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Abstract. Can we automatically design a Convolutional Network (Con-
vNet) with the highest image classification accuracy under the latency
constraint of a mobile device? Neural architecture search (NAS) has
revolutionized the design of hardware-efficient ConvNets by automat-
ing this process. However, the NAS problem remains challenging due
to the combinatorially large design space, causing a significant search-
ing time (at least 200 GPU-hours). To alleviate this complexity, we
propose Single-Path NAS, a novel differentiable NAS method for de-
signing hardware-efficient ConvNets in less than 4 hours. Our con-
tributions are as follows: 1. Single-path search space: Compared to
previous differentiable NAS methods, Single-Path NAS uses one single-
path over-parameterized ConvNet to encode all architectural decisions
with shared convolutional kernel parameters, hence drastically decreasing
the number of trainable parameters and the search cost down to few
epochs. 2. Hardware-efficient ImageNet classification: Single-Path
NAS achieves 74.96% top-1 accuracy on ImageNet with 79ms latency
on a Pixel 1 phone, which is state-of-the-art accuracy compared to NAS
methods with similar inference latency constraints (≤ 80ms). 3. NAS
efficiency: Single-Path NAS search cost is only 8 epochs (30 TPU-
hours), which is up to 5,000× faster compared to prior work. 4. Re-
producibility: Unlike all recent mobile-efficient NAS methods which
only release pretrained models, we open-source our entire codebase at:
https://github.com/dstamoulis/single-path-nas.
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1 Introduction

“Is it possible to reduce the considerable search cost of Neural Architecture Search
(NAS) down to only few hours?” NAS has revolutionized the design of Convo-
lutional Networks (ConvNets) [25], yielding state-of-the-art results in several
deep learning applications [14]. NAS methods already have a profound impact
on the design of hardware-efficient ConvNets for computer vision tasks under
the constraints (e.g., inference latency) imposed by mobile devices [18].
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Despite the recent breakthroughs, NAS remains an intrinsically costly opti-
mization problem. Searching for which convolution operation to use per ConvNet
layer, gives rise to a combinatorially large search space: e.g., for a mobile-
efficient ConvNet with 22 layers, choosing among five candidate operations yields
522 ≈ 1015 possible ConvNet architectures. To traverse this design space, earlier
NAS methods guide the exploration via reinforcement learning (RL) [18]. Nonethe-
less, training the RL controller poses prohibitive computational challenges, and
thousands of candidate ConvNets need to be trained [19].

Fig. 1. Single-Path NAS directly optimizes for the subset of convolution kernel weights
and searches over an over-parameterized “superkernel” in each ConvNet layer (right).
This novel view of the design space eliminates the need for maintaining separate paths
for each candidate operation, as in previous multi-path approaches (left). Our key
insight drastically reduces the NAS search cost by up to 5,000× with state-of-the-art
accuracy on ImageNet for the same mobile latency setting, compared to prior work.

Inefficiencies of multi-path NAS: Recent NAS literature has seen a shift
towards one-shot differentiable formulations [12, 13, 20] which search over a
supernet that encompasses all candidate architectures. Specifically, current NAS
methods relax the combinatorial optimization problem of finding the optimal
ConvNet architecture to an operation/path selection problem: first, an over-
parameterized, multi-path supernet is constructed, where, for each layer, every
candidate operation is added as a separate trainable path, as illustrated in
Figure 1 (left). Next, NAS formulations solve for the (distributions of) paths of
the multi-path supernet that yield the optimal architecture.

As expected, naively branching out all paths is inefficient due to an intrinsic
limitation: the number of trainable parameters that need to be maintained
and updated during the search grows linearly with respect to the number of
candidate operations per layer [1]. To tame the memory explosion introduced by
the multi-path supernet, current methods employ creative “workaround” solutions:
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e.g., searching on a proxy dataset (subset of ImageNet [19]), or employing a
memory-wise scheme with only a subset of paths being updated during the
search [3]. Nevertheless, these techniques remain considerably costly, with an
overall computational demand of at least 200 GPU-hours.

