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Abstract. Non-Intrusive Load Monitoring (NILM) approaches aim at
identifying the consumption of a single appliance from the total load pro-
vided by smart meters. Several research works based on Hidden Markov
Models (HMM) were developed for NILM where training is performed of-
fline. However, these approaches suffer from different issues: First, they
fail to generalize to unseen appliances with different configurations or
brands than the ones used for training. Second, obtaining data about all
active states of each appliance requires long time, which is impractical
for residents. Third, offline training requires storage of huge amount of
data, yielding to share resident consumption data with external servers
and causing privacy issues. Therefore, in this paper, a new approach is
proposed in order to tackle these issues. This approach is based on the
use of a HMM conditioned on discriminant contextual features (e.g., time
of usage, duration of usage). The conditional HMM (CHMM) is trained
online using data related to a single appliance consumption extracted
from aggregated load in order to adapt its parameters to the appliance
specificity’s (e.g., brand, configuration, etc.). Experiments are performed
using real data from publicly available data sets and comparative evalu-
ation are performed on a publicly available NILM framework.

Keywords: Non Intrusive Load Monitoring (NILM) · Load Disaggre-
gation · Hidden Markov Model · Online learning · Online Expectation
Maximization algorithm.

1 Introduction

Non-intrusive load monitoring or power disaggregation refers to the problem of
disaggregating single appliance consumption from the total electrical load in a
house. NILM has many practical applications in the smart grid development
in order to solve many challenges. For instance, it helps to reduce a consumer
electricity bill by providing details to consumers about the consumption of each
used appliance. Recently, many smart meters have been deployed in Europe.
However, resident feedback following the smart meter installation in households
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point out the need to meet protecting privacy requirement. A big issue facing
NILM deployment is the privacy loss because residents usually complain about
sharing their personal data with utility companies. A potential solution is to per-
form data processing at the household level where personal data are not shared
with external parts. A major advantage of the proposed approach in this paper
is to fully protect a consumer privacy. Indeed, the learning and disaggregation
modules could both be performed at the level of the smart meter thanks to the
low complexity of the proposed approach and on the fly treatment of the data.
Generally NILM systems include three main modules that are data acquisition,
model learning and load disaggregation [26]. In this paper, the learning mod-
ule is enhanced in order to process online. Data is gathered from smart meter
installed in households. A low sampling rate of 1/60 Hz (1 minute interval) is
considered in this paper because it is the real world sampling rate existing in
households. Indeed, smart meters with higher sampling rate are expensive for a
deployment in residential sector [21].
The NILM framework proposed in this paper is depicted in Figure 1. The pro-
posed approach is semi-supervised, performs online learning and disaggregation
using data gathered from low sampling rate smart meters in order to overcome
the discussed challenges in NILM. It pursues the following steps: First data pre-
processing is performed and data is analyzed in order to extract discriminating
features and prior generic models are created; Second, a method for appropriate
edge change detection and a new approach for selecting training windows of a
single appliance consumption extracted from the total load is proposed (blocks
2 and 3); Third, a new HMM conditioned on contextual features that we call
CHMM for NILM is proposed. Besides, an extended version of an online Ex-
pectation Maximization (EM) algorithm for estimating the CHMM parameters
is developed (block 4). The algorithm is adapted for NILM and propose a so-
lution to estimate correctly under represented states. Finally, disaggregation is
performed using the updated CHMM.
The reminder of this paper is organized as follows: section 2 is a discussion of
recent NILM works, their advantages and limits. Section 3 explains data pre-
processing performed and the generic models taken as prior. Section 4 develops
the edge change detection and training windows selection approach for NILM.
The proposed conditional HMM is formalized in section 5. The proposed online
parameter estimation approach is developed in section 6. Experiment results are
depicted and discussed in section 7. Section 8 concludes the paper and presents
future work.

