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Abstract. Recently, generating adversarial examples has become an
important means of measuring robustness of a deep learning model.
Adversarial examples help us identify the susceptibilities of the model
and further counter those vulnerabilities by applying adversarial training
techniques. In natural language domain, small perturbations in the form
of misspellings or paraphrases can drastically change the semantics of
the text. We propose a reinforcement learning based approach towards
generating adversarial examples in black-box settings. We demonstrate
that our method is able to fool well-trained models for (a) IMDB sentiment
classification task and (b) AG’s news corpus news categorization task with
significantly high success rates. We find that the adversarial examples
generated are semantics-preserving perturbations to the original text.

Keywords: Natural Language Processing · Adversarial Examples ·
Black-box models · Reinforcement Learning.

1 Introduction

Adversarial examples are generally minimal perturbations applied to the input
data in an effort to expose the regions of the input space where a trained
model performs poorly. Prior works [5, 36] have demonstrated the ability of
an adversary to evade state-of-the-art classifiers by carefully crafting attack
examples which can be even imperceptible to humans. Following such approaches,
there has been a number of techniques aimed at generating adversarial examples
[29, 41]. Depending on the degree of access to the target model, an adversary
may operate in one of the two different settings: (a) black-box setting, where
an adversary doesn’t have access to target model’s internal architecture or its
parameters, (b) white-box setting, where an adversary has access to the target
model, its parameters, and input feature representations. In both these settings,
the adversary cannot alter the training data or the target model itself. Depending
on the purpose of the adversary, adversarial attacks can be categorized as (a)
targeted attack and (b) non-targeted attack. In a targeted attack, the output
category of a generated example is intentionally controlled to a specific target
category with limited change in semantic information. While a non-targeted
attack doesn’t care about the category of misclassified results.
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Most of the prior work has focused on image classification models where
adversarial examples are obtained by introducing imperceptible changes to pixel
values through optimization techniques [22, 15]. However, generating natural
language adversarial examples can be challenging mainly due to the discrete
nature of text samples. Continuous data like image or speech is much more
tolerant to perturbations compared to text [13]. In textual domain, even a small
perturbation is clearly perceptible and can completely change the semantics of the
text. Another challenge for generating adversarial examples relates to identifying
salient areas of the text where a perturbation can be applied successfully to fool
the target classifier. In addition to fooling the target classifier, the adversary is
designed with different constraints depending on the task and its motivations
[11]. In our work, we focus on constraining our adversary to craft examples with
semantic preservation and minimum perturbations to the input text.

Given different settings of the adversary, there are other works that have
designed attacks in “gray-box” settings [6, 14, 30]. However, the definitions of
“gray-box” attacks are quite different in each of these approaches. In this paper,
we focus on “black-box” setting where we assume that the adversary possesses a
limited set of labeled data, which is different from the target’s training data, and
also has an oracle access to the system, i.e., one can query the target classifier
with any input and get its corresponding predictions. We propose an effective
technique to generate adversarial examples in a black-box setting. We develop
an Adversarial Example Generator (AEG) model that uses a reinforcement
learning framing to generate adversarial examples. We evaluate our models
using a word-based [20] and character-based [42] text classification model on
benchmark classification tasks: sentiment classification and news categorization.
The adversarial sequences generated are able to effectively fool the classifiers
without changing the semantics of the text. Our contributions are as follows:

– We propose a black-box non-targeted attack strategy by combining ideas of
substitute network and adversarial example generation. We formulate it as a
reinforcement learning task.

– We introduce an encoder-decoder that operates over words and characters of
an input text and empowers the model to introduce word and character-level
perturbations.

– We adopt a self-critical sequence training technique to train our model to
generate examples that can fool or increase the probability of misclassification
in text classifiers.

– We evaluate our models on two different datasets associated with two different
tasks: IMDB sentiment classification and AG’s news categorization task. We
run ablation studies on various components of the model and provide insights
into decisions of our model.