In this paper, we propose Single-Path NAS, a novel NAS method for de-
signing hardware-efficient ConvNets in less than 4 hours. Our key insight
is illustrated in Figure 1 (right). We build upon the observation that different
candidate convolutional operations in NAS can be viewed as subsets of a single
“superkernel”. Without having to choose among different paths/operations as
in multi-path methods, we instead solve the NAS problem as finding which subset
of kernel weights to use in each ConvNet layer. By sharing the convolutional
kernel weights, we encode all candidate NAS operations into a single superkernel,
i.e., with a single path, for each layer of the one-shot NAS supernet. This novel
encoding of the design space yields a drastic reduction to the number of trainable
parameters/gradients, allowing our NAS method to use batch sizes of 1024, a
four-fold increase compared to prior art’s search efficiency.

Our contributions are as follows:

1. Single-path NAS: We propose a novel view of the one-shot, supernet-based
design space, hence drastically decreasing the number of trainable parameters.
To the best of our knowledge, this is the first work to formulate the NAS
problem as finding the subset of kernel weights in each ConvNet layer.

2. State-of-the-art results: Single-Path NAS achieves 74.96% top-1 accuracy
on ImageNet with 79ms latency on a Pixel 1, i.e., a +0.31% improvement
over the current best hardware-aware NAS [18] under 80ms.

3. NAS efficiency: The overall search cost is only 8 epochs, i.e., 3.75 hours
on TPUs (30 TPU-hours), up to 5,000× faster compared to prior work.

4. Reproducibility: Unlike recent hardware-efficient NAS methods which
release pretrained models only, we open-source and fully document our
method at: https://github.com/dstamoulis/single-path-nas.

2 Related Work

Hardware-efficient ConvNets: While complex ConvNet designs have unlocked
unprecedented performance levels in computer vision tasks, the accuracy im-
provement has come at the cost of higher computational complexity, making the
deployment of state-of-the-art ConvNets to mobile devices challenging [17]. To
this end, a significant body of prior work aims to co-optimize for the inference
latency of ConvNets. Earlier approaches focus on human expertise to introduce
hardware-efficient operations [9, 15, 22]. Pruning [4] and quantization [7] methods
share the same goal to improve the efficiency of ConvNets.

Neural Architecture Search (NAS): NAS aims at automating the process
of designing ConvNets, giving rise to methods based on reinforcement learning
(RL), evolutionary algorithms, or gradient-based methods [12–14, 24, 25]. Earlier
approaches train an agent (e.g., RNN controller) by sampling candidate architec-
tures over a cell-based design space, where the same cell is repeated in all layers



4 D. Stamoulis et al.

and the focus is on searching the cell architecture [25]. Nonetheless, training the
controller over different architectures makes the search costly.

Hardware-aware NAS: Earlier NAS methods focused on maximizing accu-
racy under FLOPs constraints [20, 23], but low FLOP count does not necessarily
translate to hardware efficiency [8, 16]. More recent methods incorporate hard-
ware terms (e.g., runtime, power) into cell-based NAS formulations [8, 10], but
cell-based implementations are not hardware friendly [19]. Breaking away from
cell-based assumptions in the search space encoding, recent work employs NAS
over a generalized MobileNetV2-based design space introduced in [18].

Hardware-aware Differentiable NAS: Recent NAS literature has seen
a shift towards one-shot NAS formulations [13, 20]. Gradient-based NAS in
particular has gained increased popularity and has achieved state-of-the-art
results [12]. One-shot-based methods use an over-parameterized super-model
network, where, for each layer, every candidate operation is added as a separate
trainable path. Nonetheless, multi-path search spaces have an intrinsic limitation:
the number of trainable parameters that need to be maintained and updated
with gradients during the search grows linearly with respect to the number of
different convolutional operations per layer, resulting in memory explosion [1, 3].

To this end, state-of-the-art approaches employ different novel “workaround”
solutions. FBNet [19] searches on a “proxy” dataset (i.e., subset of the ImageNet
dataset). Despite the decreased search cost thanks to the reduced number of
training images, these approaches do not address the fact that the entire super-
model needs to be maintained in memory during search, hence the efficiency
is limited due to inevitable use of smaller batch sizes. ProxylessNAS [3] has
employed a memory-wise one-shot model scheme, where only a set of paths is
updated during the search. However, such implementation-wise improvements do
not address a second key suboptimality of one-shot approaches, i.e., the fact that
separate gradient steps are needed to update the weights and the architectural
decisions interchangeably [12]. Although the number of trainable parameters,
with respect to the memory cost, is kept to the same level at any step, the way
that multi-path-based methods traverse the design space remains inefficient.