2 Related work

A common category of NILM approaches assumes that sub-metered ground truth
data is available for training prior to performing disaggregation [15] [25]. These
approaches show promising accuracy results but they violate two requirements
of NILM that are generalization and unsupervised disaggregation. Another cat-
egory of approaches are often based on a signature database of appliances and
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Fig. 1: Proposed approach global diagram

classify appliances according to these signatures [2] [23]. However, it is impossi-
ble and very expensive to collect all appliances signatures in a database because
many instances (specific size, model, etc.) exist for each appliance category.
Several deep learning based approaches [9] [13] [24] have been proposed for
NILM. They showed very promising results regarding generalization to unseen
appliances and presented major improvement in terms of complexity. However
this performance still prone to: the need to high frequency data which is im-
practical in residential sector due to return of investment issues; the difficult
process of training; and sometimes dependency to labelled data. Unsupervised
and semi-supervised HMM based approaches, [15], [14], present the best com-
promise in terms of meeting NILM requirements and disaggregation accuracy
[17]. A bench of unsupervised approaches based on variants of Factorial Hidden
Markov Models (FHMM) have been proposed [11][8][18] [3]. These approaches
share almost the same scalability issues. Indeed, these approaches are not appli-
cable for a number of appliances greater than ten [17]. However, integrating non
traditional based features seems to alleviate this limitation [18]. Non traditional
features refer to contextual based and behavioural based features. Hour of the
day, day of the week and duration have been proposed as additional features
for FHMM [10] which improved the disaggregation accuracy, at the expense of
increasing the model complexity. Furthermore, time of the day and seasonal
context-based patterns have been incorporated to a recent NILM approach [7].
A whole year of usage data have been used for training in order to build us-
age patterns which is impractical for real world application. Power consumption
patterns of appliances and user presence have been investigated in [18]. The
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proposed inference algorithm is an extension to the AFAMAP (Additive Facto-
rial Approximate Maximum a Posteriori) disaggregation algorithm proposed in
[11] with contextual features. This extension shows promising results where the
precision increased by approximately 15%. Nevertheless, the approach is consid-
ered as supervised because the same appliances are used for training and testing
and its performance in the case of unseen appliances cannot be evaluated. As a
matter of conclusion, contextual features may be an important lever for power
disaggregation accuracy. However there is a lack in the state of the art of an
online algorithm for learning these features from a specific household.

3 Data pre-processing and prior generic models creation

The proposed approach takes advantage of publicly available appliance con-
sumption in databases in order to create prior generic models for each category
of appliances (i.e, fridge, microwave, stove,...). For each category denoted by c,
several instances exist (e.g., fridge 1, fridge 2,..., fridge N). These prior models
are used to help labelling after disaggregation and are updated based on data
stream readings from smart meters to best fit a particular household appliance.
Mainly, data pre-processing is performed on the data sets and M generic prior
models are created. The prior generic model for each appliance, is modeled as a
Hidden Markov Model (HMM) with parameters θc0 = (Ac0, G

c
0, v

c
0).

3.1 Number of states per appliance and Generic power profiles

Clustering analysis have been performed on the publicly available data sets in
order to set the number of states Q per appliance and approximate emission
distributions. Generic prior emission distributions have been approximated to
Gaussian distribution using different instances for each appliance category and
setting a prior on the mean of these distributions.

3.2 Generic contextual features distributions

Three additional distributions are considered as additional information that are
the distribution of usage duration per state for cooling appliances, the distribu-
tion of time of usage per hour of the day for entertainment appliances and some
kitchen devices and the difference between state consumption for states within
the same appliance. These distributions are obtained as the following:

– Generic Duration distribution: For cooling appliances, the state dura-
tion is not related to a user’s habits but related to the appliance internal
operational behavior. Duration represents an interesting discriminating gen-
eralized feature which could be generalized to unseen appliances especially to
distinguish between states from different appliances that have similar active
power consumption distribution. However, for these appliances, the usage
time is not a discriminating feature because cooling appliances consume con-
tinuously. Analysis have been performed and showed that state duration of
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cooling appliances could be generalized to Gaussian density with a Gaussian
prior on the mean of these distributions where:

Durmq ∼ N(

N∑
i=1

µcq,i

N
, max
i=1:N

σcq,i)

µcq ∼ N(0,

√√√√ ∑
j=1:N

(µcq,i − µcq)2

N
)

(1)

where q ∈ [1 : Q] and i ∈ [1 : N ] is the number of instances per appliance
category.