2 Related Work

Generating adversarial examples to bypass deep learning classification models
have been widely studied. In a white-box setting, some of the approaches include
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gradient-based [19, 13], decision function-based [29] and spatial transformation
based perturbation techniques[41]. In a black-box setting, several attack strategies
have been proposed based on the property of transferability [36]. Papernot et
al. [32, 31] relied on this transferability property where adversarial examples,
generated on one classifier, are likely to cause another classifier to make the
same mistake, irrespective of their architecture and training dataset. In order to
generate adversarial samples, a local substitute model was trained with queries
to the target model. Many learning systems allow query accesses to the model.
However, there is little work that can leverage query-based access to target models
to construct adversarial samples and move beyond transferability. These studies
have primarily focused on image-based classifiers and cannot be directly applied
to text-based classifiers.

While there is limited literature for such approaches in NLP systems, there
have been some studies that have exposed the vulnerabilities of neural networks
in text-based tasks like machine translations and question answering. Belinkov
and Bisk [4] investigated the sensitivity of neural machine translation (NMT) to
synthetic and natural noise containing common misspellings. They demonstrate
that state-of-the-art models are vulnerable to adversarial attacks even after a
spell-checker is deployed. Jia et al. [17] showed that networks trained for more
difficult tasks, such as question answering, can be easily fooled by introducing
distracting sentences into text, but these results do not transfer obviously to
simpler text classification tasks. Following such works, different methods with the
primary purpose of crafting adversarial example have been explored. Recently,
a work by Ebrahimi et al. [9] developed a gradient-based optimization method
that manipulates discrete text structure at its one-hot representation to generate
adversarial examples in a white-box setting. In another white-box based attack,
Gong et al. [12] perturbed the word embedding of given text examples and
projected them to the nearest neighbour in the embedding space. This approach
is an adaptation of perturbation algorithms for images. Though the size and
quality of embedding play a critical role, this targeted attack technique ensured
that the generated text sequence is intelligible.

Alzantot et al. [1] proposed a black-box targeted attack using a population-
based optimization via genetic algorithm [2]. The perturbation procedure consists
of random selection of words, finding their nearest neighbours, ranking and sub-
stitution to maximize the probability of target category. In this method, random
word selection in the sequence to substitute were full of uncertainties and might
be meaningless for the target label when changed. Since our model focuses on
black-box non-targeted attack using an encoder-decoder approach, our work is
closely related to the following techniques in the literature: Wong (2017) [39],
Iyyer et al. [16] and Gao et al. [10]. Wong (2017) [39] proposed a GAN-inspired
method to generate adversarial text examples targeting black-box classifiers.
However, this approach was restricted to binary text classifiers. Iyyer et al. [16]
crafted adversarial examples using their proposed Syntactically Controlled Para-
phrase Networks (SCPNs). They designed this model for generating syntactically
adversarial examples without compromising on the quality of the input semantics.
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The general process is based on the encoder-decoder architecture of SCPN. Gao
et al. [10] implemented an algorithm called DeepWordBug that generates small
text perturbations in a black box setting forcing the deep learning model to make
mistakes. DeepWordBug used a scoring function to determine important tokens
and then applied character-level transformations to those tokens. Though the
algorithm successfully generates adversarial examples by introducing character-
level attacks, most of the introduced perturbations are constricted to misspellings.
The semantics of the text may be irreversibly changed if excessive misspellings
are introduced to fool the target classifier. While SCPNs and DeepWordBug
primary rely only on paraphrases and character transformations respectively
to fool the classifier, our model uses a hybrid word-character encoder-decoder
approach to introduce both paraphrases and character-level perturbations as a
part of our attack strategy. Our attacks can be a test of how robust the text
classification models are to word and character-level perturbations.

