∆ω = ‖ω0 − ω∗‖22, and ω∗ = arg minω L(ω).

Proof. Sketch. Expectation of the empirical loss taken over a random block
Btu for a user u, equals to the expected loss for this user. Then by the law of

total expectation one has EDu

[
k−1

∑k
l=1∇L̂Bl

u
(ω)
]

= ∇L̂u(ω), where Du is the

8 A. Burashnikova et al.

conditional distribution of items for a fixed user u. The variance of the gradient
estimation over k blocks is bounded by 3γ2/k, as for any block after the next
to Btu and before the previous to Btu are conditionally independent for any fixed
Btu.

Let gtu be a gradient of the loss function taken for user u over block Btu:

gtu =
1

|N t
u||Πt

u|
∑

i∈Nt
u,i
′∈Πt

u

∇`u,i,i′(ωt−1u),

According to the notation of Algorithm SAROS let δtu = gtu−∇L(ω0
u) and ωt+1

u =

ωtu − ηgtu, ω0
u+1 = ω

|Bu|
u , and ω0

u+1 − ω0
u = η

∑
t∈Bu

gtu, where Bu is the set of
all interacted blocks corresponding to user u. Using the smoothness of the loss
function implied by Assumption 1, it comes :

L(ω0
u+1) = L(ω0

u)−
(
η̂u −

β

2
η̂2u

)
‖∇L(ω0

u)‖22

− (η̂u − βη̂2u)
∑
t∈Bu

〈
∇L(ω0

u),
δtu
|Bu|

〉
+
β

2
η̂2u
∑
t∈Bu

∥∥∥∥ δtu
|Bu|

∥∥∥∥2
2

(5)

where η̂u = |Bu|η. Then by re-arranging and summing up, we get

N∑
u=1

(
η̂u −

β

2
η̂2u

)
‖∇L(ωu)‖22 ≤ L(ω̄u)− L(ω∗)

−
N∑
u=1

(η̂u − βη̂2u)

〈
∇L(ωu),

∑
t∈Bu

δtu
|Bu|

〉
+
β

2

N∑
u=1

η̂2u

∥∥∥∥∥∑
t∈Bu

δtu
|Bu|

∥∥∥∥∥
2

2

As the stochastic gradient taken with respect to a block of items gives an
unbiased estimate of the gradient, thus

EDu

[〈
∇L(ωu),

∑
t∈Bu

δtu
|Bu|

〉∣∣∣∣ξu] = 0, (6)

where ξu is a set of users preceding u. As in the conditions of the theorem b ≤ |Bu|
almost surely, by the law of total variation, Varψ = E[Var(ψ|η)] + Var[E[ψ|η]]:

EDu

∥∥∥∥∥∑
t∈Bu

δtu
|Bu|

∥∥∥∥∥
2

2

≤ σ2 +
3γ2

b
(7)

where the first term on the right-hand side of Eq. (7) comes from Assumption 1,
and the second term is due to the variance estimate. Condition βηB ≤ 1 implies
η̂u − βη̂2u/2 ≥ η̂u/2, thus

1

β
ED ‖∇L(ω)‖22 ≤

1∑N
u=1 η̂u

[
2(L(ω0)− L(ω∗))

β
+

(
σ2 + 3

γ2

b

) N∑
u=1

η̂2u

]

SAROS: Sequential Recommender System for Implicit Feedback 9

The rest of the proof of the theorem comes along the same lines according
to the randomized stochastic gradient descent analysis [4]. �

The full proof is provided in the Supplementary. This result implies that
the loss over a sequence of weights (ω0

u)u∈U generated by the algorithm con-
verges to the true minimizer of the ranking loss L(ω) with a rate proportional to
O(1/

√
u). The stochastic gradient descent strategy implemented in the Bayesian

Personalized Ranking model (BPR) [19] also converges to the minimizer of the
ranking loss L(ω) with the same rate. However, the main difference between
BPR and SAROS is their computation time. As stated in section 3.1, the expected
number of rejected random pairs sampled by algorithm BPR before making one
update is O(|Iu|2) while with SAROS, blocks are created sequentially as and when
users interact with the system. For each user u, weights are updated whenever
a block is created, with the overall complexity of O(maxt(|Πt

u| × |N
t
u|)), with

maxt(|Πt
u| × |N

t
u|)� |Iu|2.