– Generic Usage time distribution: Data have been analyzed in func-
tion of usage time. Time of usage have been extracted from the timestamp
reported with active power at sampling instant. Data suggest that some ap-
pliances such as entertaining appliances (e.g., Laptop, TV, Stereo) are often
ON during specific hours of the day. These appliances’ times of usage could
be generalized over different households because it is concentrated over some
hours of the day ( after work, in the evening and before sleeping). General-
ization over different devices within the same appliance category has been
performed in the same manner as for duration.

– Difference Distribution between each appliance Power Profiles:
Difference between power consumption of two different states of the same
device has been studied. Difference between two states remains always the
same even if further appliances consume simultaneously [11][19]. Using the
consumption difference aims at detecting when states of the same appliance
are consuming successively in the aggregated load. The consumption differ-
ence between two emission probability distributions Xi ∼ Ni and Xj ∼ Nj ,
i, j ∈ {1, Q} has been approximated to a Gaussian distribution.

3.3 Prior adaptive Edge change thresholds

An adaptive edge change threshold is proposed. Edge change detection consists
in detecting if an appliance changes its state from one to another. A naive ap-
proach deployed in almost power disaggregation approaches [22][11] is to monitor
power consumption readings and to flag an event when the power change de-
viates beyond a fixed threshold. However, a fixed threshold could be within an
appliance variance when it is too small and hence detects false state changes.
Besides, choosing a large threshold may lead the system to loop state transitions
with small consumption. For this current work, the edge change is detected based
on an adaptive threshold δW that dynamically changes according to the detected
appliance state operating during the last observed window of observations. Sev-
eral thresholds are proposed and are computed according to the variance of the
emission distributions of the generic prior models. Indeed, a clustering is per-
formed on the different variances of appliances states consumption. The minimal
variance within each cluster i ∈ [1, Nbclusters] has been set as an event detection
threshold δi.
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4 Edge change detection and online training windows
selection

4.1 Problem formulation and complexity

Power consumption readings {yt} arrive in data streams. An edge change (∆t,t−1)
is detected if the active power consumption difference between yt and yt−1 is
greater than a threshold δi (see Figure 2). Let W denotes the current dynamic
window of observations. Its size is determined by the number of observations
received between the two last successive detected edge changes. δi is chosen ac-
cording to the appliance state denoted by xmq identified as operating during win-
dowW−1. Indeed, for each appliance state identified as operating duringW−1,
the proposed approach selects a different threshold δi where i ∈ [1, Nbclusters]
as explained above in section 3.3 and illustrated in Figure 2.

Fig. 2: Event detection example using the adaptive threshold δi

The proposed training window selection approach aims at extracting single
appliance consumption from the aggregated load to be used as training samples
for the HMM parameter estimation. The proposed training module is able to run
online and process data on the fly. It succeeds to overcome several shortcomings
facing offline training approaches in the state of the art as follows:

– Space complexity: The proposed approach requires the storage of only data
within W . Its space complexity is equal to O(|W | ∗D) where |W | is the
window length and D is the observations dimension; The length of W is
usually equal to fzw minutes of consumption data. The spatial complexity
of this approach is negligible compared to the spatial complexity of offline
training approaches [19] [10] [11] [8] which is equal to O(T ∗D). Indeed, these
approaches require the storage of the full training data (T ) which is equal
to several days of consumption data.

– Time complexity: The proposed approach is based on the Kullback Leibler
divergence and a posteriori probability estimation that have at the worst case
a temporal complexity of O(1). Besides, the proposed online EM algorithm
performs on the fly data processing and has a temporal complexity equal
to O(Q2) where Q is the number of an appliance states. This proposed
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approach has significantly a lower complexity compared to the state of the
art approaches based on the Forward Backward algorithm, which iterates
over the full training data T and has a temporal complexity of O(Q2T ) per
iteration.