3 Proposed Attack Strategy

Let us consider a target model T and (x, l) refers to the samples from the dataset.
Given an instance x, the goal of the adversary is to generate adversarial examples
x′ such that T (x′) 6= l, where l denotes the true label i.e take one of the K classes
of the target classification model. The changes made to x to get x′ are called
perturbations. We would like to have x′ close to the original instance x. In a
black box setting, we do not have knowledge about the internals of the target
model or its training data. Previous work by Papernot et al. [32] train a separate
substitute classifier such that it can mimic the decision boundaries of the target
classifier. The substitute classifier is then used to craft adversarial examples.
While these techniques have been applied for image classification models, such
methods have not been explored extensively for text.

We implement both the substitute network training and adversarial example
generation using an encoder-decoder architecture called Adversarial Examples
Generator (AEG). The encoder extracts the character and word information
from the input text and produces hidden representations of words considering its
sequence context information. A substitute network is not implemented separately
but applied using an attention mechanism to weigh the encoded hidden states
based on their relevance to making predictions closer to target model outputs.
The attention scores provide certain level of interpretability to the model as
the regions of text that need to perturbed can be identified and visualized. The
decoder uses the attention scores obtained from the substitute network, combines
it with decoder state information to decide if perturbation is required at this state
or not and finally emits the text unit (a text unit may refer to a word or character).
Inspired by a work by Luong et al. [26], the decoder is a word and character-
level recurrent network employed to generate adversarial examples. Before the
substitute network is trained, we pretrain our encoder-decoder model on common
misspellings and paraphrase datasets to empower the model to produce character
and word perturbations in the form of misspellings or paraphrases. For training
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substitute network and generation of adversarial examples, we randomly draw
data that is disjoint from the training data of the black-box model since we
assume the adversaries have no prior knowledge about the training data or
the model. Specifically, we consider attacking a target classifier by generating
adversarial examples based on unseen input examples. This is done by dividing
the dataset into training, validation and test using 60-30-10 ratio. The training
data is used by the target model, while the unseen validation samples are used
with necessary data augmentation for our AEG model. We further improve our
model by using a self-critical approach to finally generate better adversarial
examples. The rewards are formulated based on the following goals: (a) fool the
target classifier, (b) minimize the number of perturbations and (c) preserve the
semantics of the text. In the following sections, we explain the encoder-decoder
model and then describe the reinforcement learning framing towards generation
of adversarial examples.

3.1 Background and Notations

Most of the sequence generation models follow an encoder-decoder framework
[35, 8, 18] where encoder and decoder are modelled by separate recurrent neural
networks. Usually these models are trained using a pair of text (x, y) where
x = [x1, x2.., xn] is the input text and the y = [y1, y2.., ym] is the target text to
be generated. The encoder transforms an input text sequence into an abstract
representation h. While the decoder is employed to generate the target sequence
using the encoded representation h. However, there are several studies that have
incorporated several modifications to the standard encoder-decoder framework
[3, 26, 27].

Encoder Based on Bahdanau et al. [3], we encode the input text sequence using
bidirectional gated recurrent units (GRUs) to encode the input text sequence x.

Formally, we obtain an encoded representation given by:
←→
ht =

←−
ht +

−→
ht .

Decoder The decoder is a forward GRU implementing an attention mechanism
to recognize the units of input text sequence relevant for the generation of the
next target work. The decoder GRU generates the next text unit at time step
j by conditioning on the current decoder state sj , context vector cj computed
using attention mechanism and previously generated text units. The probability
of decoding each target unit is given by:

p(yj |y<j , h) = softmax(s̃j) (1)

s̃j = fd([cj ; sj ]) (2)

where fd is used to compute a new attentional hidden state s̃j . Given the encoded

input representations
←→
H = {

←→
h1 , ...,

←→
hn} and the previous decoder GRU state

sj−1, the context vector at time step j is computed as: cj = Attn(
←→
H , sj−1).
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Attn(·, ·) computes a weight αjt indicating the degree of relevance of an input
text unit xt for predicting the target unit yj using a feed-forward network fattn.
Given a parallel corpus D, we train our model by minimizing the cross-entropy
loss: J =

∑
(x,y)∈D −logp(y|x).