3 Proposed Method: Single-Path NAS

In this Section, we present our proposed method. First, we discuss our novel
single-path view (Subsection 3.1) of the search space. Next, we encode the NAS
problem as finding the subset of convolution weights over the over-parameterized
superkernel (Subsection 3.2), and we discuss how it compares to existing multi-
path-based NAS (Subsection 3.3). Last, we formulate the hardware-aware NAS
objective function, where we incorporate an accurate inference latency model of
ConvNets executing on the Pixel 1 smartphone (Subsection 3.4).

3.1 Mobile ConvNets Search Space: A Novel View

Background - Mobile ConvNets: State-of-the-art NAS builds upon a fixed
“backbone” ConvNet [3] inspired by the MobileNetV2 design [15], illustrated in
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Fig. 2. Single-path search space: Our method builds upon hierarchical MobileNetV2-
like search spaces [15, 18], where the goal is to identify the type of mobile inverted
bottleneck convolution (MBConv) [15] per layer. Our one-shot supernet encapsulates
all possible NAS architectures in the search space, without the need for appending each
candidate operation as a separate path. Single-Path NAS directly searches over the
weights of a searchable superkernel that encodes all MBConv types.

Figure 2 (top). Specifically, in this fixed macro-architecture, except for the head
and stem layers, all ConvNet layers are grouped into blocks based on their filter
sizes. The filter numbers per block follow the values in [19], i.e., we use seven
blocks with up to four layers each. Each layer of these blocks follows a mobile
inverted bottleneck convolution MBConv [15] micro-architecture, which consists
of a point-wise (1× 1) convolution, a k × k depthwise convolution, and a linear
1× 1 convolution (Figure 2, middle). Unless the layer has a stride value of two, a
skip path is introduced to provide a residual connection from input to output.

Each MBConv layer is parameterized by k, i.e., the kernel size of the depthwise
convolution, and by expansion ratio e, i.e., the ratio between the output and
input of the first 1× 1 convolution. Based on this parameterization, we denote
each MBConv as MBConv-k × k-e. Mobile-efficient NAS aims to choose each
MBConv-k × k-e layer, by selecting among different k and e values [3, 19]. In
particular, we consider MBConv layers with kernel sizes {3, 5} and expansion
ratios {3, 6}. NAS also considers a special skip-op “layer”, which “zeroes-out” the
kernel and feeds the input directly to the output, i.e., the entire layer is dropped.

Novel view of design space: Our key insight is illustrated in Figure 2. We
build upon the observation that different candidate convolutional operations in
NAS can be viewed as subsets of the weights of an over-parameterized single
superkernel (Figure 2, bottom). This observation allows us to view the NAS
combinatorial problem as finding which subset of kernel weights to use in each
MBConv layer. This observation is important since it allows sharing the kernel
parameters across different MBConv architectural options. As shown in Figure 2,
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we encode all candidate NAS operations to this single superkernel, i.e., with a
single path, for each layer of the one-shot NAS supernet.

3.2 Proposed Methodology: Single-Path NAS formulation

Key idea - Relaxing NAS decisions over an over-parameterized kernel:
To simplify notation and to illustrate the key idea, without loss of generality,
we show the case of choosing between a 3× 3 or a 5× 5 kernel for an MBConv
layer. Let us denote the weights of the two candidate kernels as w3×3 and w5×5,
respectively. As shown in Figure 3 (left), we observe that the weights of the 3× 3
kernel can be viewed as the inner core of the weights of the 5× 5 kernel, while
“zeroing” out the weights of the “outer” shell. We denote this (outer) subset of
weights (that does not contribute to output of the 3× 3 kernel but only to the
5×5 kernel), as w5×5\3×3. Hence, the NAS architectural choice of using the 5×5
convolution corresponds to using both the inner w3×3 weights and the outer
shell, i.e., w5×5 = w3×3 + w5×5\3×3 (Figure 3, left).

Fig. 3. Encoding NAS decisions into the superkernel: We formulate all candidate
convolution operations (i.e., different kernel size (left) and expansion ratio (right) values)
directly into the searchable superkernel.

We can therefore encode the NAS decision directly into the superkernel of an
MBConv layer as a function of kernel weights as follows:

wk = w3×3 + 1(use 5× 5) ·w5×5\3×3 (1)

where 1(·) is the indicator function that encodes the architectural NAS choice, i.e.,
if 1(·) = 1 then wk = w3×3 + w5×5\3×3 = w5×5, else 1(·) = 0 then wk = w3×3.