4.2 The proposed training window selection method

As mentioned above, only data within the last window W is registered. Besides,
the training module memorizes sufficient statistics related to: i) the consumption
distribution denoted by Nest, ii) the difference distribution between (W,W − 1)
denoted by dNest and iii) the contextual features (time of the day, duration).
In the sequel, we enumerate the different scenarios that might explain an edge
change detection and propose a method that evaluates each scenario. The steps
of the proposed method are enumerated in block (3) of Figure 1. Two types of
edge changes ∆W,W−1 could be observed: a positive edge change and a negative
one.
On the one hand, a negative ∆W,W−1, is interpreted as the appliance state xmi ,
active within (W − 1), turns off when ∆W,W−1 is detected. In order to identify
xmi , the proposed method pursues the following steps: First, the distribution of
observations within (W − 1) is approximated to a Gaussian distribution Nest,
with a mean equal to |∆W,W−1|; Second, Nest is compared to all prior generic
model emission distributions {gmi }Mm=1 based on Kullback Leibler divergence. A
subset of most similar prior generic appliance states are selected and are com-
pared further by computing a posteriori probability of contextual features; A
score is computed for each potential active appliance state and the state having
the highest score is identified as the state operating during window (W − 1).
Finally, observations within W − 1 are feeded to the online EM algorithm to
update the parameters of the appliance m model.
On the other hand, a positive ∆W,W−1 could be explained by two scenarios as
follows:
First scenario: the edge change corresponds to an appliance state q of appli-
ance m′′ that was OFF within (W − 1) and turns ON during W . Let’s denote
by xmi ′ the state appliance that was identified active within W − 1. In this case
the mean power consumption of the new activated state xmq ′′ ≈ ∆W,W−1 and its
consumption distribution is approximated to Nest(∆W,W−1, σW ). The proposed
evaluation procedure adopted in this scenario consists in comparing the Kull-
back Leibler divergence between the estimated distribution Nest within W and
all prior generic models emission distributions of appliances categories. A subset
of most similar states is selected. Then a posteriori probability of the observed
contextual feature is calculated. The state having the maximal probability is
selected as potentially consuming during W .
Second scenario: The edge change corresponds to the same appliance m that
changes its active state (q1) during W − 1 to its second active state (q2) dur-
ing W . In this case the mean power consumption of xmq2 is approximated to
µmq2 ≈ ∆W,W−1 + µmq1 and its consumption distribution is approximated to



8 H. Salem, M. Sayed-Mouchaweh

Nest(µ
m
q2”, σW ). The difference distribution dNest observed within W is com-

pared to all prior generic difference distributions dxmi defined in section 3. Kull-
back Leibler divergence is computed between dNest and each prior generic differ-
ence distribution. A subset of most similar states is selected. Further comparison
is performed based on a posteriori probability of contextual features and a score
is computed. The state having the highest score is selected.
The two selected states from each potential scenario are compared according to
their mutual scores and the one having the highest score is identified as active.
For some observation windows, the proposed approach may not select any appli-
ance state as consuming duringW . Indeed, the proposed algorithm only selects a
window of observations where it confidently recognize an appliance is operating
based on both Kullback Leibler and Maximum a Posterior. Finally, the samples
within a selected window are used as training data for the proposed CHMM.

5 Conditional hidden Markov model(CHMM)

In this work, we suggest to condition the hidden state on the probability of
usage during hours of the day. The likelihood of appliance state q being active
during an hour of the day td p(x = q|t = td) follows a Multinomial distribution
of probabilities (h1,q, ..., htd,q, ..., h24,q) and a number of trials nh that is the
number of observations per hour where td ∈ {1, ..., 24} , ∀q ∈ {1, ..., Q} and∑24
td=1 htd,q = 1. Indeed, as shown in figure 3, appliances states have higher

probability to be active during some hours of the day than others. For a particular
household, the time of usage of appliances encapsulates the user habits and
it is interesting to learn these habits online. Therefore, the hidden states X

(a) (b)

(c) (d)

Fig. 3: Histograms of usage time probabilities over hours of the day: a) Lamp,
b) Television, c) Stereo, d) Entertainment

are conditioned on both the transition matrix A and a usage time matrix H.
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Henceforth, the proposed joint probability distribution over latent variables and
observed ones is given by equation (2) where θ = (v, g, A,H):

p (X1:T , Y1:T |θ) = p(x1|v)p(y1|x1)p(x1|htd)
T∏
t=2

[
p(xt|xt−1, A)p(xt|td,H)p(yt|xt, g)

]
(2)

An example of a washing machine model is represented in figure 4(a) and the
graphical representation of the CHMM is depicted in figure 4(b).