4 Experimental Setup and Results

In this section, we provide an empirical evaluation of our optimization strategy
on some popular benchmarks proposed for evaluating RS. All subsequently dis-
cussed components were implemented in Python3 using the TensorFlow library
5 and computed on Skoltech CDISE HPC cluster “Zhores” [30]. We first proceed
with a presentation of the general experimental set-up, including a description
of the datasets and the baseline models.

Datasets. We report results obtained on five publicly available datasets, for the
task of personalized Top-N recommendation on the following collections :

– ML-1M [6] and Netflix [2] consist of user-movie ratings, on a scale of
one to five, collected from a movie recommendation service and the Netflix
company. The latter was released to support the Netflix Prize competition
[2].For both datasets, we consider ratings greater or equal to 4 as positive
feedback, and negative feedback otherwise.

– We extracted a subset out of the Outbrain dataset from of the Kaggle
challenge6 that consisted in the recommendation of news content to users
based on the 1,597,426 implicit feedback collected from multiple publisher
sites in the United States.

– Kasandr7 dataset [25] contains 15,844,717 interactions of 2,158,859 users
in Germany using Kelkoo’s (http://www.kelkoo.fr/) online advertising
platform.

– Pandor8 is another publicly available dataset for online recommendation
[24] provided by Purch (http://www.purch.com/). The dataset records

5 https://www.tensorflow.org/.
6 https://www.kaggle.com/c/outbrain-click-prediction
7 https://archive.ics.uci.edu/ml/datasets/KASANDR
8 https://archive.ics.uci.edu/ml/datasets/PANDOR

10 A. Burashnikova et al.

Data |U| |I| Sparsity Avg. # of + Avg. # of −
ML-1M 6,040 3,706 .9553 95.2767 70.4690
Outbrain 49,615 105,176 .9997 6.1587 26.0377
Pandor 177,366 9,077 .9987 1.3266 10.3632
Netflix 90,137 3,560 .9914 26.1872 20.2765
Kasandr 2,158,859 291,485 .9999 2.4202 51.9384

Table 1: Statistics on the # of users and items; as well as the sparsity and
the average number of + (preferred) and − (non-preferred) items on ML-1M,
Netflix, Outbrain, Kasandr and Pandor collections after preprocessing.

Dataset |Strain| |Stest| postrain postest
ML-1M 797,758 202,451 58.82 52.39
Outbrain 1,261,373 336,053 17.64 24.73
Pandor 1,579,716 493,663 11.04 12.33
Netflix 3,314,621 873,477 56.27 56.70
RecSys’16 5,048,653 1,281,909 17.07 13.81
Kasandr 12,509,509 3,335,208 3.36 8.56

Table 2: Number of interactions used for train and test on each dataset, and the
percentage of positive feedback among these interactions.

2,073,379 clicks generated by 177,366 users of one of the Purch’s high-tech
website over 9,077 ads they have been shown during one month.

Table 1 presents some detailed statistics about each collection. Among these,
we report the average number of positive (click, like) feedback and the average
number of negative feedback. As we see from the table, Outbrain, Kasandr,
and Pandor datasets are the most unbalanced ones in regards to the number
of preferred and non-preferred items.

To construct the training and the test sets, we discarded users who did not
interact over the shown items and sorted all interactions according to time-based
on the existing time-stamps related to each dataset. Furthermore, we considered
80% of each user’s first interactions (both positive and negative) for training,
and the remaining for the test. Table 2 presents the size of the training and
the test sets as well as the percentage of positive feedback (preferred items) for
all collections ordered by increasing training size. The percentage of positive
feedback is inversely proportional to the size of the training sets, attaining 3%
for the largest, Kasandr collection.