Trainable indicator/condition function: While the indicator function
encodes the NAS decision, a critical choice is how to formulate the condition over
which the 1(·) is evaluated. Our intuition is that, for an indicator function that
represents whether to use the subset of weights, its condition should be directly
a function of the subset’s weights. Thus, our goal is to define an “importance”
signal of the subset weights that intrinsically captures their contribution to the
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overall ConvNet loss. We draw inspiration from weight-based conditions that
have been successfully used for quantization-related decisions [6] and we use the
group Lasso term. Specifically, for the indicator related to the w5×5\3×3 “outer
shell” decision, we write the following condition:

wk = w3×3 + 1(
∥∥w5×5\3×3

∥∥2 > tk=5) ·w5×5\3×3 (2)

where tk=5 is a latent variable that controls the decision (e.g., a threshold value)
of selecting kernel 5 × 5. The threshold will be compared to the Lasso term
to determine if the outer w5×5\3×3 weights are used to the overall convolution.
It is important to notice that, instead of picking the thresholds (e.g., tk=5) by
hand, we seamlessly treat them as trainable parameters to learn via gradient
descent. To compute the gradients for thresholds, we relax the indicator function
g(x, t) = 1(x > t) to a sigmoid function, σ(·), when computing gradients, i.e.,
ĝ(x, t) = σ(x > t).

Searching for expansion ratio and skip-op: Since the result of the kernel-
based NAS decision wk (Equation 2) is a convolution kernel itself, we can in turn
apply our formulation to also encode NAS decisions for the expansion ratio of
the wk kernel. As illustrated in Figure 3 (right), the channels of the depthwise
convolution in an MBConv-k×k-3 layer with expansion ratio e = 3 can be viewed
as using one half of the channels of an MBConv-k × k-6 layer with expansion
ratio e = 6, while “zeroing” out the second half of channels {wk,6\3}. Finally,
by “zeroing” out the first half of the output filters as well, the entire superkernel
contributes nothing if added to the residual connection of the MBConv layer:
i.e., by deciding if e = 3, we can encode the NAS decision of using, or not, only
the “skip-op” path. For both decisions over wk kernel, we write:

w = 1(‖wk,3‖2 > te=3) · (wk,3 + 1(
∥∥wk,6\3

∥∥2 > te=6) ·wk,6\3) (3)

Hence, for input x, the output of the i-th MBConv layer of the network is:

oi(x) = conv(x,wi|tik=5, t
i
e=6, t

i
e=3) (4)

Searchable MBConv kernels: Each MBConv uses 1×1 convolutions for the
point-wise (first) and linear stages, while the kernel-size decisions affect only the
(middle) k×k depthwise convolution (Figure 2). To this end, we use our searchable
k × k depthwise kernel at this middle stage. In terms of number of channels,
the depthwise kernel depends on the point-wise 1× 1 output, which allows us
to directly encode the expansion ratio e at the middle stage as well: by setting
the point-wise 1× 1 output to the maximum candidate expansion ratio, we can
instead solve for which of them not to “zero” out at the depthwise (middle) state.
In other words, we directly use our searchable depthwise convolution superkernel
to effectively encode the NAS decision for the expansion ratio. Hence, our single-
path, convolution-based formulation can sufficiently capture any MBConv type
(e.g., MBConv-3× 3-6, MBConv-5× 5-3, etc.) in the MobileNetV2-based design
space (Figure 2).



8 D. Stamoulis et al.

3.3 Single-Path vs. Existing Multi-Path Assumptions

Comparison with multi-path over-parameterized networks: We briefly il-
lustrate how our single-path formulation compares to multi-path NAS approaches.
In existing methods [3, 12, 19], the output of each layer i is a (weighted) sum
defined over the output of N different paths, where each path j corresponds to a
different candidate kernel wi,j

k×k,e. The weight of each path αi,j corresponds to
the probability that this path is selected over the parallel paths:

oimulti−path(x) =

N∑
j=1

αi,j ·oi,j(x) = αi,0 ·conv(x,wi,0
3×3)+· · ·+αi,N ·conv(x,wi,N

5×5)

(5)
It is easy to see how our novel single-path view is advantageous, since the output
of the convolution at layer i of our search space is directly a function of the
weights of our single over-parameterized kernel (Equation 4):

oisingle−path(x) = oi(x) = conv(x,wi|tik=5, t
i
e=6, t

i
e=3) (6)

Comparison with multi-path NAS optimization: Multi-path NAS meth-
ods solve for the optimal architecture parameters α (path weights), such that
the weights wα of the corresponding α-architecture have minimal loss L(α,wα):

min
α

min
wα

L(α,wα) (7)

However, solving Equation 7 gives rise to a challenging bi-level optimization
problem [12]. Existing methods interchangeably update the α’s while freezing
the w’s and vice versa, leading to more gradient steps.