(a)
(b)

Fig. 4: (a): Example of a CHMM modeling a washing machine with four states,
(b): Conditional HMM graphical representation

6 Online Parameter Estimation: Online EM for NILM

The EM algorithm is one of the most popular algorithms for parameter infer-
ence in HMMs due to its convergence properties and robustness. An online EM
algorithm has been proposed by Cappé et al. [4]. The algorithm main objec-
tive is to train HMM with continuous observations on data streams. Data are
processed just one time and never stored. We opted to adapt this algorithm to
NILM and extend it to CHMM. In this work, this algorithm is enriched and
modified according to two main points: 1) A new approximate filter ψ(x) and
intermediate quantity ρh are added to the model in order to estimate recursively
the time of usage parameters; 2) A new decreasing sequence γn is proposed. This
new sequence ensures the learning of parameters related to under represented
states in training data. Indeed, some appliances states are rarely observed. A
second challenge facing the application of Online EM [4] to NILM, is that this
algorithm is designed to train only one HMM from data generated continuously
from the same model. This is not the case in NILM. Indeed, data are generated
from different models. Observations yt and yt+1 may be generated from different
models HMMi and HMMj where i, j ∈ {1,M}.
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6.1 The new time of usage parameter estimation

The proposed online EM algorithm for CHMM aims at learning a new matrix
H of size 24 × Q. Each row vector of H denotes the probabilities of each state
q to be active during the hour of the day td ∈ [1 : 24]. The sum of each row
has to be equal to one. In the online EM considered by [4], the leaned param-
eter θ is composed of the state transition matrix A and the mean vector and
covariance matrix associated with each of the q emission distribution gq. In such
a model, there are two distinct types of EM complete-data sufficient statistics
which give rise to two separate forms of the auxiliary function ρqn+1 and ρgn+1

and an approximate filter φn+1. However, in the proposed CHMM, a new type
of sufficient statistic related to the hour of the day usage probability is added.
Therefore, in addition to the two previous forms of the auxiliary function, a new
one is introduced and formulated according to equation (9) in algorithm 1 and
computes the expectation of the state j being active during the hour of the day
td according to the intermediate quantity 4 as follows:

ρhn+1(j, k, td; θ) =
1

n
Ev,θ

[
n∑
t=1

1{Xt = j, t = td}|Xn = k,

]
, (3)

Besides, a new approximate filter denoted by ψn+1 and a backward retrospective
probability denoted by rhn+1 are defined as formulated respectively in equations
(7) and (11) of algorithm 1. Finally, a new parameter update formula is proposed
for the maximization step in order to update hθn (Equation (13), algorithm 1).

6.2 New proposed weights

A well known problem of EM algorithm is the convergence rate. Indeed, the latter
depends on the initial parameters θ0 [6]. Besides, the weights γn+1 in equations
(8,9 and 10) have crucial importance for the rate of convergence. It is usually
chosen to form a positive decreasing sequence. A step size of γn = n−α is used in
[4] where α ∈ [0.5, 0.8]. New studies showed that a decreasing sequence equal to
Cn−α (C is a constant) reaches better rates of convergences [16]. Still, all these
fully decreasing sequences are proposed based on the assumption that observed
data are generated from all HMM states continuously which is not the case in
NILM. The decreasing sequence adopted in almost EM algorithms applies the
same factor (α) regardless of the observations. However, for under represented
states (case of unbalanced observations), the left hand side of equations (8,9
and 10) could be omitted due to a small value of γ and a small number of
observations.
In this current work, the decreasing sequence γn is considered as an adaptive
cooling schedule of a simulated annealing algorithm that could increase. The
application of a different cooling rate, that depends on the representation of
states, would allow the algorithm to best fit to rare observations. Hence, γn+1

continue to decrease if the consequent observations are generated from a state for
which training windows have been selected. We memorize a flag per appliance
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state to denote if a training window has been found for the considered state
or not. In the case of a first training window selected for an appliance state (a
HMM latent variable), γn+1 increases in order to give more important weights
to the observed data from the new observed state.