We also analyzed the distributions of the number of blocks and their size for
different collections. Figure 2 (left) shows boxplots representing the logarithm
of the number of blocks through their quartiles for all collections. From these
plots, it comes out that the distribution of the number of blocks on Pandor,
Netflix and Kasandr are heavy-tailed with more than the half of the users
interacting no more than 10 times with the system. Furthermore, we note that
on Pandor the average number of blocks is much smaller than on the two

SAROS: Sequential Recommender System for Implicit Feedback 11

other collections; and that on all three collections the maximum numbers of
blocks are 10 times more than the average. These plots suggest that a very small
number of users (perhaps bots) have an abnormal interaction with the system
generating a huge amount of blocks on these three collections. To have a better
understanding, Figure 2 (right) depicts the number of blocks concerning their
size on Kasandr. The distribution of the number of blocks follows a power law
distribution and it is the same for the other collections that we did not report
for the sake of space. In all collections, the number of blocks having more than
5 items drops drastically. As the SAROS does not sample positive and negative
items for updating the weights, these updates are performed on blocks of small
size, and are made very often.

M
L-1

M

O
ut
br
ai
n

Pa
nd
or

N
et
fl
ix

K
as
an
dr

0

1

2

3

lo
g
1
0
(N

u
m

b
er

o
f

b
lo

ck
s)

1-5 5-10 10-15 15-20 20-25 25-30 30-35
0

0.5

1

1.5

·105

Size of the blocks

N
u

m
b

er
o
f

b
lo

ck
s

(a) (b)

Fig. 2: (a) Boxplots depicting the logarithm of the number of blocks through
their quartiles for all collections. The median (resp. mean) is represented by
the band (resp. diamond) inside the box. The ends of the whiskers represent the
minimum and the maximum of the values. (b) Distributions of negative feedback
over the blocks in the training set on Kasandr.

Compared approaches. To validate the sequential approach described earlier,
we compared the proposed SAROS algorithm9 with the following methods:

– MostPop is a non-learning based approach which consists in recommending
the same set of popular items to all users.

– Matrix Factorization (MF) [12], is a factor model which decomposes the ma-
trix of user-item interactions into a set of low dimensional vectors in the
same latent space, by minimizing a regularized least square error between
the actual value of the scores and the dot product over the user and item
representations.

9 The code is available on https://github.com/SashaBurashnikova/SAROS.

12 A. Burashnikova et al.

– BPR [19] corresponds to the model described in the problem statement above
(Section 3.1), a stochastic gradient-descent algorithm, based on bootstrap
sampling of training triplets, and BPRb the batch version of the model which
consists in finding the model parameters ω = (U,V) by minimizing the
global ranking loss over all the set of triplets simultaneously (Eq. 1).

– Prod2Vec [5], learns the representation of items using a Neural Networks
based model, called word2vec [15], and performs next-items recommendation
using the similarity between the representations of items.

– GRU4Rec+ [8] is an extended version of GRU4Rec [9] adopted to different loss
functions, that applies recurrent neural network with a GRU architecture
for session-based recommendation. The approach considers the session as
the sequence of clicks of the user that depends on all the previous ones for
learning the model parameters by optimizing a regularized approximation of
the relative rank of the relevant item which favors the preferred items to be
ranked at the top of the list.

– Caser [27] is a CNN based model that embeds a sequence of interactions
into a temporal image and latent spaces and find local characteristics of the
temporal image using convolution filters.

– SASRec [11] uses an attention mechanism to capture long-term semantics
and then predicts the next item to present based on a user’s action history.

Hyper-parameters of different models and the dimension of the embedded
space for the representation of users and items; as well as the regularisation pa-
rameter over the norms of the embeddings for BPR, BPRb, MF, Caser and SAROS

approaches were found by cross-validation. We fixed b and B, used in SAROS,
to respectively the minimum and the average number of blocks found on the
training set of each corresponding collection. With the average number of blocks
being greater than the median on all collections, the motivation here is to con-
sider the maximum number of blocks by preserving the model from the bias
brought by the too many interactions of the very few number of users. For more
details regarding the exact values for the parameters, see the Table 3.

Parameter ML Outbrain Pandor Netflix Kasandr

B 78 5 2 22 5
b 1 2 1 1 1

Learning rate .05 .05 .05 .05 .4

Table 3: Values for the SAROS parameters.

Evaluation setting and results. We begin our comparisons by testing BPRb,
BPR and SAROS approaches over the logistic ranking loss (Eq. 2) which is used
to train them. Results on the test, after training the models 30 minutes and
at convergence are shown in Table 4. BPRb (resp. SAROS) techniques have the
worse (resp. best) test loss on all collections, and the difference between their
performance is larger for bigger size datasets.