In contrast, with our single-path formulation, the overall network loss is
directly a function of the superkernel weights, where the learnable kernel- and
expansion ratio-related threshold variables, tk and te, are directly derived as
a function (norm) of the kernel weights w. Consequently, Single-Path NAS
formulates the NAS problem as solving directly over the weight kernels w of a
single-path, compact neural network. Formally, the NAS problem becomes:

min
w
L(w|tk, te) (8)

Efficiency of Single-Path NAS : Unlike the bi-level optimization problem
in prior work, solving our NAS formulation in Equation 8 is as expensive as
training the weights of a single-path, branchless, compact neural network with
vanilla gradient descent. Therefore, our formulation eliminates the need for
separate gradient steps between the ConvNet weights and the NAS parameters.
Moreover, the reduction of the trainable parameters w per se, further leads
to a drastic reduction of the search cost down to just a few epochs, as our
experimental results show later in Section 4. Our NAS problem formulation
allows us to efficiently solve Equation 8 with batch sizes of 1024, a four-fold
increase compared to prior art’s search efficiency.
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3.4 Hardware-Aware NAS with Differentiable Runtime Loss

To design hardware-efficient ConvNets, the differentiable objective in Equation 8
should reflect both the accuracy of the searched ConvNet and its inference latency
on the target hardware. Hence, we use a latency-aware formulation [3, 19]:

L(w|tk, te) = CE(w|tk, te) + λ · log(R(w|tk, te)) (9)

The first term CE corresponds to the cross-entropy loss of the single-path model.
The hardware-related term R is the runtime in milliseconds (ms) of the searched
NAS model on the target mobile platform. Finally, the coefficient λ modulates
the trade-off between cross-entropy and runtime.

Runtime model over the single-path design space: To preserve the
differentiability of the objective, another critical choice is the formulation of the
latency term R. Prior art has showed that the total network latency of a mobile
ConvNet can be modeled as the sum of each i-th layer’s runtime Ri, since the
runtime of each operator is independent of other operators [2, 3, 19]:

R(w|tk, te) =
∑
i

Ri(wi|tik, tie) (10)

For our approach, we adapt the per-layer runtime model as a function of the
NAS-related decisions t. We profile the target mobile platform (Pixel 1) and we
record the runtime for each candidate kernel operation per layer i, i.e., Ri3×3,3,

Ri3×3,6, Ri5×5,3, and Ri5×5,6. We denote the runtime of layer i by following the
notation in Equation 3. Specifically, the runtime of layer i is defined first as a
function of the expansion ratio decision:

Rie = 1(‖wk,3‖2 > te=3)·(Ri5×5,3+1(
∥∥wk,6\3

∥∥2 > te=6)·(Ri5×5,6−Ri5×5,3)) (11)

Next, by incorporating the kernel size decision, the total runtime is:

Ri =
Ri3×3,6
Ri5×5,6

·Rie +Rie · (1−
Ri3×3,6
Ri5×5,6

) · 1(
∥∥w5×5\3×3

∥∥2 > tk=5) (12)

As in Equation 2, we relax the indicator function to a sigmoid function σ(·) when
computing gradients. By using this model, the runtime term in the loss function
remains differentiable with respect to layer-wise NAS choices. As we show in our
results, the model is accurate, with an average prediction error of 1.76%.

4 Experiments

4.1 Experimental Setup

Dataset and target application: We use Single-Path NAS to design Con-
vNets for image classification on ImageNet. We use Pixel 1 as the target mobile
platform. The choice of this experimental setup is important, since it allows for
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a representative comparison with prior hardware-efficient NAS methods that
optimize for the same Pixel 1 device around a target latency of 80ms [3, 18].