6.3 Online EM algorithm for Conditioned HMM

The auxiliary EM function is defined for the CHMM as follows:

Q(θ, θ′) =

Q∑
i=1

Q∑
j=1

Sqn(i, j) log a(i, j)× Shn(j) log h(td, j)

− 1

2

K∑
i=1

(
Sgn,2(i, θ)

v(i)
−

2µ(i)Sgn,1(i)

v(i)
+ Sgn,0

(
µ2(i)

v(i)
+ log v(i)

))
(4)

The proposed online EM for CHMM applied to NILM is described in algorithm
1. First prior parameters θ0 = (v0, Gθ0 , Aθ0 , Hθ0) are initialized where Aθ0 is the
initial transition matrix, Hθ0 is the initial hour usage probability matrix. Then
both initial values of the approximated filters φ̂0(x) and ψ̂0(x) are initialized [ al-
gorithm 1, line 2]. The auxiliary quantities (8, 9, 10) are initialized to zero. Then
for each new observation within a selected training window W , the approximate
filters φ and ψ are updated as formulated in (6) and (7). A test is performed in
order to verify the representation of states. The parameters update formulas of
the maximization step are calculated by maximizing equation (4) with respect to
aθ, hθ µθ and σθ and satisfying the constraints

∑Q
j a(i, j) = 1,

∑24
td=1 h(j, td) = 1

as formulated in (12)-(15).

7 Experimental Evaluation

We implemented the proposed approach using Matlab 2017b on a 64-bit win-
dows 10 PC with core intel(R) i5-3320M CPU processor and 8.00 GB of memory.
Experiments have been carried out on Nilm-Eval [5] framework for disaggrega-
tion of real-world electricity consumption data. We conducted our experiments
using three publicly available data sets for real world electricity consumption.
Two European databases named Tracebase [20] and Electricity Consumption
and Occupancy (ECO) [1] and an American database named the Reference En-
ergy Disaggregation Data Set (REDD) [12]. All the conducted experiments in
this paper are based on low frequency sampling data of 1/60 Hz (1 minute in-
terval) sampling rate. Each obtained result is an average of 10 independent runs
of the algorithm. Prior models have been built using both Tracebase and REDD
data sets to cover a maximal number of appliance categories. For each appliance
category, seven different appliance instances are used to build the prior models.
For each instance, the same number of samples (data) are used. We carried out
three kinds of experiments in order to test the proposed approach. All the car-
ried experiments are based on data from household 2 of ECO data set because
it contains the maximal number of appliances.
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Algorithm 1 Online Expectation Maximization (EM)
1: Initialization
2: Compute for x ∈ X

φ0(x) =
v(x)gθ̂0(x, y0)∑

x′∈X v(x
′)gθ̂0(x

′, y0)
, ψ0(x, td) =

hθ0(td, x)∑
td′∈[1:24] hθ0(td

′, x)
(5)

3: ρ̂q0(x) = 0, ρ̂h0 (x) = 0, ρ̂g0(x) = 0
4: Recursion
5: for n ≥ 0 do
6: Compute, for x ∈ X
7: Approximate filter Update

φ̂n+1(x) =

∑
x′∈X

φ̂n(x
′)aθ̂n(x

′, x)gθ̂n(x, yn+1)∑
x′,x”∈X

φ̂n(x′)aθ̂n(x
′, x”)gθ̂n(x”, yn+1)

, (6)

ψ̂n+1(x, td) =

∑
x′∈X

ψ̂n(x
′, tdn)hθ̂n,i(td, x)∑

td′∈[1:24]

∑
x′∈X

ψ̂n(x′)hθ̂n,i(td
′, x′)

(7)

8: Stochastic Approximation E-step
9: if flag == true then
10: γn+1 = γ1
11: else
12: γn+1 = (n+ 1)−α