4 Adversarial Examples Generator (AEG) Architecture

In this task of adversarial example generation, we have black-box access to the
target model; the generator is not aware of the target model architecture or
parameters and is only capable of querying the target model with supplied inputs
and obtaining the output predictions. To enable the model to have capabilities to
generate word and character perturbations, we develop a hybrid encoder-decoder
model, Adversarial Examples Generator (AEG), that operates at both word
and character level to generate adversarial examples. Below, we explain the
components of this model which have been improved to handle both word and
character information from the text sequence.

4.1 Encoder

The encoder maps the input text sequence into a sequence of representations using
word and character-level information. Our encoder (Figure 1) is a slight variant of
Chen et al.[7]. This approach providing multiple levels of granularity can be useful
in order to handle rare or noisy words in the text. Given character embeddings

E(c) = [e
(c)
1 , e

(c)
2 , ...e

(c)
n′ ] and word embeddings E(w) = [e

(w)
1 , e

(w)
2 , ...e

(w)
n ] of the

input, starting (pt) and ending (qt) character positions at time step t, we define

inside character embeddings as: E
(c)
I = [e

(c)
pt , ...., e

(c)
qt ] and outside embeddings

as: E
(c)
O = [e

(c)
1 , ...., e

(c)
pt−1; e

(c)
qt+1, ..., e

(c)
n′ ]. First, we obtain the character-enhanced

word representation
←→
ht by combining the word information from E(w) with the

character context vectors. Character context vectors are obtained by attending
over inside and outside character embeddings. Next, we compute a summary

vector S over the hidden states
←→
ht using an attention layer expressed as Attn(

←→
H ).

To generate adversarial examples, it is important to identify the most relevant
text units that contribute towards the target model’s prediction and then use
this information during the decoding step to introduce perturbation on those
units. Hence, the summary vector is optimized using target model predictions
without back propagating through the entire encoder. This acts as a substitute
network that learns to mimic the predictions of the target classifier.

4.2 Decoder

Our AEG should be able to generate both character and word level perturbations
as necessary. We achieve this by modifying the standard decoder [3, 27] to have
two-level decoder GRUs: word-GRU and character-GRU (see Figure 2). Such
hybrid approaches have been studied to achieve open vocabulary NMT in some of
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 Information
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Computing Word 
Information

Attention Sht1 H 

Fig. 1. Illustration of Encoder.

the previous work like Wu et al. [40] and Luong et al. [26]. Given the challenge that
all different word misspellings cannot fit in a fixed vocabulary, we leverage the
power of both words and characters in our generation procedure. The word-GRU

uses word context vector c
(w)
j by attending over the encoder hidden states

←→
ht .

Once the word context vector c
(w)
j is computed, we introduce a perturbation vector

vp to impart information about the need for any word or character perturbations
at this decoding step. We construct this vector using the word-GRU decoder

state s
(w)
j , context vector c

(w)
j and summary vector S from the encoder as:

vp = fp(s
(w)
j , c

(w)
j , S) (3)

We modify the the Equation (2) as: s̃
(w)
j = f

(w)
d ([c

(w)
j ; s

(w)
j ; vp]). The character-

GRU will decide if the word is emitted with or without misspellings. We don’t
apply step-wise attention for character-GRU, instead we initialize it with the
correct context. The ideal candidate representing the context must combine infor-

mation about: (a) the word obtained from c
(w)
j , s

(w)
j , (b) its character alignment

with the input characters derived from character context vector c
(c)
j with respect

to the word-GRU’s state and (c) perturbation embedded in vp. This yields,

c
(c)
j = Attn(E(c), s

(w)
j ) (4)

s̃
(c)
j = f

(c)
d ([c

(w)
j ; s

(w)
j ; vp; c

(c)
j ]) (5)

Thus, s̃
(c)
j is initialized to the character-GRU only for the first hidden state.