Implementation and deployment: We implement our NAS framework in
TensorFlow (TF version 1.12). During both search and training stages, we use
TPUs (version 2) [11]. To this end, we build on top of the TPUEstimator classes
following the TPU-related documentation of the MnasNet repository4. Last, all
models (ours and prior work) are deployed with TensorFlow TFLite to the mobile
device. On the device, we profile runtime using the Facebook AI Performance
Evaluation Platform (FAI-PEP)5 that supports profiling for tflite models with
detailed per-layer runtime breakdown.

Implementing the custom superkernels: We use Keras to implement our
trainable superkernels. Specifically, we define a custom Keras-based depthwise
convolution kernel where the output is a function of both the weights and the
threshold-based decisions (Equations 2-3). Our custom layer also returns the
effective runtime of the layer (Equations 11-12). We document our implementation
in our project GitHub repository: https://github.com/dstamoulis/single-
path-nas, with detailed steps on how to reproduce the results.

4.2 State-of-the-art Runtime-Constrained ImageNet Classification

We apply our method to design ConvNets for the Pixel 1 phone with an overall
target latency of 80ms. We train the derived Single-Path NAS model for 350
epochs, following the MnasNet training schedule [18]. We compare our method
with mobile ConvNets designed by human experts and state-of-the-art NAS
methods in Table 1, in terms of classification accuracy and search cost. In terms
of hardware efficiency, prior work has shown that low FLOP count does not
necessarily translate to high hardware efficiency [8], we therefore evaluate the
various NAS methods with respect to the inference runtime on Pixel 1 (≤ 80ms).

Enabling a representative comparison: While we provide the original
values from the respective papers, our goal is to ensure a fair comparison. To this
end, we retrain the baseline models following the same schedule (in fact, we find
that the MnasNet-based training schedule improves the top1 accuracy compared
to what is reported in several previous methods). Similarly, we profile the models
on the same Pixel 1 device. For prior work that does not optimize for Pixel 1,
we retrain and profile their model closest to the MnasNet baseline (e.g., the
FBNet-B and ChamNet-B networks [5, 19], since the authors use these ConvNets
to compare against the MnasNet model). Finally, to enable a representative
comparison of the search cost per method, we directly report the number of
epochs reported per method, hence canceling out the effect of different hardware
systems (GPU vs TPU hours).

ImageNet classification: Table 1 shows that our Single-Path NAS achieves
top-1 accuracy of 74.96%, which is the new state-of-the-art ImageNet accu-
racy among hardware-efficient NAS methods. More specifically, our method

4 https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
5 https://github.com/facebook/FAI-PEP
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Table 1. Single-Path NAS achieves state-of-the-art accuracy (%) on ImageNet for
similar mobile latency setting compared to previous NAS methods (≤ 80ms on Pixel 1),
with up to 5, 000× reduced search cost in terms of number of epochs. *The search cost
in epochs is estimated based on the claim [3] that ProxylessNAS is 200× faster than
MnasNet. ‡ChamNet does not detail the model derived under runtime constraints [5]
so we cannot retrain or measure the latency.

Method
Top-1 Top-5 Mobile Search

Acc (%) Acc (%) Runtime (ms) Cost (epochs)

MobileNetV1 [9] 70.60 89.50 113
-MobileNetV2 1.0x [15] 72.00 91.00 75.00

MobileNetV2 1.0x (our impl.) 73.59 91.41 73.57

Random search 73.78 ± 0.85 91.42 ± 0.56 77.31 ± 0.9 ms -

MnasNet 1.0x [18] 74.00 91.80 76.00
40,000

MnasNet 1.0x (our impl.) 74.61 91.95 74.65

ChamNet-B [5] 73.80 – – 240‡
ProxylessNAS-R [3] 74.60 92.20 78.00

200*
ProxylessNAS-R (our impl.) 74.65 92.18 77.48

FBNet-B [19] 74.1 - -
90

FBNet-B (our impl.) 73.70 91.51 78.33

Single-Path NAS (proposed) 74.96 92.21 79.48 8 (3.75 hours)

achieves better top-1 accuracy than ProxylessNAS by +0.31%, while
maintaining on par target latency of ≤ 80ms on the same target mobile phone.
Single-Path NAS outperforms methods in this mobile latency range, i.e., better
than MnasNet (+0.35%), FBNet-B (+0.86%), and MobileNetV2 (+1.37%).