SAROS: Sequential Recommender System for Implicit Feedback 13

Dataset
Test Loss, Eq. (1)

30 min At convergence
BPRb BPR SAROS BPRb BPR SAROS

ML-1M 0.751 0.678 0.623 0.744 0.645 0.608
Outbrain 0.753 0.650 0.646 0.747 0.638 0.635
Pandor 0.715 0.671 0.658 0.694 0.661 0.651
Netflix 0.713 0.668 0.622 0.694 0.651 0.614
Kasandr 0.663 0.444 0.224 0.631 0.393 0.212

Table 4: Comparison between BPR, BPRb and SAROS approaches in terms on test
loss after 30 minutes of training and at convergence.

These results suggest that the local ranking between preferred and no-
preferred items present in the blocks of the training set reflects better the pref-
erence of users than the ranking of random pairs of items or their global ranking
without this contextual information. Furthermore, as in SAROS updates occur
after the creation of a block, and that the most of the blocks contain very few
items (Figure 2 - right), weights are updated more often than in BPR or BPRb.
This is depicted in Figure 3 which shows the evolution of the training error over
time for BPRb, BPR and SAROS on all collections. As we can see, the training error
decreases in all cases, and theoretically, the three approaches converge to the
same minimizer of the ranking loss (Eq. 1). However, the speed of convergence
is much faster with SAROS.

We also compare the performance of all the approaches on the basis of the
common ranking metrics, which are the Mean Average Precision at rank K
(MAP@K) over all users defined as MAP@K = 1

N

∑N
u=1 AP@K(u), where AP@K(u) is the

average precision of preferred items of user u in the top K ranked ones; and the
Normalized Discounted Cumulative Gain at rank K (NDCG@K) that computes the
ratio of the obtained ranking to the ideal case and allow to consider not only bi-

nary relevance as in Mean Average Precision, NDCG@K = 1
N

∑N
u=1

DCG@K(u)
IDCG@K(u) , where

DCG@K(u) =
∑K
i=1

2reli−1
log2(1+i)

, reli is the graded relevance of the item at position

i; and IDCG@K(u) is DCG@K(u) with an ideal ordering equals to
∑K
i=1

1
log2(1+i)

for

reli ∈ [0, 1] [21].
Table 5 presents MAP@5 and MAP@10 (top), and NDCG@5 and NDCG@10 (down) of
all approaches over the test sets of the different collections. The non-machine
learning method, MostPop, gives results of an order of magnitude lower than the
learning based approaches. Moreover, the factorization model MF which predicts
clicks by matrix completion is less effective when dealing with implicit feedback
than ranking based models especially on large datasets where there are fewer
interactions. We also found that embeddings found by ranking based models,
in the way that the user preference over the pairs of items is preserved in the
embedded space by the dot product, are more robust than the ones found by

14 A. Burashnikova et al.

Prod2Vec. When comparing GRU4Rec+ with BPR that also minimizes the same
surrogate ranking loss, the former outperforms it in case of Kasandr with a
huge imbalance between positive and negative interactions. This is mainly be-
cause GRU4Rec+ optimizes an approximation of the relative rank that favors
interacted items to be in the top of the ranked list while the logistic ranking
loss, which is mostly related to the Area under the ROC curve [29], pushes up
clicked items for having good ranks in average. However, the minimization of
the logistic ranking loss over blocks of very small size pushes the clicked item to
be ranked higher than the no-clicked ones in several lists of small size and it has
the effect of favoring the clicked item to be at the top of the whole merged lists
of items. Moreover, it comes out that SAROS is the most competitive approach,
performing better than other approaches over all collections even such as last
published Caser and SASRec.

5 Conclusion

The contributions of this paper are twofold. First, we proposed SAROS, a novel
learning framework for large-scale Recommender Systems that sequentially up-
dates the weights of a ranking function user by user over blocks of items ordered
by time where each block is a sequence of negative items followed by a last
positive one. The main hypothesis of the approach is that the preferred and no-
preferred items within a local sequence of user interactions express better the

0 10 20 30 40 50 60
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Time, min

T
ra
in
in
g
er
ro
r
L
(ω

)

BPRb
BPR

SAROS

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

Time, min.