With this mechanism, both word and character level information can be used to
introduce necessary perturbations.
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Fig. 2. Illustration of the word and character decoder.

5 Training

5.1 Supervised Pretraining with Teacher Forcing

The primary purpose of pretraining AEG is to enable our hybrid encoder-decoder
to encode both character and word information from the input example and
produce both word and character-level transformations in the form of paraphrases
or misspellings. Though the pretraining helps us mitigate the cold-start issue, it
does not guarantee that these perturbed texts will fool the target model. There
are large number of valid perturbations that can be applied due to multiple ways
of arranging text units to produce paraphrases or different misspellings. Thus,
minimizing Jmle is not sufficient to generate adversarial examples.

Dataset Collection In this paper, we use paraphrase datasets like PARANMT-
50M corpus[37], Quora Question Pair dataset 1 and Twitter URL paraphrasing
corpus [23]. These paraphrase datasets together contains text from various sources:
Common Crawl, CzEng1.6, Europarl, News Commentary, Quora questions, and
Twitter trending topic tweets. We do not use all the data for our pretraining.
We randomly sample 5 million parallel texts and augment them using simple
character-transformations (eg. random insertion, deletion or replacement) to
words in the text. The number of words that undergo transformation is capped
at 10% of the total number of words in the text. We further include examples
which contain only character-transformations without paraphrasing the original
input.

Training Objective AEG is pre-trained using teacher-forcing algorithm [38] on
the dataset explained in Section 3. Consider an input text: “movie was good” that
needs to be decoded into the following target perturbed text: “film is gud”. The
word “gud” might be out-of-vocabulary indicated by < oov >. Hence, we compute

1 https://www.kaggle.com/c/quora-question-pairs/data
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the loss incurred by word-GRU decoder, J (w), when predicting {“film”, “is”,
“< oov >”} and loss incurred by character-GRU decoder, J (c), when predicting
{‘f’, ‘i’,‘l’, ‘m’, ‘ ’},{‘i’,‘s’,’ ’},{‘g’, ‘u’,‘d’,‘ ’}. Therefore, the training objective in
Section 3.1 is modified into:

Jmle = J (w) + J (c) (6)

5.2 Training with Reinforcement learning

We fine-tune our model to fool a target classifier by learning a policy that
maximizes a specific discrete metric formulated based on the constraints required
to generate adversarial examples. In our work, we use the self-critical approach
of Rennie et al. [34] as our policy gradient training algorithm.

Self-critical sequence training (SCST) In SCST approach, the model learns
to gather more rewards from its sampled sequences that bring higher rewards than
its best greedy counterparts. First, we compute two sequences: (a) y′ sampled
from the model’s distribution p(y′j |y′<j , h) and (b) ŷ obtained by greedily decoding
(argmax predictions) from the distribution p(ŷj |ŷ<j , h) Next, rewards r(y′j), r(ŷj)
are computed for both the sequences using a reward function r(·), explained in
Section 5.2. We train the model by minimizing:

Jrl = −
∑
j

(r(y′)− r(ŷ))logp(ŷj |ŷ<j , h) (7)

Here r(ŷ) can be viewed as the baseline reward. This approach, therefore, explores
different sequences that produce higher reward compared to the current best
policy.

Rewards The reward r(ŷ) for the sequence generated is a weighted sum of
different constraints required for generating adversarial examples. Since our
model operates at word and character levels, we therefore compute three rewards:
adversarial reward, semantic similarity and lexical similarity reward. The reward
should be high when: (a) the generated sequence causes the target model to
produce a low classification prediction probability for its ground truth category,
(b) semantic similarity is preserved and (c) the changes made to the original text
are minimal.