NAS search cost: Single-Path NAS has orders of magnitude reduced
search cost compared to all previous hardware-efficient NAS methods. Specifi-
cally, MnasNet reports that the controller uses 8k sampled models, each trained
for 5 epochs, for a total of 40k train epochs. In turn, ChamNet trains an accuracy
predictor on 240 samples, which assuming an aggressively fast training schedule
of five epochs per sample (same as in MnasNet), corresponds to a total search
cost of 1.2k epochs. ProxylessNAS reports 200× search cost improvement over
MnasNet, hence the overall cost is the TPU-equivalent of 200 epochs. Finally,
FBNet reports 90 epochs of training on a proxy dataset (10% of ImageNet).
While the number of images per epoch is reduced, we found that a TPU can
accommodate a FBNet-like supermodel with maximum batch size of 128, hence
the number of steps per FBNet epoch are still 8× more compared to the steps
per epoch in our method.

In comparison, Single-Path NAS has a total cost of eight epochs, which is
5,000× faster than MnasNet, 25× faster than ProxylessNAS, and 11× faster
than FBNet. In particular, we use an aggressive training schedule similar to the
few-epochs schedule used in MnasNet to train the individual ConvNet samples [18].
Due to space limitations, we provide implementation details (e.g., label smoothing,
learning rates, λ value, etc.) in our project repository. Overall, we visualize the
search efficiency of our method in Figure 4, where we show the progress of both
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Fig. 4. Single-Path NAS search progress: Progress of both objective terms, i.e., cross
entropy CE (left) and runtime R (right) during NAS search.

Fig. 5. Hardware-efficient ConvNet found by Single-Path NAS, with top-1 accuracy of
74.96% on ImageNet and inference time of 79.48ms on Pixel 1 phone.

CE and R terms of Equation 8. Earlier during our search (first six epochs), we
employ dropout across the different subsets of the kernel weights (Figure 4, right).
Dropout is a common technique in NAS methods to prevent the supernet from
learning as an ensemble. Unlike prior art that employs this technique over the
separate paths of the multi-path supernet, we directly drop randomly the subsets
of the superkernel in our single-path search space. We search for ∼ 10k steps (8
epochs with a batch size of 1024), which corresponds to total wall-clock time of
3.75 hours on a TPUv2. In particular, given than a TPUv2 has 2 chips with 4
cores each, this corresponds to a total of 30 TPU-hours.

Visualization of Single-Path NAS ConvNet: Our derived ConvNet
architecture is shown in Figure 5. Moreover, to illustrate how the searchable
superkernels effectively capture NAS decisions across subsets of kernel weights, we
plot the standard deviation of weight values in Figure 6 (shown in log-scale, with
lighter colors indicating smaller values). Specifically, we compute the standard
deviation of weights across the channel-dimension for all superkernels. For various
layers shown in Figure 6 (per i-th ConvNet’s layer from Figure 5), we observe
that the outer w5×5\3×3 “shells” reflect the NAS architectural choices: for layers
where the entire w5×5 is selected, the w5×5\3×3 values drastically vary across
the channels. On the contrary, for all layers where 3× 3 convolution is selected,
the outer shell values do not vary significantly.

Comparison with random search: We find surprising that mobile-efficient
NAS methods lack a comparison against random search. To this end, we randomly
sample ten ConvNets based on our design space; we employ sampling by rejection,
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Fig. 6. Visualization of kernel-based architectural contributions. The standard deviation
of superkernel values across the kernel channels is shown in log-scale, with lighter
colors indicating smaller values.

Fig. 7. The runtime model (Equa-
tion 10) is accurate, with an average
prediction error of 1.76%.

Fig. 8. Single-Path NAS outperforms
MobileNetV2 and MnasNet across vari-
ous channel size scales.

where we keep samples with predicted runtime from 75ms to 80ms. The average
accuracy and runtime of the random samples are reported in Table 1. We observe
that, while random search does not outperform NAS methods, the overall accuracy
is comparable to MobileNetV2. This highlights that the effectiveness of NAS
methods heavily relies upon the properties of the MobileNetV2-based design
space. Nonetheless, the search cost of random search is not representative: to
avoid training all ten samples, we would follow a selection process similar to
MnasNet, by training each sample for few epochs and picking the one with highest
accuracy. Hence, the actual search cost for random search is not negligible, and
for ≥ 10 samples it is in fact comparable to automated NAS methods.