T
ra
in
in
g
er
ro
r
L
(ω

)

BPRb
BPR

SAROS

(a) Outbrain (b) Pandor

0 10 20 30 40 50 60
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Time, min

T
ra
in
in
g
er
ro
r

L
(ω

)

BPRb
BPR

SAROS

0 10 20 30 40 50 60
0.4

0.5

0.6

0.7

Time, min

T
ra
in
in
g
er
ro
r
L
(ω

)

BPRb
BPR

SAROS

(c) Netflix (d) Kasandr

Fig. 3: Evolution of the loss on training sets for both BPRb, BPR and SAROS as a
function of time in minutes for all collections.

SAROS: Sequential Recommender System for Implicit Feedback 15

MAP@5 MAP@10

ML-1M Outbrain Pandor Netflix Kasandr ML-1M Outbrain Pandor Netflix Kasandr

MostPop .074 .007 .003 .039 .002 .083 .009 .004 .051 .3e-5
Prod2Vec .793 .228 .063 .669 .012 .772 .228 .063 .690 .012

MF .733 .531 .266 .793 .170 .718 .522 .267 .778 .176
BPRb .713 .477 .685 .764 .473 .688 .477 .690 .748 .488
BPR .826 .573 .734 .855 .507 .797 .563 .760 .835 .521

GRU4Rec+ .777 .513 .673 .774 .719 .750 .509 .677 .757 .720
Caser .718 .471 .522 .749 .186 .694 .473 .527 .733 .197
SASRec .776 .542 .682 .819 .480 .751 .534 .687 .799 .495
SAROS .837 .619 .750 .866 .732 .808 .607 .753 .846 .747

NDCG@5 NDCG@10

ML-1M Outbrain Pandor Netflix Kasandr ML-1M Outbrain Pandor Netflix Kasandr

MostPop .090 .011 .005 .056 .002 .130 .014 .008 .096 .002
Prod2Vec .758 .232 .078 .712 .012 .842 .232 .080 .770 .012

MF .684 .612 .300 .795 .197 .805 .684 .303 .834 .219
BPRb .652 .583 .874 .770 .567 .784 .658 .890 .849 .616
BPR .776 .671 .889 .854 .603 .863 .724 .905 .903 .650

GRU4Rec+ .721 .633 .843 .777 .760 .833 .680 .862 .854 .782
Caser .665 .585 .647 .750 .241 .787 .658 .666 .834 .276
SASRec .721 .645 .852 .819 .569 .832 .704 .873 .883 .625
SAROS .788 .710 .903 .865 .791 .874 .755 .913 .914 .815

Table 5: Comparison between MostPop, Prod2Vec, MF, BPRb, BPR, GRU4Rec+,
SASRec, Caser and SAROS approaches in terms of MAP@5 and MAP@10(top), and
NDCG@5 and NDCG@10(down). Best performance is in bold and the second best is
underlined.

user preference than when considering the whole set of preferred and no-preferred
items independently one from another. The approach updates the model param-
eters user per user over blocks of items constituted by a sequence of unclicked
items followed by a clicked one. The parameter updates are discarded for users
who interact very little or a lot with the system. The second contribution is
a theoretical analysis of the proposed approach which bounds the deviation of
the ranking loss concerning the sequence of weights found by the algorithm and
its minimum in the case where the loss is convex. Empirical results conducted
on five real-life implicit feedback datasets support our founding and show that
the proposed approach is significantly faster than the common batch and online
optimization strategies that consist in updating the parameters over the whole
set of users at each epoch, or after sampling random pairs of preferred and no-
preferred items. The approach is also shown to be highly competitive concerning
state of the art approaches on MAP and NDCG measures.

16 A. Burashnikova et al.

6 Acknowledgements

This work at Los Alamos was supported by the U.S. Department of Energy
through the Los Alamos National Laboratory as part of LDRD and the DOE
Grid Modernization Laboratory Consortium (GMLC). Los Alamos National
Laboratory is operated by Triad National Security, LLC, for the National Nu-
clear Security Administration of U.S. Department of Energy (Contract No.
89233218CNA000001).

References

1. J. Bennett and S. Lanning. The netflix prize. In Proceedings of KDD Cup and
Workshop, 2007.

2. J. Bennett, S. Lanning, et al. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35. New York, NY, USA., 2007.

3. T. Donkers, B. Loepp, and J. Ziegler. Sequential user-based recurrent neural net-
work recommendations. In Proceedings of the Eleventh ACM Conference on Rec-
ommender Systems, pages 152–160, 2017.