Adversarial Reward Given a target model T , it takes a text sequence y and
outputs prediction probabilities P across various categories of the target model.
Given an input sample (x, l), we compute a perturbation using our AEG model
and produce a sequence y. We compute the adversarial reward as RA = (1− Pl),
where the ground truth l is an index to the list of categories and Pl is the
probability that the perturbed generated sequence y belongs to target ground
truth l. Since we want the target classifier to make mistakes, we promote it by
rewarding higher when the sequences produce low target probabilities.
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Semantic Similarity Inspired by the work of Li et al. [24], we train a deep
matching model that can represent the degree of match between two texts. We
use character based biLSTM models with attention [25] to handle word and
character level perturbations. The matching model will help us compute the the
semantic similarity RS between the text generated and the original input text.

Lexical Similarity Since our model functions at both character and word level,
we compute the lexical similarity. The purpose of this reward is to keep the
changes as minimal as possible to just fool the target classifier. Motivated by the
recent work of Moon et al. [28], we pretrain a deep neural network to compute
approximate Levenshtein distance RL composed of character based bi-LSTM
model. We replicate that model by generating a large number of text with
perturbations in the form of insertions, deletions or replacements. We also include
words which are prominent nicknames, abbreviations or inconsistent notations to
have more lexical similarity. This is generally not possible using direct Levenshtein
distance computation. Once trained, it can produce a purely lexical embedding
of the text without semantic allusion. This can be used to compute the lexical
similarity between the generated text y and the original input text x for our
purpose.

Finally, we combine all these three rewards using:

r(y) = γARA + γSRS + γLRL (8)

where γA, γS , γL are hyperparameters that can be modified depending upon the
kind of textual generations expected from the model. The changes inflicted by
different reward coefficients can be seen in Section 6.5.

5.3 Training Details

We trained our models on 4 GPUs. The parameters of our hybrid encoder-
decoder were uniformly initialized to [−0.1, 0.1]. The optimization algorithm
used is Adam [21]. The encoder word embedding matrices were initialized with
300-dimensional Glove vectors [33]. During reinforcement training, we used
plain stochastic gradient descent with a learning rate of 0.01. Using a held-
out validation set, the hyper-parameters for our experiments are set as follows:
γA = 1, γS = 0.5, γL = 0.25.

6 Experiments

In this section, we describe the evaluation setup used to measure the effectiveness
of our model in generating adversarial examples. The success of our model lies in
its ability to fool the target classifier. We pretrain our models with dataset that
generates a number of character and word perturbations. We elaborate on the
experimental setup and the results below.



Black-Box Adversarial Examples for Text Classifiers 11

Datasets Details Model Accuracy

IMDB Review Classes: 2; #Train: 25k; CNN-Word [20] 89.95%
AG’s News Classes: 4; #Train: 120k; CNN-Char [42] 89.11%

Table 1. Summary of data and models used in our experiments.

6.1 Setup

We conduct experiments on different datasets to verify if the accuracy of the deep
learning models decrease when fed with the adversarial examples generated by
our model. We use benchmark sentiment classification and news categorization
datasets and the details are as follows:

– Sentiment classification: We trained a word-based convolutional model (CNN-
Word) [20] on IMDB sentiment dataset 2. The dataset contains 50k movie
reviews in total which are labeled as positive or negative. The trained model
achieves a test accuracy of 89.95% which is relatively close to the state-of-
the-art results on this dataset.

– News categorization: We perform our experiments on AG’s news corpus
3 with a character-based convolutional model (CNN-Char) [42]. The news
corpus contains titles and descriptions of various news articles along with
their respective categories. There are four categories: World, Sports, Business
and Sci/Tech. The trained CNN-Char model achieves a test accuracy of
89.11%.

Table 1 summarizes the data and models used in our experiments. We compare
our proposed model with the following black-box non-targeted attacks:

– Random: We randomly select a word in the text and introduce some pertur-
bation to that word in the form of a character replacement or synonymous
word replacement. No specific strategy to identify importance of words.