13: end if

ρqn+1(i, j, k; θ) = γn+1δ(j − k)r̂n+1(i|j) + (1− γn+1)

Q∑
k′=1

ρ̂qn(i, j, k
′)r̂n+1(k

′|k), (8)

ρhn+1(j, k, td; θ) = γn+1δ(j−k)δ(t−td)r̂hn+1(j|td)+(1−γn+1)

Q∑
k′=1

ρ̂hn(j, k
′, td)r̂hn+1(j|td),

(9)

7.1 Evaluation of the proposed training window selection approach

The main goal of the first experiment is to evaluate the accuracy of the selected
training windows. Evaluations have been carried out in terms of True Positive
rate (TPR) and False Positives rate (FPR). True Positive rate measures the pro-
portion of actual appliance activation in the ground truth data (plug level data)
identified correctly by the proposed approach. False positive rate measures the
proportion of appliance activation identified by the proposed approach and do
not exist in the ground truth data. The intended metrics verify that the selected
windows for training correspond truly to windows where a state of a specific
appliance is active. The obtained results shown in Table 1 highlight that the
proposed approach succeeds to find online training windows for all appliances.
The evaluation have been performed on data from two weeks of consumption.
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ρgn+1(i, k) = γn+1δ(i− k)s(Yn+1) + (1− γn+1)

Q∑
k′=1

ρ̂gn(i, k
′, θ)r̂n+1(k

′|k), (10)

Where:

rn+1(i|j) =
φ̂n(i)qθ̂n(i, j)∑Q

i′=1 φ̂n(i
′)qθ̂n(i

′, j)
, rhn+1(j|td) =

ψ̂n(j, td)hθ̂n(td, j)∑24
td′=1 ψ̂n(j, td

′)hθ̂n(td
′, j)

(11)

if n ≥ nmin then Update the parameters:

aθn(i, j) =
Sqn(i, j)∑Q
j=1 S

q
n(i, j)

(12)

hθn(td, i) =
Shn(td, i)∑Q
j=1 S

h
n(td, j)

(13)

µθn(i) =
Sgn,1(i)

Sgn,0(i)
(14)

σθn(i) = µ2
θn(i) +

Sgn,2(i)− S
g
n,1(i)× µθn(i)

Sgn,0(i)
(15)

else set θ̂n+1 = θ̂n end if=0

The approach shows also robustness to noise. For instance, appliances that have
never been ON (i.e., the kettle) during the test period, have not been identi-
fied as active (FP=0). Unfortunately, the fridge and freezer false positive rates
are important. However, this is a common problem because these appliances
are consuming continuously and their steady state is frequently confused with
states from different appliances. These results also reveal that duration feature
considered for cooling appliances is not discriminating enough.

Table 1: Accuracy evaluation of detected training windows
Fridge Dishwasher Laptop Freezer TV Air Exhaust Lamp Kettle Stereo Tablet Entertainment Stove

TPR 0.42 0.38 0.49 0.41 0.43 0.29 0.35 0 0.27 0 0.44 0.56
FPR 0.31 0.06 0.16 0.68 0.02 0.01 0 0 0 0 0.06 0.01

7.2 Evaluation of the proposed Online EM

The second kind of experiment evaluates the impact of the new proposed weights
γ on the accuracy of the parameter estimation. A comparison between the effect
of γ used in the online EM algorithm [4] and the one proposed in this work is
conducted on the entertainment appliance. Indeed, the entertainment appliance
is a typical example of appliances that have imbalanced represented states. Fig-
ure ?? (c) shows data observed within the two first days of consumption of the
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appliance in household 2. We can observe that the state ON 2 is under repre-
sented compared to the two other states and is rarely active. For the scope of
this experiment, we focused on the mean update of the appliance state emission
distributions. We can visually distinguish three different states where the OFF
state has a mean around 0 watts, the ON 1 state has a mean around 160 watts
and the ON 2 state has a mean around 40 watts. Figure ??(a) shows that the on-
line EM algorithm proposed in [4] converges to a mean around 100 watts for the
case of the state ON2. This is explained by the fact that the algorithm confuses
between ON 1 and ON 2 states. However, the adaptive γ sequence proposed in
this work helps the algorithm to converge accurately to the real state mean as
shown in figure ??(b) because it gives more important weights to observations
generated from the new detected state.