Different channel size scaling: Next, we follow a typical analysis [3, 19],
by rescaling the networks using a width multiplier [15]. As shown in Figure 8, we
observe that our model consistently outperforms prior methods under varying
runtime settings. For instance, Single-Path NAS with 79.48ms is 1.56× faster
than the MobileNetV2 scaled model of similar accuracy.

Runtime model: To train the runtime model, we record the runtime per
layer (MBConv operations breakdown) by profiling ConvNets with different
MBConv types, i.e., we obtain the Ri3×3,3, Ri3×3,6, Ri5×5,3, and Ri5×5,6 runtime
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Table 2. Searching across subsets of kernel weights: ConvNets with weight values
trained over subsets of the kernels (3× 3 as subset of 5× 5) achieve performance (top-1
accuracy) similar to ConvNets with individually trained kernels.

Method Top-1 Acc (%) Top-5 Acc (%)

Baseline ConvNet - w3×3 kernels 73.59 91.41
Baseline ConvNet - w5×5 kernels 74.10 91.67

Single-Path ConvNet - inference w/ w3×3 kernels 73.43 91.42
Single-Path ConvNet - inference w/ w3×3 + w5×5\3×3 kernels 73.86 91.72

values per MBConv layer i (Equations 11-12). To evaluate the runtime-prediction
accuracy of the model, we generate 100 randomly designed ConvNets and we
measure their runtime on the device. As illustrated in Figure 7, our model can
accurately predict the actual runtimes: the Root Mean Squared Error (RMSE) is
1.32ms, which corresponds to an average 1.76% prediction error.

4.3 Ablation Study: Kernel-based Accuracy-Efficiency Trade-off

Single-Path NAS searches over subsets of the convolutional kernel weights. Hence,
we conduct experiments to highlight how kernel-weight subsets can capture
accuracy-efficiency trade-off effectively. To this end, we use the MobileNetV2
macro-architecture as a backbone (we maintain the location of stride-2 layers as
default). As two baseline networks, we consider the default MobileNetV2 with
MBConv-3× 3-6 blocks (i.e., w3×3 kernels for all depthwise convolutions), and a
network with MBConv-5× 5-6 blocks (i.e., w5×5 kernels).

Next, to capture the subset-based training of weights during a Single-Path
NAS search, we consider a ConvNet with MBConv-5 × 5-6 blocks, where we
compute the loss of the model over two subsets, (i) the inner w3×3 weights,
and (ii) by also using the remaining w5×5\3×3 weights. For each loss computed
over these subsets, we accumulate back-propagated gradients and update the
respective weights, i.e., gradients are being applied separately to the inner and
to the entire kernel per layer. We follow training steps similar to the “switchable”
training across channels as in [21] (for the remaining training hyper-parameters
we use the same setup as the default MnasNet). As shown in Table 2, we observe
the final accuracy across the kernel granularity, i.e., with the inner w3×3 and
the entire w5×5 = w3×3 + w5×5\3×3 kernels, follows an accuracy change relative
to ConvNets with individually trained kernels.

Such finding is significant in the context of NAS, since choosing over subsets
of kernels can effectively capture the accuracy-runtime trade-offs similar to their
individually trained counterparts. We therefore conjecture that our efficient
superkernel-based design search can be flexibly adapted and benefit the guided
search space exploration in other RL-based NAS methods. Beyond the NAS
literature, our finding is closely related to Slimmable networks [21]. SlimmableNets
limit however their analysis across the channel dimension, and our work is the
first to study trade-offs across the NAS kernel dimension.
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5 Conclusion

In this paper, we proposed Single-Path NAS, a NAS method that reduces the
search cost for designing hardware-efficient ConvNets to less than 4 hours. The
key idea is to revisit the one-shot supernet design space with a novel single-path
view, by formulating the NAS problem as finding which subset of kernel weights
to use in each ConvNet layer. Single-Path NAS achieved 74.96% top-1 accuracy
on ImageNet with 79ms latency on a Pixel 1 phone, which is state-of-the-art
accuracy with latency on-par with previous NAS methods (≤ 80ms). More
importantly, we reduced the search cost of hardware-efficient NAS down to only
8 epochs (30 TPU-hours), which is up to 5,000× faster compared to prior
work. Impact beyond differentiable NAS: While we used a differentiable
NAS formulation, our novel design space encoding can be flexibly incorporated
into other NAS methodologies. Hence, Single-Path NAS could enable future work
that builds upon the efficiency of our single-path, one-shot design space for RL-
or evolutionary-based NAS methods.
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