– NMT-BT: We generate paraphrases of the sentences of the text using a back-
translation approach [16]. We used pretrained English↔German translation
models to obtain back-translations of input examples.

– DeepWordBug [10]: A scoring function is used to determine the important
tokens to change. The tokens are then modified to evade a target model.

– No-RL: We use our pretrained model without the reinforcement learning
objective.

The performance of these methods are measured by the percentage fall in accuracy
of these models on the generated adversarial texts. Higher the percentage dip in
the accuracy of the target classifier, more effective is our model.

2 http://ai.stanford.edu/ amaas/data/sentiment/
3 https://github.com/mhjabreel/CharCNN/tree/master/data/ag news csv
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6.2 Quantitative Analysis

We analyze the effectiveness of our approach by comparing the results from
using two different baselines against character and word-based models trained on
different datasets. Table 2 demonstrates the capability of our model. Without
the reinforcement learning objective, the No-RL model performs better than the
back-translation approach(NMT-BT). The improvement can be attributed to
the word and character perturbations introduced by our hybrid encoder-decoder
model as opposed to only paraphrases in the former model. Our complete AEG
model outperforms all the other models with significant drop in accuracy. For
the CNN-Word, DeepWordBug decreases the accuracy from 89.95% to 28.13%
while AEG model further reduces it to 18.5%.

Models IMDB AG’s News
(CNN-Word) (CNN-Char)

Random 2.46% 9.64%
NMT-BT 25.38% 22.45%

DeepWordBug 68.73% 65.80%
No-RL (Ours) 38.05% 33.58%
AEG (Ours) 79.43% 72.16%

Model Variants IMDB News Corpus

Char-dec 73.5 68.64%
No pert 71.45% 65.91%

Table 2. Left: Performance of our AEG model on IMDB and AG’s News dataset using
word and character based CNN models respectively. Results indicate the percentage dip
in the accuracy by using the corresponding attacking model over the original accuracy.
Right: Performance of different variants of our model.

It is important to note that our model is able to expose the weaknesses of the
target model irrespective of the nature of the model (either word or character
level). It is interesting that even simple lexical substitutions and paraphrases
can break such models on both datasets we tested. Across different models, the
character-based models are less susceptible to adversarial attacks compared to
word-based models as they are able to handle misspellings and provide better
generalizations.

6.3 Human Evaluation

We also evaluated our model based on human judgments. We conducted an exper-
iment where the workers were presented with randomly sampled 100 adversarial
examples generated by our model which were successful in fooling the target
classifier. The examples were shuffled to mitigate ordering bias, and every example
was annotated by three workers. The workers were asked to label the sentiment
of the sampled adversarial example. For every adversarial example shown, we
also showed the original text and asked them to rate their similarity on a scale
from 0 (Very Different) to 3 (Very Similar). We found that the perturbations
produced by our model do not affect the human judgments significantly as 94.6%
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of the human annotations matched with the ground-truth label of the original
text. The average similarity rating of 1.916 also indicated that the generated
adversarial sequences are semantics-preserving.

6.4 Ablation Studies

In this section, we make different modifications to our encoder and decoder
to weigh the importance of these techniques: (a) No perturbation vector (No
Pert) and finally (b) a simple character based decoder (Char-dec) but involves
perturbation vector. Table 2 shows that the absence of hybrid decoder leads to a
significant drop in the performance of our model. The main reason we believe
is that hybrid decoder is able to make targeted attacks on specific words which
otherwise is lost while generating text using a pure-character based decoder. In
the second case case, the most important words associated with the prediction of
the target model are identified by the summary vector. When the perturbation
vector is used, it carries forward this knowledge and decides if a perturbation
should be performed at this step or not. This can be verified even in Figure 3,
where the regions of high attention get perturbed in the text generated.