4. S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

5. M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan,
and D. Sharp. E-commerce in your inbox: Product recommendations at scale. In
Proceedings of SIGKDD, pages 1809–1818, 2015.

6. F. M. Harper and J. A. Konstan. The movielens datasets: History and context.
ACM Transactions of Interaction Intelligent Systems, 5(4):1–19, 2015.

7. X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online
recommendation with implicit feedback. In SIGIR, pages 549–558, 2016.

8. B. Hidasi and A. Karatzoglou. Recurrent neural networks with top-k gains for
session-based recommendations. In Proceedings of CIKM, pages 843–852, 2018.

9. B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommen-
dations with recurrent neural networks. In ICLR, 2016.

10. Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In IEEE ICDM, pages 263–272, 2008.

11. W. Kang and J. McAuley. Self-attentive sequential recommendation. In IEEE
International Conference on Data Mining, ICDM, pages 197–206, 2018.

12. Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 426–434, 2008.

13. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 8:30–37, 2009.

14. C.-L. Liu and X.-W. Wu. Large-scale recommender system with compact latent
factor model. Expert Systems and Applications, 64(C):467–475, Dec. 2016.

15. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781, 2013.

16. O. Moling, L. Baltrunas, and F. Ricci. Optimal radio channel recommendations
with explicit and implicit feedback. In RecSys ’12 Proceedings of the sixth ACM
conference on Recommender systems, pages 75–82. ACM, 2012.

17. R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class
collaborative filtering. In ICDM, pages 502–511, 2008.

SAROS: Sequential Recommender System for Implicit Feedback 17

18. M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The
adaptive web, pages 325–341. Springer, 2007.

19. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian
personalized ranking from implicit feedback. In UAI, pages 452–461, 2009.

20. H. Ruining and M. Julian. Fusing similarity models with markov chains for sparse
sequential recommendation. In IEEE ICDM, 2016.

21. H. Schutze, C. D. Manning, and P. Raghavan. Introduction to information retrieval,
volume 39. Cambridge University Press, 2008.

22. D. Sculley. Large scale learning to rank. In In NIPS 2009 Workshop on Advances
in Ranking, 2009.

23. G. Shani, D. Heckerman, and R. I. Brafman. An MDP-based recommender system.
Journal of Machine Learning Research, 6, 2005.

24. S. Sidana, C. Laclau, and M. R. Amini. Learning to recommend diverse items over
implicit feedback on PANDOR. In Proceedings of the 12th ACM Conference on
Recommender Systems, pages 427–431, 2018.

25. S. Sidana, C. Laclau, M. R. Amini, G. Vandelle, and A. Bois-Crettez. KASANDR:
A Large-Scale Dataset with Implicit Feedback for Recommendation. In Proceedings
SIGIR, pages 1245–1248, 2017.

26. X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques.
Advances in artificial intelligence, 2009.

27. J. Tang and K. Wang. Personalized top-n sequential recommendation via convolu-
tional sequence embedding. In ACM International Conference on Web Search and
Data Mining, 2018.

28. M. Tavakol and U. Brefeld. Factored MDPs for detecting topics of user sessions.
In RecSys ’14 Proceedings of the 8th ACM Conference on Recommender systems,
pages 33–40. ACM, 2014.

29. N. Usunier, M.-R. Amini, and P. Gallinari. A data-dependent generalisation error
bound for the auc. In Proceedings of the ICML 2005 Workshop on ROC Analysis
in Machine Learning, 2005.

30. I. Zacharov, R. Arslanov, M. Gunin, D. Stefonishin, S. Pavlov, O. Panarin, A. Mal-
iutin, S. G. Rykovanov, and M. Fedorov. Zhores - petaflops supercomputer for data-
driven modeling, machine learning and artificial intelligence installed in Skolkovo
Institute of Science and Technology. CoRR, abs/1902.07490, 2019.

31. R. Zhang, H. Bao, H. Sun, Y. Wang, and X. Liu. Recommender systems based on
ranking performance optimization. Frontiers of Computer Science, 10(2):270––280,
2016.