7.3 Load disaggregation evaluation

The third kind of experiments intend to evaluate the impact of conditioning
on the time of usage probabilities on the disaggregation results. Accuracy has
been evaluated using the same data from household 2. Evaluation have been
performed on 90 days of consumption data. Accuracy reports how much power
is being consumed by an appliance compared to its actual consumption and is
computed as follows [11]:

Acc = 1−
∑T
t=1|ŷmt − ymt |
2
∑T
t=1 y

m
t

where ymt is the real consumption of appliance m and ŷmt is the estimated con-
sumption of appliance m during time t.
Three variants of HMM are compared where the first variant is a HMM trained
on sub-metered data denoted by "Supervised HMM". The second variant, is a
HMM trained using sample data selected online using the method developed
in section 4.2 and using the online EM proposed in [4]. This second variant is
denoted by "Online HMM". The third variant is the CHMM formalized in sec-
tion 5, trained on data samples selected using the method developed in section
4.2 and the online EM for CHMM developed in section 6. This third variant
is denoted by "Online CHMM". Results are depicted in table 2. The proposed
CHMM outperforms the two other models mainly on the lamp, dishwasher,
stereo and laptop appliances. This improvement highlights that time of usage is
an important discriminating feature for the aforementioned appliances. However,
accuracy results obtained for cooling appliances are approximately the same for
the three models. This could be interpreted as the time of usage has no additional
impact on disaggregation for these appliances. Moreover, the results obtained by
comparing the first two models "Supervised HMM" and "Online HMM" show
that both models give similar accuracy results which confirms that training the
model online gives the same results as using sub-metered data.
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Table 2: Accuracy results using the proposed CHMM trained online, a supervised
HMM trained on sub-metered data and a HMM trained online

Fridge Freezer Lamp Dishwasher Stereo Laptop Tablet Air Exhaust Entertainment Kettle Stove TV
Supervised

HMM
0.46
± 0.02

0.49
± 0.04

0.59
± 0.12

0.56
±0.11

0.58
±0.08

0.52
±0.09

0.49
± 0.05

0.51
± 0.08

0.57
± 0.07

0.55
± 0.04

0.49
± 0.07

0.53
± 0.04

Online
HMM

0.47
±0.03

0.5
±0.03

0.58
±0.09

0.55
±0.15

0.51
±0.08

0.33
±0.12

0.49
± 0.01

0.53
± 0.09

0.53
± 0.05

0.54
± 0.01

0.49
± 0.03

0.49
± 0.03

Online
CHMM

0.57
±0.02

0.52
±0.03

0.85
±0.02

0.83
± 0.02

0.64
±0.03

0.77
±0.01

0.5
± 0.04

0.69
± 0.04

0.75
± 0.08

0.68
± 0.02

0.81
±0.03

0.86
± 0.02

8 Conclusion

In this paper, a semi-supervised approach performing online learning for Non-
intrusive Load Monitoring (NILM) was proposed. The aim is to develop an al-
gorithm that can be embedded in a smart meter in order to alleviate the privacy
issues facing NILM. The proposed approach succeeded to extract training sam-
ples from the aggregated load online for each appliance. Training using samples
selected from the aggregated load gave the same accuracy results as training on
sub-metered data. Besides, a new conditional hidden Markov model (CHMM)
that condition on usage time was proposed for NILM. An online Expectation
Maximization algorithm was developed to learn CHMM parameters. Disaggre-
gation based on the proposed CHMM improved accuracy results especially for
appliances such as: the lamp, the dishwasher, the stereo and the laptop.
Future work will consider a conditional factorial hidden Markov model (CFHMM)
where the time of usage will be used to block sample for a particular hour of the
day on a subset of active appliances. The aim of this blocked sampling is to de-
crease the computational complexity of inference algorithms in factorial hidden
Markov models.
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