γA ≈ 0, γS ≈ 1, γL ≈ 0 

… unions representing workers at turner newall say they are 
disappointed after talks with stricken parent firm federal mogul …

… labor force at turner newall inform that they are upset with the 
meeting with parent company ’s manager …

γA ≈ 0, γS ≈ 0, γL ≈ 1

… unions representing workers at turner newall say they are 
disappointed after talks with stricken parent firm federal mogul …

… unions representing workrs at turner newall say they are 
disappointed after talks with stricken parent firm federal mogul …

γA ≈ 1, γS ≈ 0, γL ≈ 0

… unions representing workers at turner newall say they are 
disappointed after talks with stricken parent firm federal mogul …

… unyons representing labors at turner newall say they are meeting 
at a new place with stricken parents and children …

This is an example of why the majority of action films are the same. Generic and boring, there's really 
nothing worth watching here. A complete waste of the then barely-tapped talents…

this is an example of why most of the action movis are so similar. mostly generic and borin, there ’s nothin 
worth or good watching here. A complete taste of the then barely tapped talents…

The premise is good, the plot line interesting and the screenplay was OK. A tad too simplistic in that a 
coming out story of a gay man was so positive when it is usually not quite so positive. 

The premise is good, though script was intresting. The film ’s screenplay was mediocre . It was too generic 
in a coming out story of a gay man was so positive but it is usually not quite so positive. 

… Its charming, delightful, sad, funny, and every- thing in between.…

… its charmng, delightfull, disappointing, sad, funny, and every thing between …

Positive → Negative

Positive → Negative

Negative → Positive

Fig. 3. Left: Examples from IMDB reviews dataset, where the model introduces
misspellings or paraphrases that are sufficient to fool the target classifier. Right: Effect
of coefficients of the reward function. The first line is the text from the AG’s news
corpus. The second line is the generated by the model given specific constraints on the
reward coefficients. The examples do not necessarily lead to misclassification. The text
in green are attention scores indicating relevance of classification. The text in red are
the perturbations introduced by our model.

6.5 Qualitative Analysis

We qualitatively analyze the results by visualizing the attention scores and the
perturbations introduces by our model. We further evaluate the importance of
hyperparameters γ(.) in the reward function. We set only one of the hyperpa-
rameters closer to 1 and set the remaining closer to zero to see how it affects
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the text generation. The results can be seen in Figure 3. Based on a subjective
qualitative evaluation, we make the following observations:

– Promisingly, it identifies the most important words that contribute to partic-
ular categorization. The model introduces misspellings or word replacements
without significant change in semantics of the text.

– When the coefficient associated only with adversarial reward goes to 1, it
begins to slowly deviate though not completely. This is motivated by the
initial pretraining step on paraphrases and perturbations.

7 Conclusion

In this work, we have introduced a AEG, a model capable of generating adversarial
text examples to fool the black-box text classification models. Since we do not
have access to gradients or parameters of the target model, we modelled our
problem using a reinforcement learning based approach. In order to effectively
baseline the REINFORCE algorithm for policy-gradients, we implemented a
self-critical approach that normalizes the rewards obtained by sampled sentences
with the rewards obtained by the model under test-time inference algorithm.
By generating adversarial examples for target word and character-based models
trained on IMDB reviews and AG’s news dataset, we find that our model is
capable of generating semantics-preserving perturbations that leads to steep
decrease in accuracy of those target models. We conducted ablation studies to
find the importance of individual components of our system. Extremely low values
of the certain reward coefficient constricts the quantitative performance of the
model can also lead to semantic divergence. Therefore, the choice of a particular
value for this model should be motivated by the demands of the context in which
it is applied. One of the main challenges of such approaches lies in the ability to
produce more synthetic data to train the generator model in the distribution of
the target model’s training data. This can significantly improve the performance
of our model. We hope that our method motivates a more nuanced exploration
into generating adversarial examples and adversarial training for building robust
classification models.
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